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Abstract We discuss a model of a short Bose–
Hubbard dimer involving two anharmonic quantum
oscillators mutually coupled with the use of the lin-
ear interaction and additionally driven by a series of
ultra-short external pulses. We show that under some
conditions the system behaves as a two-qubit one, and
contrary to its continuously driven counterpart can be
a source of maximally entangled states (MES). We
discuss the cases when the system is excited only in
one mode and in both ones, and additionally when the
cross-Kerr-type interaction is present or omitted. We
show that the generation of maximally (or almost max-
imally) entangled states depends on the time of free
evolution of oscillators and hence, the proper steer-
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Quantum Optics and Engineering Division, Institute of
Physics, University of Zielona Góra, Prof. Z. Szafrana 4a,
65-516 Zielona Góra, Poland
e-mail: w.leonski@if.uz.zgora.pl

J. K. Kalaga · W. Leoński
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ing of the changes of the time between subsequent
pulses can increase the effectiveness of MES gener-
ation. Moreover, we show the influence of the timing
between two series of pulses (corresponding to the two
modes) on such a process. What is relevant, thanks to
the presence of additional randomness in the timings,
the states with stronger entanglement can be achieved
than for the situation when the time between consecu-
tive pulses remains ideally fixed.

Keywords Bose–Hubbard system ·Nonlinear oscilla-
tor · Kerr-like nonlinearity · Quantum entanglement ·
Bell states

1 Introduction

In recent years, the possibility of creation and manip-
ulation of quantum states of various characteristic has
been studied very intensively. Primarily, an important
research direction was orientated to the generation of
entanglement in quantum systems, which is especially
relevant for the development of the broadly under-
stood quantum information theory and its applications.
Thus, maximally (or in real systems, almost maxi-
mally) entangled states can be implemented in the field
of quantum communication, quantum cryptography, or
quantumcomputations (for instance, see [1–10]and the
references quoted therein). Maximally entangled states
are also necessary for successful quantum teleportation
experiments [3,11,12]. Another valid group of prob-
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lems in which entangled states are applied is related
to the flow of quantum entanglement and information
[13–15]. The nature of such flow, due to its quantum
character, considerably differs from that appearing in
classical systems (for instance, see [16–19]).

It should be emphasized that entangled states can be
applied in various high-tech applications in the future.
For instance, they can be used establishing the money
system based on quantum technologies, highly pro-
tected against the forgery [20]. Another group of possi-
ble applications of the entangled states is related to the
proposals of quantum internet [21]. In particular, quite
recently, the experimentwhich can lead to the construc-
tion of quantum routers was performed and presented
in [22]. At this point, one should mention the success-
ful quantum teleportation from the surface of the Earth
to the satellite [23], which opens new perspectives in
the development of quantum technologies. Therefore,
finding effectivemethods, and improving those already
existing, allowing to produce various kinds of entan-
gled states became one of the most substantial chal-
lenges in contemporary quantum physics. It was the
primary motivation in our work presented here.

In this paper, we shall show how to improve the
generation of entangled states not only by proper tun-
ing of the parameters describing model discussed here
but also by adding some randomness to the process
of external excitation. In particular, we will concen-
trate on the Bose–Hubbard model involving two non-
linear oscillators of Kerr-type characteristic (the Bose–
Hubbard dimmer), which are excited by a series of
ultra-short pulses in one or two of the modes. In quan-
tum optics, such systems are usually referred to as non-
linear coupler and were proposed in 1982 by Jensen
[24] and Maı̆er [25]. Kerr-like couplers were inten-
sively investigated (see [26–28] and the references
quoted therein), and numerous features in such sys-
tems have been observed and discussed, including sub-
Poissonian and squeezed light [29–34] or quantum
entanglement generation [35–38]. It should be empha-
sized that the Bose–Hubbard model we propose is gen-
eral enough to describe various physical systems in
which the phenomenon of quantum entanglement can
be observed. For instance, entangled states can appear
in Bose–Einstein condensates [39–41], quantum dots
[42,43], trapped ions [44], atoms inside an optical cav-
ity [45,46] and in many others [47–52].

