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Abstract The friction-induced vibration of a mass–
sliderwith in-plane and transverse springs and dampers
in sliding contact with a spinning elastic disc in three
different situations of spinning speed, i.e. constant
deceleration, constant acceleration and constant speed,
is studied. The stick–slip motion in the circumferen-
tial direction and separation–re-contact behaviour in
the transverse direction are considered, which make
the system responses non-smooth. It is observed that
the decelerating rotation of the disc can make the in-
plane stick–slip motion of the slider more complicated
in comparison with constant disc rotation and thereby
exerting significant influence on the transverse vibra-
tion of the disc, while the accelerating rotation of the
disc contributes to the occurrence of separation dur-
ing the vibration and thus influencing the vibration
behaviour of the system. Numerical simulation results
show that distinct dynamic behaviours can be observed
in the three situations of spinning speed of disc and
three kinds of particular characteristics of differences
are revealed. The significant effects of decelerating
and accelerating disc rotation on the friction-induced
dynamics of the system underlie the necessity to con-
sider the time-variant spinning speed of disc in the
research of friction-induced vibration and noise.
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1 Introduction

Discs rotating relative to stationery parts can be found
in a wide variety of industrial applications, such as car
disc brakes, computer discs, clutches, angular sensors
and disc actuators. In the normal operations of these
systems, dry friction plays a crucial role. Besides the
useful functions they perform, the friction force at the
contacting interface may induce unstable vibration of
the mechanical components, which greatly influences
the performance of these machines or leads to annoy-
ing noise. For example, friction-induced noise in cars
such as brake squeal is still a major issue in automobile
industry today, which may be perceived by customers
as quality problems and thereby increase the warrant
costs [1].

Dry-friction-induced vibration has been studied
extensively, and there are several significant mecha-
nisms proposed to explain the occurrence of friction-
induced self-excited vibration: the negative friction
slope [2], the stick–slip motion [3], the sprag–slip
motion [4] and the mode-coupling instability [5]. The
stick–slip motion is characterised by alternating stick
and slip regimes. It happens when the static coefficient
of friction is greater than the kinetic coefficient of fric-
tion or the coefficient of friction decreases with rela-
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tive velocity [3,6]. Much of the literature is dedicated
to friction-induced stick–slip phenomenon [7–9]. Popp
and Stelter [3] investigated the discrete and continuous
models exhibiting stick–slip motion and rich bifurca-
tion and chaotic behaviours were revealed. Two kinds
of friction laws: the Coulomb friction with stiction and
the friction model with Stribeck effect, were applied.
Kinkaid et al. [10] studied the stick–slip dynamics of
a four-DOF (degree-of-freedom) system with friction
force in two orthogonal directions on the contact plane
and found the change in direction of the friction force
can excite unstable vibration even with the Coulomb
friction law, thereby introducing a new mechanism
for brake squeal. In [11], a systematic procedure to
find both stable and unstable periodic stick–slip vibra-
tions of autonomous dynamic systems with dry fric-
tion was derived, in which the discontinuous friction
forces were approximated by a smooth function. Het-
zler [12] studied the effect of damping due to Coulomb
friction on a simple oscillator exhibiting self-excitation
due to negative damping. Tonazzi et al. [13] performed
an experimental and numerical analysis of frictional
contact scenarios from macro stick–slip to continuous
sliding. Feeny et al. [14] presented a historical review
of dry friction and stick–slip phenomena in structural
and mechanical systems. The sprag–slip concept was
firstly proposed by Spurr [4], in which the variations of
normal and tangential forces due to the deformations
of contacting structures were considered to cause the
vibration instability. Hoffmann and Gaul [15] exam-
ined the dynamics of sprag–slip instability and found
that there were parameter combinations for which the
system did not possess a static solution correspond-
ing to a steady sliding state, which could be a suffi-
cient condition for occurrence of sprag–slip oscillation.
Sinou et al. [16] studied the instability in a nonlinear
sprag–slip model with constant coefficient of friction
by a central manifold theory. Themode-coupling insta-
bility occurred as some modes of the system became
unstable when coupling with other modes as a result
of friction-induced cross-coupling force. Hoffmann et
al. [17] used a two-DOF model to clarify the physical
mechanisms underlying the mode-coupling instability
of self-excited friction-induced vibration. The effect
of viscous damping on the mode-coupling instability
in friction-induced vibration was investigated in [18].
Kang et al. [19] studied the dynamic instability of a thin
circular plate with friction interface and established
the formulation of modal instability due to the mode

coupling of the transverse doublet modes. In the case
of high-frequency excitation, some non-trivial effects
such as shifting of the equilibrium point and dry fric-
tion behaving as linear viscous damping can occur to
the system dynamics [20,21].

Therewere alsoother friction-related factors respon-
sible for exciting unstable vibration and noise. Chan
et al. [22] revealed the destabilising effect of the fric-
tion force as a follower force. By using the LuGre fric-
tion model, Feng et al. [23] studied the chaotic motions
on an autonomous single-degree-of-freedom oscillator
because the friction model contains one internal vari-
able. Besides, Butlin andWoodhouse [24] analysed the
sensitivity of friction-induced vibration to parameter
changes in idealised systems. Wang and Woodhouse
[25] developed a novel tribometer to measure the lin-
earised frequency response function for sliding friction,
which could provide the input data needed for squeal
prediction. Nordmark et al. [26] explored the possibil-
ity to formulate a consistent and unambiguous forward
simulation model of planar rigid-body mechanical sys-
tems with isolated points of intermittent or sustained
contact with rigid constraining surfaces in the presence
of dry friction. Saha et al. [27] investigated twodifferent
frictionmodels by examining the dynamic responses of
a single-degree-of-freedom system exhibiting friction-
induced vibration.Marques et al. [28] presented a com-
prehensive review of literature on friction force mod-
els and demonstrated the influence of the various fric-
tion models on the dynamic response of the multibody
mechanical systems with friction.

The dynamic instabilities of an elastic disc under
a mass–spring–damper loading system rotating rela-
tive to the disc were studied in [29,30]. In [22], the
parametric resonances of an annular plate excited by a
rotating transverse load systemwith frictional follower
forcewere examined and the results showed the friction
force could be a destabilising factor. Ouyang and Mot-
tershead [31] investigated the vibration of a disc excited
by two co-rotating sliders on either side of a disc and
the moving normal forces and friction couple produced
by the sliders were seen to bring about dynamic insta-
bility. A slider–mass system driven around the surface
of a flexible discwas studied in [32], where the in-plane
vibration of the slider was considered and coupled with
the transverse vibration of the disc through the normal
contact force. Subsequently, Li et al. [33] used a similar
model but incorporated the separation and reattachment
phenomena considering the possibility of loss of con-
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tact due to growing transverse disc vibration and the
results highlighted the important role of separation on
friction-induced vibration. Hochlenert et al. [34] stud-
ied the self-excited vibrations in a moving beam and
plate generated by frictional forces and an accurate
formulation of the kinematics of the frictional contact
in two or three dimensions was established. Kang et
al. [35] conducted a comprehensive stability analysis
of disc brake vibration with gyroscopic, negative fric-
tion slope andmode-couplingmechanisms included by
modelling the disc and pads as rotating annular and
stationary annular sector plates, respectively. Sui and
Ding [36] investigated the instability of a pad-on-disc in
moving interactions and a stochastic analysis was car-
ried out. The dynamics of an asymmetric spinning disc
under stationary friction loads was investigated in [37],
and the analysis showed that the stability boundaries of
the system were altered by the loss of axisymmetry of
the disc.