Usually, the systems applied as sources of the maxi-
mally entangled states are those in which quantum evo-

lution remains closed within a set of the states defined
in a finite-dimensional Hilbert space. Such systems are
referred to as quantum scissors [53] (when they consist
of linear or nonlinear elements, they are linear (LQS) or
nonlinear quantum scissors (NQS), respectively) and
lead to the appearance of so-called photon (phonon)
blockade effects [54–56].

It should be pointed out that the simplest models
involving only one single Kerr-type oscillator can also
lead to the appearance of diverse, compelling phenom-
ena and effects, and were a subject of many papers. For
example, for such nonlinear models generation of var-
ious quantum states of the electromagnetic (EM) field
can appear [57–62]. In particular, the kicked anhar-
monic oscillator model was discussed as a potential
source of Fock states—one-photon states [63]. Next,
it was shown that the same system could lead to the
generation of the finite-dimensional coherent states
[64]. Moreover, depending on the time of the free sys-
tem’s evolution (time between two subsequent exter-
nal pulses), a superposition of only two Fock states or
superposition of a much larger number of Fock states
canbe achieved [65,66]. Suchmodelswere also consid-
ered in other contexts, such as the ergodicity of systems
[67,68], quantum-classical correspondence [69,70] or
quantum chaotic behavior [71–78].

As it was mentioned above, quantum entanglement
can be generated in Bose–Hubbard systems involving
at least two nonlinear oscillators. The discussion of
such features was presented in [35–38]. In those stud-
ies, the time between two subsequent pulses was arbi-
trarily chosen and assumed to be constant. This fact
is a good motivation to study the relations between
the effectiveness of the generation of maximally (or
almost maximally) entangled states and the choice of
time when the oscillators evolve freely. The situation
becomes even more interesting when we assume the
excitations in two modes. Thus, the main aim of this
paper is to show not only that our model can be treated
asNQSbut primarily that changes in the time of the free
evolution of the oscillator (or two oscillators) consider-
ably changes the degree of the entanglement produced
by the system.We shall discuss how such time duration
and the relation between the times corresponding to the
two oscillators can affect the process of MES genera-
tion, and how it differs from the cases when continuous
pumping is assumed. What is the most interesting, we
will show that some random variances of those times
can improve the process spoiled by not ideally chosen
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time distance between two subsequent pulses. The last
aspect seems especially interesting as it is challeng-
ing to maintain precisely stable timing for the pulses in
the real experimental situations.Moreover,we compare
two situations—when the cross-Kerr-type coupling is
present and is neglected.

The paper is organized as follows. In Sect. 2, we
define the system consisting of two anharmonic quan-
tum oscillators coupled to each other and driven (in
one or two modes) by an external field. Such external
field is assumed to be in the form of series of very short
pulses. Next, we concentrate on the system’s evolution,
especially on the possibility of the MES generation. In
particular, Sect. 3 discusses the case when the system is
excited only in one mode.We derive there the formulas
describing the probability amplitudes corresponding to
the two situations:when the cross-Kerr-type interaction
is present and when is omitted. We study there the pos-
sibility of the creation of MES and next compare the
effectiveness of such process with that appearing in the
continuously excited models. We check how the dura-
tion of the time of the free evolution (times between
two pulses) influences the effect of the entanglement
generation. In Sects. 4 and 5, we concentrate on the
case when both oscillators are excited by the pulsed
fields. Finally, in Sect. 6 we discuss the influence of
random changes in times between subsequent pulses
(in both modes) on the effectiveness of the creation of
entangled states. We show that such randomness can
improve the efficiency of the entanglement generation.

All numerical calculations were performed with
the application of the MATLAB® software. Also, the
figures containing the plots were prepared using the
MATLAB® package.