Themodels used to study the friction-induced vibra-
tion (FIV) problems in the existing literature usually
employ a constant sliding velocity, e.g. constant belt
velocity in the slider-on-belt model or constant spin-
ning speed of the disc. There has been little research
that has considered the decelerating or accelerating
sliding, which should not be neglected as an impor-
tant influential factor in friction-induced-vibration. In
[38], a mathematical model was presented to prove
that stick–slip oscillation could be induced by decel-
eration. Pilipchuk et al. [39] examined the friction-
induced dynamics of a two-DOF (degree-of-freedom)
‘belt–spring–block’ model and showed that due to the
decelerating belt, the system response experiences tran-
sitions which could be regarded as simple indicators of
onset of squeal. Recently, Dombovari et al. put for-
ward a method to investigate the stability property of
the quasi-stationary solution for a smooth dynamic sys-
tem with slowly time-varying parameters [40]. How-
ever, the work on the friction-induced dynamics under
decelerating/accelerating sliding motion is still quite
limited. To investigate the influences of decelerat-
ing/accelerating sliding on the dynamic behaviour of
frictional systems and study the problems such as brake
noise in amore realisticmodel because the braking pro-
cess is practically a decelerating process for the brake
disc, the friction-induced vibration of a mass–slider on
a spinning elastic disc at variable speeds is examined
in this paper.

The rest of the paper is arranged as follows. In
Sect. 2, the system configuration of the slider-on-disc
model is introduced and the equations of motion for
the system in three different states: stick, slip and sep-
aration, are derived. The conditions for the transitions
among these states are determined. Subsequently, the
numerical simulation and analysis are conducted to
investigate the distinct dynamic behaviours of the sys-
tem in the three different situations of spinning speed of
disc in Sect. 3 and to help reveal the effects of decelera-
tion and acceleration on the friction-induced dynamics
of the system, the system responses under the decelerat-
ing and accelerating sliding motion are compared with
the results under constant sliding speed. The signifi-
cant differences that the deceleration and acceleration
make to the vibration behaviour of the frictional sys-
tem from that in the constant disc speed underlie the
necessity to consider the time-variant spinning speed
in the research of friction-induced vibration and noise.
Finally, in Sect. 4 the conclusions on the effects of
the decelerating and accelerating sliding motion on the
dynamics of the frictional system are drawn.

2 Model description and theoretical analysis

The dynamics of a slider-on-disc system subject to fric-
tion force is studied in this paper. The disc is modelled
as aKirchhoff plate clamped at inner boundary and free
at outer boundary. A slider, which is assumed to be a
point mass, is connected to the rigid base with trans-
verse and in-plane (circumferential) springs and dash-
pots and in point contact with the spinning disc. With-
out loss of generality, the circumferential coordinate of
the fixed base is set as θ = 0. The slider is assumed
to be fixed radially at r0 from the disc centre and pre-
compressed on the disc by N0 in the normal direction.
The system configuration is illustrated in Fig. 1. Three
different situations of spinning speed of disc, i.e. con-
stant deceleration, constant acceleration and constant
speed, are considered, which can be expressed as,

Ω(t) = Ω0

(
1 − t

tmax

)
, decelerating (1)

Ω(t) = Ω1 + ct, accelerating (2)

Ω(t) = Ωc, constant speed (3)

for the three situations, respectively, as shown in Fig. 2.
In Eq. (1), Ω0 is the initial spinning speed of the disc
and tmax is the timeduration of the deceleration process.
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Fig. 1 The system configuration
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Fig. 2 The three situations of spinning speed of the disc

In Eq. (2), Ω1 is the initial spinning speed of the disc
and c is the acceleration of the disc speed and always
positive. In Eq. (3), Ωc is a constant value which is
independent of time.

2.1 Circumferential stick–slip vibration of the slider

When the circumferential relative velocity between the
slider and the disc is not equal to zero, the slider slips
on the disc. In the slip phase, the slider is subject to the
kinetic friction force; thus, the equation of circumfer-
ential motion of the slider can be written as,

I ϕ̈ + r20 cϕϕ̇ + r20 kϕϕ = r0sgn(Ω − ϕ̇)μN (4)

where ϕ is the circumferential angular displacement
of the slider, I = mr20 and cϕ and kϕ are its moment

of inertia, in-plane damping coefficient and in-plane
spring stiffness, respectively. m is the slider’s mass,
and N represents the normal force between the disc
and the slider. μ is the kinetic friction coefficient, and
here, it is taken as a function of the relative velocity
[41] as follows,

μ = μ1 + (μ0 − μ1)e
−α|r0(Ω−ϕ̇)| (5)

where μ0, μ1, α are the parameters determining the
maximum value, the asymptotic value and the initial
slope of the friction coefficient with respect to the rel-
ative velocity.

When the circumferential velocity of slider reaches
the instantaneous disc speed and the magnitude of the
friction force acting on the slider does not exceed the
static friction force, the slider sticks to the disc. In the
sticking phase, the circumferential angular velocity and
acceleration of the slider remain identical to the disc’s
rotary speed and acceleration, i.e.

ϕ̇ = Ω, ϕ̈ = Ω̇ (6)

Substituting Eqs. (1)–(3) into Eq. (6), it is easy to derive
that,

ϕ̇ = Ω0

(
1 − t

tmax

)
, ϕ̈ = − Ω0

tmax
(7)

ϕ̇ = Ω1 + ct, ϕ̈ = c (8)

ϕ̇ = Ωc, ϕ̈ = 0 (9)

in the sticking phase for the situations of decelerating
disc, accelerating disc and constant disc speed, respec-
tively. The instantaneous circumferential position of
the slider in the sticking phase is thus given by,

ϕ(t) = ϕ(tq) +
∫ t

tq
Ω0

(
1 − t

tmax

)
dt

= ϕ(tq) + Ω0(t − tq) − Ω0

2tmax

(
t2 − t2q

)
(10)

ϕ(t) = ϕ(tq) +
∫ t

tq
(Ω1 + ct) dt

= ϕ(tq) + Ω1(t − tq) + 1

2
c
(
t2 − t2q

)
(11)

ϕ(t) = ϕ(tq) +
∫ t

tq
Ωc dt = ϕ(tq) + Ωc(t − tq) (12)

for the situations of decelerating disc, accelerating disc
and constant disc speed, respectively, where tq is the
time instant when a sticking phase starts. And the fric-
tion force in the sticking phase is a reaction force,which
can be obtained as,
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fstick = 1

r0

(
I ϕ̈ + r20 cϕϕ̇ + r20 kϕϕ

)
(13)

Thus, the condition for the slider to remain sticking to
the disc is,∣∣∣∣ 1r0

(
I ϕ̈ + r20cϕϕ̇ + r20kϕϕ

)∣∣∣∣ ≤ μsN (14)

where μs is the static friction coefficient between the
slider and the disc. When the magnitude of the friction
force reaches the maximum static friction capacity, the
slider starts to slip on the disc again.

2.2 Transverse vibration of the disc

The slider is located at the polar coordinate (r0, ϕ(t))
at an arbitrary time t . When the slider is in contact
with the disc, the normal displacement z(t) of the slider
equals to the local transverse displacement of the disc at
(r0, ϕ(t)) in the space-fixed coordinate system [42], i.e.

z(t) = w(r0, ϕ(t), t) (15)

and thus,

ż = ∂w

∂t
+ ϕ̇

∂w

∂ϕ
(16)

z̈ = ∂2w

∂t2
+ 2ϕ̇

∂2w

∂ϕ∂t
+ ϕ̇2 ∂2w

∂ϕ2 + ϕ̈
∂w

∂t
(17)

By the force balance in the normal direction of the
slider, the normal force between the slider and the disc
is obtained as,

N = N0 + mz̈ + cz ż + kzz (18)

Meanwhile, the friction force between the slider and
disc presents a bending moment in the circumferential
direction of the disc [19,29], which is,

Mθ = h f/2 (19)

where h is the thickness of the disc. During the slip
phase, the friction force reads,

f = sgn(Ω − ϕ̇)μN

= sgn(Ω − ϕ̇)μ(N0 + mz̈ + cz ż + kzz) (20)

While in the stick phase, the friction force, given in Eq.
(13), can be written as,

f = 1

r0

[
−I

Ω0

tmax
+ r20cϕΩ0

(
1 − t

tmax

)
+ r20 kϕϕ

]

(21)

f = 1

r0

[
I c + r20cϕ(Ω1 + ct) + r20kϕϕ

]
(22)

f = 1

r0

(
r20 cϕΩc + r20kϕϕ

)
(23)

for the situations of decelerating, accelerating and con-
stant speed, respectively, where ϕ can be obtained from
Eqs. (10)–(12), respectively. The transverse displace-
ment of the disc in the space-fixed coordinate system
can be approximated by a linear superposition of a set
of orthogonal basis functions as [43],

w(r, θ, t) =
∞∑
k=0

∞∑
l=0

Rkl(r)

[cos(lθ) · Ckl(t)+sin(lθ) · Dkl(t)] (24)

where k and l denote the number of nodal circles and
nodal diameters, respectively, Ckl(t), Dkl(t) are modal
coordinates and Rkl(r) is a combination of Bessel func-
tions satisfying the inner and outer boundary condi-
tions of the nonrotating disc and orthogonality condi-
tions. And the equations of motion with respect to the
modal coordinates can be obtained from Lagrange’s
equations,

d

dt

[
∂L

∂Ċkl

]
− ∂L

∂Ckl
= Pkl ,

k = 0, 1, 2, . . . ,∞, l = 0, 1, 2, . . . ,∞ (25)
d

dt

[
∂L

∂ Ḋkl

]
− ∂L

∂Dkl
= Qkl ,

k = 0, 1, 2, . . . ,∞, l = 1, 2, . . . ,∞ (26)

in which

L = T −U (27)

T = 1

2
ρh

∫∫
A

(
∂w(r, θ, t)

∂t
+ Ω

∂w(r, θ, t)

∂θ

)2

rdrdθ (28)

U = 1

2
D

∫∫
A
(∇2w)2 − 2(1 − ν)

×
[
∂2w

∂r2

(
1

r

∂w

∂r
+ 1

r2
∂2w

∂θ2

)

−
(
1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ

)2
]
rdrdθ (29)

Pkl = −N · ∂w(r0, ϕ, t)

∂Ckl
+ Mθ

∂γ

∂Ckl
(30)

Qkl = −N · ∂w(r0, ϕ, t)

∂Dkl
+ Mθ

∂γ

∂Dkl
(31)

γ = ∂w(r0, ϕ, t)

r0∂θ
(32)

In the above equations, T and U represent the kinetic
energy and strain energy of the disc, respectively, and
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Pkl and Qkl represent the generalised forces obtained
from the virtual work of the normal force and bending
moment acting on the disc. A is the area of the disc
surface,ρ is the density ofmaterial, D = Eh3

12(1−ν2)
is the

bending rigidity, and E and ν are the Young’s modulus
and thePoisson’s ratio of the discmaterial, respectively.

2.3 Coupled in-plane and out-of-plane vibration

Substituting Eqs. (15)–(20) and (24) into Eqs. (25)–
(32), the equations of the transverse motion of the disc
with respect to the modal coordinates during the slip
phase are given,

MklC̈kl + 2lMklΩ Ḋkl +
(
ω2
kl Mkl − l2MklΩ

2
)
Ckl

=
[

− Rkl(r0)cos(lϕ)

− h

2r0
sgn(Ω − ϕ̇)μl Rkl(r0)sin(lϕ)

]

·
(
N0 +

∑∞
r=0

∑∞
s=0

Rrs(r0){
mcos(sϕ)C̈rs + msin(sϕ)D̈rs

+[−2mϕ̇ssin(sϕ) + czcos(sϕ)]Ċrs

+[2mϕ̇scos(sϕ) + czsin(sϕ)]Ḋrs

+[−mϕ̈ssin(sϕ) − mϕ̇2s2cos(sϕ)

− cz ϕ̇ssin(sϕ) + kzcos(sϕ)]Crs

+[mϕ̈scos(sϕ) − mϕ̇2s2sin(sϕ)

+ cz ϕ̇scos(sϕ) + kzsin(sϕ)]Drs

})
(33)

Mkl D̈kl + 2lMklΩĊkl +
(
ω2
kl Mkl − l2MklΩ

2
)
Dkl

=
[

− Rkl(r0)sin(lϕ)

+ h

2r0
sgn(Ω − ϕ̇)μl Rkl(r0)cos(lϕ)

]

·
(
N0 +

∞∑
r=0

∞∑
s=0

Rrs(r0)

{
mcos(sϕ)C̈rs + msin(sϕ)D̈rs

+[−2mϕ̇ssin(sϕ) + czcos(sϕ)]Ċrs

+[2mϕ̇scos(sϕ) + czsin(sϕ)]Ḋrs

+[−mϕ̈ssin(sϕ) − mϕ̇2s2cos(sϕ)

− cz ϕ̇ssin(sϕ) + kzcos(sϕ)]Crs

+[mϕ̈scos(sϕ) − mϕ̇2s2sin(sϕ)

+ cz ϕ̇scos(sϕ) + kzsin(sϕ)]Drs

})
(34)

where Ω is given by Eqs. (1)–(3) for the situations of
decelerating disc, accelerating disc and constant disc
speed, respectively, ωkl is the natural frequency of the
mode with k nodal circles and l nodal diameters of the
corresponding nonrotating plate, and

Mkl =
{

ρhπ
∫ b
a R

2
kl(r)rdr, l = 1, 2, . . .

2ρhπ
∫ b
a R

2
kl(r)rdr, l = 0

(35)

During the slip phase, the equation ofmotion ofϕ reads,

I ϕ̈ + r20cϕϕ̇ + r20kϕϕ

= r0sgn(Ω − ϕ̇)μ(
N0 +

∞∑
r=0

∞∑
s=0

Rrs(r0)

{mcos(sϕ)C̈rs + msin(sϕ)D̈rs

+ [−2mϕ̇ssin(sϕ) + czcos(sϕ)]Ċrs

+ [2mϕ̇scos(sϕ) + czsin(sϕ)]Ḋrs

+ [−mϕ̈ssin(sϕ) − mϕ̇2s2cos(sϕ)

− cz ϕ̇ssin(sϕ) + kzcos(sϕ)]Crs

+ [mϕ̈scos(sϕ) − mϕ̇2s2sin(sϕ)

+ cz ϕ̇scos(sϕ) + kzsin(sϕ)]Drs})

(36)

In the stick phase, the equations of the transverse
motion of the disc can be derived by substituting Eqs.
(15)–(19) and (24) into Eqs. (25)–(32) as,

MklC̈kl + 2lMklΩ Ḋkl +
(
ω2
kl Mkl − l2MklΩ

2
)
Ckl

= − h

2r0
l Rkl(r0)sin(lϕ) f − Rkl(r0)cos(lϕ)

·
(
N0 +

∞∑
r=0

∞∑
s=0

Rrs(r0)

{
mcos(sϕ)C̈rs + msin(sϕ)D̈rs

+[−2mϕ̇ssin(sϕ) + czcos(sϕ)]Ċrs

+[2mϕ̇scos(sϕ) + czsin(sϕ)]Ḋrs

+[−mϕ̈ssin(sϕ) − mϕ̇2s2cos(sϕ)

− cz ϕ̇ssin(sϕ) + kzcos(sϕ)]Crs

+[mϕ̈scos(sϕ) − mϕ̇2s2sin(sϕ)

+ cz ϕ̇scos(sϕ) + kzsin(sϕ)]Drs}) (37)

Mkl D̈kl + 2lMklΩĊkl +
(
ω2
kl Mkl − l2MklΩ

2
)
Dkl

= − h

2r0
l Rkl(r0)cos(lϕ) f − Rkl(r0)sin(lϕ)
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·
(
N0 +

∞∑
r=0

∞∑
s=0

Rrs(r0)

{
mcos(sϕ)C̈rs + msin(sϕ)D̈rs

+[−2mϕ̇ssin(sϕ) + czcos(sϕ)]Ċrs

+[2mϕ̇scos(sϕ) + czsin(sϕ)]Ḋrs

+[−mϕ̈ssin(sϕ) − mϕ̇2s2cos(sϕ)

−cz ϕ̇ssin(sϕ) + kzcos(sϕ)]Crs

+[mϕ̈scos(sϕ) − mϕ̇2s2sin(sϕ)

+ cz ϕ̇scos(sϕ) + kzsin(sϕ)]Drs

})
(38)

where f is given by Eqs (21)–(23) for the situations of
decelerating disc, accelerating disc and constant disc
speed, respectively, and ϕ, ϕ̇, ϕ̈ during the stick phase
for the three different situations are given in Eqs. (7)–
(12). The condition for remaining in the stick state,
which is given in Eq. (14), is thus obtained as∣∣∣∣ 1r0

(
I ϕ̈ + r20 cϕϕ̇ + r20 kϕϕ

)∣∣∣∣
≤ μs

(
N0 +

∞∑
r=0

∞∑
s=0

Rrs(r0)

{
mcos(sϕ)C̈rs + msin(sϕ)D̈rs

+ [−2mϕ̇ssin(sϕ) + czcos(sϕ)]Ċrs

+ [2mϕ̇scos(sϕ) + czsin(sϕ)]Ḋrs

+ [−mϕ̈ssin(sϕ) − mϕ̇2s2cos(sϕ)

− cz ϕ̇ssin(sϕ) + kzcos(sϕ)]Crs

+ [mϕ̈scos(sϕ) − mϕ̇2s2sin(sϕ)

+cz ϕ̇scos(sϕ) + kzsin(sϕ)]Drs

})

(39)

2.4 Separation and re-contact

With the increase in the amplitude of the transverse
motion, the slider may separate from the disc. Separa-
tion happens when the normal force between the disc
and the slider drops to N = 0. And in the separation
phase, both the slider and the disc experience free vibra-
tion; therefore, the equations of motion of the disc and
the slider read,

MklC̈kl + 2lMklΩ Ḋkl

+
(
ω2
kl Mkl − l2MklΩ

2
)
Ckl = 0 (40)

Mkl D̈kl + 2lMklΩĊkl

+
(
ω2
kl Mkl − l2MklΩ

2
)
Dkl = 0 (41)

for the transverse displacement of the disc, and

I ϕ̈ + r20cϕϕ̇ + r20kϕϕ = 0 (42)

mz̈ + cż + kz + N0 = 0 (43)

for the circumferential andnormalmotions of the slider.
The state of separation is maintained when the follow-
ing condition is satisfied,

z(t) > w(r0, ϕ(t), t) (44)

After separation, the above condition is monitored for
re-contact. Re-contact occurs when the slider’s normal
motion becomes equal to the transverse displacement
of the disc at the polar coordinate of the slider. And
when this happens, a very short-lived impact force is
considered to act between the slider and the disc within
time duration of (t−r , t+r ). The method for determining
the values of the dynamic state variables immediately
after re-contact, which was given in [44], is adopted in
this paper.

For simplification, an assumption for the re-contact
is that the impact is perfectly plastic and the slider sticks
onto the disc after the impact. Suppose the impulse at
tr is p; thus, the distributed load on the disc due to
the impact is −pδ(r − r0)δ(θ − ϕ(t))δ(t − tr ), which
causes the equations of motion of the disc to become,

MklC̈kl + 2lMklΩ Ḋkl +
(
ω2
kl Mkl − l2MklΩ

2
)
Ckl

= −pRkl(r0)cos(lϕ(t))δ(t − tr ) (45)

Mkl D̈kl + 2lMklΩĊkl +
(
ω2
kl Mkl − l2MklΩ

2
)
Dkl

= −pRkl(r0)sin(lϕ(t))δ(t − tr ) (46)

The velocity jump for the disc due to the impact can be
thus obtained as,

Ċkl(t
+
r ) − Ċkl(t

−
r ) = − pRkl(r0)cos(lϕ(tr ))

Mkl
(47)

Ḋkl(t
+
r ) − Ḋkl(t

−
r ) = − pRkl(r0)sin(lϕ(tr ))

Mkl
(48)

Similarly, the velocity jump of the slider is,

ż(t+r ) − ż(t−r ) = p

m
(49)

Combining Eq. (49) and Eqs. (47) and (48) gives,

Ċkl(t
+
r ) − Ċkl(t

−
r )

= −mRkl(r0)cos(lϕ(tr ))[ż(t+r ) − ż(t−r )]
Mkl

(50)
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Ḋkl(t
+
r ) − Ḋkl(t

−
r )

= −mRkl(r0)sin(lϕ(tr ))[ż(t+r ) − ż(t−r )]
Mkl

(51)

For perfectly plastic impact, the slider has the same
velocity as that of the disc at time t+r ; therefore,

ż(t+r ) =
(

∂w

∂t
+ ϕ̇

∂w

∂ϕ

)
t=t+r

=
∞∑
r=0

∞∑
s=0

Rrs(r0)

[cos(sϕ(t+r ))Ċrs(t
+
r )

+ sin(sϕ(t+r ))Ḋrs(t
+
r )

− ϕ̇(t+r )ssin(sϕ(t+r ))Crs(t
+
r )

+ ϕ̇(t+r )scos(sϕ(t+r ))Drs(t
+
r )]

(52)

Because the transverse displacement and the in-plane
motion of the slider are unchanged by the normal
impact, the following equations hold,

Ckl(t
+
r ) = Ckl(t

−
r ) = Ckl(tr ),

Dkl(t
+
r ) = Dkl(t

−
r ) = Dkl(tr ),

ϕ(t+r ) = ϕ(t−r ) = ϕ(tr ),

ϕ̇(t+r ) = ϕ̇(t−r ) = ϕ̇(tr )

(53)

By substituting Eq. (52) into Eqs. (50) and (51) and
utilising Eq. (53), the normal velocity of the slider and
the modal velocities of the disc after the impact can be
derived as,

ż(t+r )

=
∑∞

r=0
∑∞

s=0Rrs(r0)
[
cos(sϕ(tr ))Ċrs(t−r ) + sin(sϕ(tr ))Ḋrs(t−r ) + mRrs (r0)

Mrs
ż(t−r ) − ϕ̇(tr )ssin(sϕ(tr ))Crs(tr ) + ϕ̇(tr )scos(sϕ(tr ))Drs(tr )

]

1 + ∑∞
r=0

∑∞
s=0

mR2
rs (r0)
Mrs

(54)

Ċkl (t
+
r )

= Ċkl (t
−
r )− mRkl (r0)cos(lϕ(tr ))

Mkl⎧⎨
⎩

∑∞
r=0

∑∞
s=0Rrs(r0)

[
cos(sϕ(tr ))Ċrs(t−r )+sin(sϕ(tr ))Ḋrs(t−r )+ mRrs (r0)

Mrs
ż(t−r )−ϕ̇(tr )ssin(sϕ(tr ))Crs (tr )+ϕ̇(tr )scos(sϕ(tr ))Drs(tr )

]

1+∑∞
r=0

∑∞
s=0

mR2
rs (r0)
Mrs

− ż(t−r )

⎫⎬
⎭

(55)
Ḋkl (t

+
r )

= Ḋkl (t
−
r )− mRkl (r0)sin(lϕ(tr ))

Mkl⎧⎨
⎩

∑∞
r=0

∑∞
s=0Rrs(r0)[cos(sϕ(tr ))Ċrs(t−r )+sin(sϕ(tr ))Ḋrs(t−r )+ mRrs (r0)

Mrs
ż(t−r )−ϕ̇(tr )ssin(sϕ(tr ))Crs(tr )+ϕ̇(tr )scos(sϕ(tr ))Drs(tr )]

1 + ∑∞
r=0

∑∞
s=0

mR2
rs (r0)
Mrs

− ż(t−r )

⎫⎬
⎭
(56)

3 Numerical simulation and analysis

Because there are three distinct dynamic phases with
different governing equations of motion throughout the
process of vibration, the dynamic system in question is
non-smooth, which brings about a difficulty in numeri-
cal calculation. To obtain thewhole time histories of the
dynamic responses of the system,Runge–Kuttamethod
[45] suitable for the second-order ordinary differential
equations is employed to obtain the responses in every
single phase while conditions for phase transitions are
monitored at each time step. Within the time step in
which a phase transition happens, the bisection method
is used to capture the exact transition time instant. After
the transition point, the phase changes and the original
set of equations ofmotion is replaced by another one. In
the following, the dynamic behaviours of the frictional
system in the three situations of spinning speed of disc
are investigated and relevant interesting phenomena are
analysed.

The basic system parameters whose values are con-
stant in the numerical examples are listed in Table 1. It
should be noted that numbers k and l in the expression
of the transverse displacement of the disc can be cho-
sen to include as many modes as needed to represent
the dynamics of the system with acceptable accuracy.
To avoid excessive computations, the modal series in
Eq. (24) are truncated at suitable values of indices k
and l. The first seven natural frequencies of the disc are
1492, 1517, 1517, 1824, 1824, 2774 and 2774 rad/s,

123



Friction-induced vibration of a slider on an elastic disc spinning 47

Table 1 The values of the constant system parameters

a b r0 ρ E h ν

0.044m 0.12m 0.1m 7200 kg/m3 150GPa 0.002m 0.211

m kz r20 kϕ N0 μ0 μ1 μs

0.1kg 3 × 104 N/m 2 × 103 Nm/rad 500N 0.6 0.35 0.8

11 12 13 14 15 16 17 18 19 20
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stable

Fig. 3 Combinations of cz and r20 cϕ corresponding to stable sliding equilibrium with different values of α under two spinning speeds:
a Ωc = 1 rad/s, b Ωc = 10 rad/s. ‘stable’ refers to the region above the respective curve

which are 237, 241, 241, 290, 290, 442 and 442 in Hz.
It is found that the first seven disc modes (one single
mode with zero nodal circle and zero nodal diameter
and three pairs of doublet modes with zero nodal circle
and one, two or three nodal diameters) are good enough
in terms of the convergence of the results.

3.1 Stable sliding equilibrium under the constant
speed and the effects of time-variant speed

In this subsection, the dynamic responses in the three
different situations of disc speed are obtained and com-
pared to reveal the effects of time-variant disc speed on
the friction-induced dynamics of the system.

In the situation of constant disc speed, it is viable
to find an equilibrium point in the slip state for the
system by solving the algebraic nonlinear equations
obtained by setting all the terms involving velocity and
acceleration in Eqs. (33), (34) and (36) to be zero. The
algebraic nonlinear equations to determine the equi-
librium point are solved numerically using fsolve in
MATLAB. Then, the Lyapunov stability at this equi-

librium point is investigated. That is, if the solutions of
Eqs. (33), (34) and (36) with a small initial perturba-
tion from the equilibrium point converge to the equilib-
rium point with time approaching infinity, the sliding
equilibrium under study is considered to be asymptot-
ically stable; while if the solutions move away from
the equilibrium point with time increasing, the sliding
equilibrium under study is unstable. Based on the sys-
tem parameters listed in Table 1, the regions of stability
with respect to four parameters cz , cϕ , α and Ωc which
are found to have significant effects on the stability are
obtained. Figure 3 illustrates some combinations of cz
and r20cϕ which correspond to stable sliding equilib-
riums with different values of α under two different
constant spinning speeds Ωc = 1 and 10 rad/s.

Considering a parameter combination in the ‘stable’
area (cz = 11N s/m, r20cϕ = 1Nm s/rad, α = 10,
Ωc = 10 rad/s), it can be seen from Fig. 4 that the
amplitudes of dynamic responses of the system decay
fast with time until the sliding equilibrium is reached.
For comparison, the vibration in the situation of decel-
erating disc (Ω0 = 10 rad/s, tmax = 20 s) with the

123



48 N. Liu, H. Ouyang

(a) (b)
[r

ad
/s

]
ϕ

[s]t [s]t

[m
]

w

0 5 10 15 20
-2.21

-2.205

-2.2

-2.195

-2.19

-2.185

-2.18

-2.175
x 10

-3

0 5 10 15 20
-2

-1

0

1

2

3

0 0.005 0.01 0.015 0.02
-0.5

0

0.5

1

Fig. 4 The system dynamic responses under the constant disc speed: a the circumferential velocity of the slider, b the transverse
displacement of a specific point on the disc at r = r0 and θ = 0 (cz = 11N s/m, r20 cϕ = 1Nm s/rad, α = 10, Ωc = 10 rad/s)
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Fig. 5 The system dynamic responses under the decelerating
disc: a the circumferential velocity of the slider, b the transverse
displacement of a specific point on the disc at r = r0 and θ = 0

(cz = 11N s/m, r20 cϕ = 1Nm s/rad, α = 10, Ω0 = 10 rad/s,
tmax = 20 s)

same parameter values and initial condition as those in
the situation of constant disc speed is investigated and
the results are depicted in Fig. 5. An interesting phe-
nomenon arises that the vibration decays in the early
stage, similarly to that in the situation of constant speed,
but then grows in the final stage and the stick–slip
motion is induced. The reason for this phenomenon is
the negative slope of the friction force–relative velocity
relationship, which is usually considered a contributor
to system instability. With the decrease in disc speed,
the magnitude of the relative velocity |Ω − ϕ̇| can
become sufficiently low (please note that ϕ̇ becomes
approximately zero before the vibration grows in the

end of the process), leading to a large negative slope of
the friction force–relative velocity dependence, which,
acting like a negative damping, can cancel out the pos-
itive viscous damping and then cause the vibration of
the system to grow towards the end of the decelerative
process. A similar phenomenon can occur in the situa-
tion of accelerating disc, but themechanism is different.
Another parameter combination which also leads to a
stable sliding equilibrium in the situation of constant
disc speed (cz = 1N s/m, r20cϕ = 2Nm s/rad, α = 0,
Ωc = 1 rad/s) is used. The time histories of responses
starting froma small perturbation from the sliding equi-
librium under the constant disc speed are shown in
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Fig. 6 The system dynamic responses under the constant disc speed: a the circumferential velocity of the slider, b the transverse
displacement of a specific point on the disc at r = r0 and θ = 0 (cz = 1N s/m, r20 cϕ = 2Nm s/rad, α = 0, Ωc = 1 rad/s)
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Fig. 7 The system dynamic responses under the accelerating disc: a the circumferential velocity of the slider, b the transverse displace-
ment of a specific point on the disc at r = r0 and θ = 0 (cz = 1N s/m, r20 cϕ = 2Nm s/rad, α = 0, Ω1 = 1 rad/s, c = 3 rad/s2)

Fig. 6. Similarly, the vibration decays fast until the
sliding equilibrium is reached. Meanwhile, the system
responses in the situation of accelerating disc (Ω1 =
1 rad/s,= 3 rad/s2) with the same parameter values
and initial condition as those in the situation of constant
disc speed are obtained and plotted in Fig. 7. As shown
in this figure, the vibration decays at first but starts
to grow at a time point later due to the increase of disc
speed. This phenomenon can be explained by the effect
ofmoving loadwhich causes speed-dependent instabil-
ity [27,29]. The two examples above reflect the time-
varying characteristics of the friction-induced vibration
of the system due to the time-variant disc speed.

3.2 Non-stationary dynamic
behaviour under the time-variant disc speed

Next, the parameter combinations corresponding to
unstable sliding equilibrium in the situation of constant
disc speed are considered and the dynamic responses
in the three situations of disc speed are compared. The
initial displacements and velocities are set to be zero
in all the numerical examples below. The parameter
values used in the first example are: cz = 0.1N s/m,
r20cϕ = 0.1Nm s/rad, α = 1 and Ωc = 2π rad/s
in the situation of constant speed. The results about
the in-plane angular motion of the slider and the trans-
verse vibration of the disc under the constant disc speed
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Fig. 8 The time history of the circumferential angular veloc-
ity of the slider and time–frequency plot of the circumferential
angular displacement of the slider under the constant disc speed:

a the time history of the circumferential angular velocity, b the
time–frequency plot of the circumferential angular displacement
(cz = 0.1N s/m, r20 cϕ = 0.1Nm s/rad, α = 1, Ωc = 2π rad/s)

[s]t

(a) (b)

0 5 10 15 20 25 30 35
-3

-2

-1

0

1

2
x 10

-3

[H
z]

f

[s]t

1

2

[m
]

w

Fig. 9 The time history and time–frequency plot of the transverse displacement of the disc at r = r0 and θ = 1 rad under the constant
disc speed: a the time history, b the frequency spectrum plot

are illustrated in Figs. 8 and 9, respectively. In these
figures, the time–frequency plots are obtained from
the short-time Fourier transform, from which it can
be observed that the frequency compositions of the
responses remain unchanged throughout thewhole pro-
cess, indicating that the dynamic responses are station-
ary. Besides, both the frequency spectra of the in-plane
angular motion of the slider and the transverse vibra-
tion of the disc consist of several incommensurate fre-
quencies and two common incommensurate frequen-
cies f1 = 181 Hz and f2 = 290.5 Hz can be identified,
which suggests that both dynamic responses are quasi-
periodic. The vibration of the system in the situation
of decelerating disc is then investigated and the results
concerning the in-plane angular motion of the slider

and the transverse vibration of the disc are illustrated
in Figs. 10 and 11. The time–frequency plots show the
time-variant characteristic of frequency spectra of the
responses, especially the in-plane motion of the slider,
in the situation of decelerating disc. In the early stage of
vibration, the frequency spectra of responses are similar
to those in the situation of constant speed, but lower-
frequency components arise in the dynamic responses
towards the end of the process, and the frequency spec-
trum of the in-planemotion of the slider gets very fuzzy
and dense in the final stage of the process. The variation
of the frequencies of the response during the process
can also be observed from the time histories during
two different time spans in the early and late stages, as
depicted in Fig. 12.
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Fig. 10 The time history of the circumferential angular veloc-
ity of the slider and time–frequency plot of the circumferential
angular displacement of the slider under the decelerating disc:
a the time history of the circumferential angular velocity, b the

time–frequency plot of the circumferential angular displacement
(cz = 0.1N s/m, r20 cϕ = 0.1Nm s/rad, α = 1, Ω0 = 2π rad/s,
tmax = 35 s)
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Fig. 11 The time history and time–frequency plot of the transverse displacement of the disc at r = r0 and θ = 1 rad under the
decelerating disc: a the time history, b the frequency spectrum plot

The second example uses the parameter values:
cz = 2N s/m, r20 cϕ = 0.5Nm s/rad, α = 1 and
Ωc = 2π rad/s in the situation of constant speed. Fig-
ures 13 and 14 illustrate the time histories and time–
frequency plots of the in-plane motion of the slider and
transverse vibration of the disc. The frequency com-
positions of the responses remain unchanged, and both
the frequency spectra of the in-plane angular displace-
ment of the slider and the transverse displacement of the
disc consist of the fundamental frequency f0 (206Hz)
and its superharmonics (n fo, n = 2, 3, . . . ), indicating
that the in-plane motion of the slider and the transverse
motion of the disc are periodic at the same frequency.
Correspondingly, the results of the dynamic responses

in the situation of decelerating disc are illustrated in
Figs. 15 and 16. As shown in Fig. 15b, at least six
segments with distinct frequency compositions, which
are in time intervals 0 < t < 10 s, 10 < t < 15 s,
15 < t < 25 s, 25 < t < 28 s, 28 < t < 30 s,
30 < t < 35 s, can be identified based on visual inspec-
tion. The phase portraits of the circumferential motion
of the slider and trajectories of the friction force dur-
ing certain time spans in the six segments are shown in
Fig. 17. As is seen, stick–slip vibration with different
periods in the six time intervals can be identified for
the in-plane motion of the slider.

The cases with the same parameter combinations
in the examples above but at a larger disc speed
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Fig. 12 The short-term time histories during two different time spans under the decelerating disc: a, b the circumferential angular
velocity of the slider, c, d the friction force
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Fig. 13 The time history of the circumferential angular veloc-
ity of the slider and time–frequency plot of the circumferential
angular displacement of the slider under the constant disc speed:

a the time history of the circumferential angular velocity, b the
time–frequency plot of the circumferential angular displacement
(cz = 2N s/m, r20 cϕ = 0.5Nm s/rad, α = 1, Ωc = 2π rad/s)
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Fig. 14 The time history and time–frequency plot of the transverse displacement of the disc at r = r0 and θ = 1 rad under the constant
disc speed: a the time history, b the frequency spectrum plot
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ity of the slider and time–frequency plot of the circumferential
angular displacement of the slider under the decelerating disc:
a the time history of the circumferential angular velocity, b the

time–frequency plot of the circumferential angular displacement
(cz = 2N s/m, r20 cϕ = 0.5Nm s/rad, α = 1, Ω0 = 2π rad/s,
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Fig. 16 The time history and time–frequency plot of the transverse displacement of the disc at r = r0 and θ = 1 rad under the
decelerating disc: a the time history, b the frequency spectrum plot
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Fig. 17 The phase portraits of the circumferential motion of the
slider and trajectories of friction force during short-term time
spans within six different time segments under the decelerat-

ing disc: a, b 5 < t < 5.1 s, c, d 12 < t < 12.1 s, e, f
20 < t < 20.1 s, g, h 26 < t < 26.1 s, i, j 29 < t < 29.1 s, k, l
33 < t < 35 s

(a) (b)

[s]t[s]t

no
rm

al
 fo

rc
e[

N
]

no
rm

al
 fo

rc
e[

N
]

0 5 10 15 20 25 30 35
0

500

1000

1500

0 5 10 15 20 25 30 35
0

500

1000

1500

Fig. 18 The variation of normal force with time in the situation of constant speed in the two cases: a cz = 0.1N s/m, r20 cϕ =
0.1Nm s/rad, α = 1, Ωc = 6π rad/s, b cz = 2N s/m, r20 cϕ = 0.5Nm s/rad, α = 1, Ωc = 6π rad/s

Ωc (6π rad/s) in the situation of constant disc speed
are then considered. It is found that separation happens
in both cases, as depicted in Fig. 18, where the normal
contact force is zero during separation. For comparison,
the variation of normal force with time in the situation
of decelerating disc is illustrated in Fig. 19. Besides,
the in-plane motions of the slider and the transverse
motions of the disc under the constant disc speed in the
two cases are illustrated in Figs. 20 and 21, respectively.

The corresponding results in the situation of deceler-
ating disc are shown in Figs. 22 and 23, respectively.
Similarly, the frequency spectra of responses in the sit-
uation of decelerating disc are more time variant than
those in the situation of constant disc speed. It is also
observed that lower-frequency components arise in the
dynamic responses and the frequency spectra get fuzzy
and dense towards the end of the process in Fig. 23b,
while this feature is not seen in Fig. 22b. The reason
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Fig. 19 The variation of normal forcewith time in the situation of deceleration in the two cases: a cz = 0.1N s/m, r20 cϕ = 0.1Nm s/rad,
α = 1, Ω0 = 6π rad/s, tmax = 35 s, b cz = 2N s/m, r20 cϕ = 0.5Nm s/rad, α = 1, Ω0 = 6π rad/s, tmax = 35 s

(a) (b)

(c)

[s]t

[s]t [s]t

[s]t

(d)

[m
]

w
[r

ad
/s

]
ϕ

0 5 10 15 20 25 30 35
-60

-40

-20

0

20

40

0 5 10 15 20 25 30 35
-5

0

5
x 10

-3

[H
z]

f
[H

z]
f

Fig. 20 The time histories and time–frequency plots of the dynamic responses under the constant speed: a, b the in-plane motion of
the slider, c, d the transverse motion of the disc. (cz = 0.1N s/m, r20 cϕ = 0.1Nm s/rad, α = 1, Ωc = 6π rad/s)
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Fig. 21 The time histories and time–frequency plots of the dynamic responses under the constant speed: a, b the in-plane motion of
the slider, c, d the transverse motion of the disc. (cz = 2N s/m, r20 cϕ = 0.5Nm s/rad, α = 1, Ωc = 6π rad/s)

123



56 N. Liu, H. Ouyang

(a) (b)

(c) [s]t

[s]t [s]t

[s]t (d)

[m
]

w
[r

ad
/s

]
ϕ

0 5 10 15 20 25 30 35
-5

0

5
x 10

-3

[H
z]

f
[H

z]
f

0 5 10 15 20 25 30 35
-60

-40

-20

0

20

40
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the slider, c, d the transverse motion of the disc. (cz = 0.1N s/m, r20 cϕ = 0.1Nm s/rad, α = 1, Ω0 = 6π rad/s, tmax = 35 s)
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Fig. 23 The time histories and time–frequency plots of the dynamic responses under the decelerating disc: a, b the in-plane motion of
the slider, c, d the transverse motion of the disc. (cz = 2N s/m, r20 cϕ = 0.5Nm s/rad, α = 1, Ω0 = 6π rad/s, tmax = 35 s)

is that there is no separation in the late stage of the
decelerative process in the second case, while in the
first case, separation and re-contact occur throughout
the whole decelerative process, as shown in Fig. 19.

The effect of accelerating disc on the system dynam-
ics is also investigated. The variations of normal force
are plotted in Fig. 24, from which it is seen that sep-
aration happens with the increase of disc speed in the
process, while there is no separation occurring for the
corresponding system in the situation of constant disc
speed. The dynamic responses under the accelerating

disc are illustrated in Figs. 25 and 26. It is noticed that
separation happening in the process leads to shift of
frequency spectra of the system responses.

3.3 Separation and impact during vibration

As the amplitude of transverse vibration of the disc
increases, the slider may separate from the disc and
then re-contact with disc. In the situation of constant
disc speed,whether separation occurs in the vibration is
only dependent on the magnitude of the spinning speed
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Fig. 24 The variation of normal force with time in the situation of accelerating disc in the two cases: a cz = 0.1N s/m, r20 cϕ =
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Fig. 26 The time histories and time–frequency plots of the dynamic responses under the accelerating disc: a, b the in-plane motion of
the slider, c, d the transverse motion of the disc. (cz = 2N s/m, r20 cϕ = 0.5Nm s/rad, α = 1, Ω1 = 2π rad/s, c = 0.2 rad/s2)
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Fig. 27 The separation region (SR) with respect to Ω0 and tmax
in the situation of decelerating disc (cz = 0.1N s/m, r20 cϕ =
0.1Nm s/rad, α = 1)

for a given combination of system parameters [31,33],
while in the situation of decelerating disc, the initial
spinning speed Ω0 and the time length of the decelera-
tive process tmax are two important factors on the onset
of separation phenomenon. The separation region with
respect to Ω0 and tmax with one of the parameter com-
binations in the examples above is shown in Fig. 27.
(The initial displacements and velocities are zero.) It
can be seen that separation is more likely to happen in
the case of high initial speed and long decelerative pro-
cess in the situation of decelerating disc. In the situation
of accelerating disc, separation can always happenwith
the increase of spinning speed of disc.

The role of the impact happening at the instants of
re-contact on the system dynamics is examined. The
dynamic responses of the system under the constant
disc speed in two conditions: with impact and with-
out impact, are obtained to exemplify the effect of the
impact on the vibration. When the impact is ignored,
the transverse velocity of the disc is not changed dur-
ing the re-contact. Figure 28 shows the time histories of
the transverse displacement at (r0, 0) of the disc with
a certain parameter combinations. It is seen that the
transverse vibration with impact considered is much
weaker compared with that without impact, which can
be explained by the fact that the impact is assumed to
be fully plastic in this paper and thus dissipates energy
in the vibration.

4 Conclusions

In this work, the dynamics of a slider-on-disc system
subject to friction force in three different situations
of spinning speed, i.e. constant deceleration, constant
acceleration and constant speed, is investigated. Due
to the non-smooth nature of the friction force between
the slider and the disc, the slider experiences stick–slip
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Fig. 28 The time histories of the transverse displacement in the
situation of constant disc speed under two conditions: a with
impact, b without impact (cz = 0, r20 cϕ = 0, α = 1, Ωc =
50 rad/s)

vibration in the circumferential direction of the disc.
Meanwhile, the in-plane motion of the slider causes
time-varying normal force and bending moment on the
disc, which can be seen as moving loads to excite the
transverse vibration of the elastic disc. The transverse
vibration of the disc will, in turn, influence the in-plane
motion of the slider by affecting the magnitude of fric-
tion force through the varying normal force. Therefore,
the transverse vibration and the in-plane vibrationof the
slider are coupled. It is observed the decelerating and
accelerating disc rotation results in distinct dynamic
behaviours of the frictional system from that under the
constant disc speed. The following conclusions can be
reached,

1. In the situation of constant speed, a sliding equi-
librium of the system can be found. The parameter
combinations corresponding to the stable or unsta-
ble equilibrium points in the sense of Lyapunov
stability are identified.

2. For the system with the parameter combinations
corresponding to the stable sliding equilibrium in
the situation of constant speed, the vibration start-
ing from an initial condition near the equilibrium
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point decays with time and ceases eventually, while
in the situation of time-varying disc speed, sta-
bility may change with time due to the variation
of disc speed with time, resulting in an interest-
ing phenomenon that the system vibration decays
with time in the early stage but grows in the
later stage. This kind of time-varying character-
istic of friction-induced vibration results from the
negative-slope friction force–relative velocity rela-
tionship in the situation of decelerating disc and the
speed-dependent instability caused by the moving
load in the situation of accelerating disc.

3. The time-variant disc speed increases the non-
stationary characteristics of the system dynamics
as opposed to the constant disc speed, especially
the in-planemotion of the slider, whichmeans there
are more shifts of frequency spectra of the dynamic
responses throughout the process in the situation of
time-variant disc speed than that in the situation of
constant speed.

4. In the situation of decelerating disc, separation is
more inclined to happen in the case of high ini-
tial disc speed and long decelerating process.When
impact is considered, the transverse vibration of the
disc becomes lower than without.
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