2 The model

Our system comprises two identical anharmonic quan-
tum oscillators mutually coupled by linear interaction.
Additionally, the external pulsed EM field excites one
or two oscillators. Such excitations are modeled by
Dirac-delta functions. For the cases when both oscilla-
tors are influenced by the external field, we deal with
two situations—the oscillators are driven synchroni-
cally or in an unsynchronous way.

Our previous considerations, presented in [79] and
concerning the possibility of formation of the 2-qubit
MES in the similar system, were devoted to the sit-

χ (3)ε(3)χ
β 1 β

2

1 2

Fig. 1 The Bose–Hubbard model considered here comprising
two interacting nonlinear oscillators (Kerr-type), excited by the
train of external pulses

uation when only one mode pumping was present. It
was shown there that for the appropriate choice of the
parameters describing interactions present in the sys-
tem, the system not only behaves as NQS but becomes
a source of Bell-like MES with high, although not per-
fect, probability.

We can describe the system considered here by the
following Hamiltonian:

Ĥeff = χ1

2
(â†1)

2â21 + χ2

2
(â†2)

2â22

+χ12â
†
1 â1â

†
2 â2 + εâ†1 â2 + ε�â1â

†
2, (1)

whereas the external excitation(s) is(are) described by:

Ĥi = (β1â
+
i + β�

i âi )
∞∑

k

δ(t − kTi ), i = {1, 2}, (2)

where âi (â+
i ) are the annihilation (creation) operators

for the i-th (i = {1, 2}) oscillator’s modes, whereas
χi (χ12) are the 3rd -order susceptibilities describing
self- and cross-action processes, respectively. For the
simplicity, we assume that oscillators are identical, i.e.,
χ1 = χ2 = χ . The parameters ε, βi describe the
mutual and external interactions, respectively. The time
Ti denotes the time between two subsequent pulses in
i-th mode (Fig. 1).

When considering the whole time evolution of the
system which is excited by ultra-short pulses, one can
distinguish two stages/kinds of the evolution. The first
of them corresponds to the action of a single external
pulse. For such a case, the energyof the systemchanges.
The second stage corresponds to the periods between
two subsequent pulses. If the damping processes are
neglected, the total energy of the oscillatory system
does not change during those times. Since in the present
paper, only quantum states formation with the absence
of damping processes is considered (wewill not include
the influence of the external environment), the solutions
of the Schrödinger equations will be considered. The
wave-function describing the evolution of the system
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of two oscillators can be obtained by the application of
quantum mapping procedure [70].

Thus, we define the unitary evolution operators cor-
responding to the above-mentioned two stages of the
evolution. First, the operator governs the action of
external pulse in one mode we define as

ÛK = exp
(
−i(βi â

†
i + β∗

i âi )
)

, (3)

whereas the operator describing pulsed two-mode exci-
tations is defined as

ÛK = exp
(
−i(β1â

†
1 + β∗

1 â1 + β2â
†
2 + β∗

2 â2)
)

. (4)

Next, we define the operator corresponding to the
“free” evolution of coupled nonlinear oscillators during
the time T as

ÛN L = exp
(
−i(ĤeffT )

)
. (5)

Such defined operators multiply acting in the appro-
priate order on the initial state give the state after each
external pulse.

After the action of the k-th pulses, it can be written
in a general form:

|Ψk〉 =
(
ÛN LÛK

)k |Ψ0〉. (6)

It is valid for both cases—excitations in a single mode
and excitations in both modes. It should be pointed out
that the relation (6) can be applied when two trains
of pulses act simultaneously at the same moments of
time. When one train of excitations is shifted in time
compared to the second, the mapping procedure gives:

|Ψk〉 =
(
ÛN L2ÛK2ÛN L1ÛK1

)k |Ψ0〉. (7)

The unitary evolution operators UNL(UNLi ) and
UK (UKi ) can be expressed with the use of parameters
describing the system as:

ÛN Li = exp
(
−i ĤeffTi

)
(8a)

ÛK = exp
[−i

(
β1â

+
1 + β�

1 â1 + β2â
+
2 + β�

2 â2
)]

(8b)

ÛN L = exp
(
−i ĤeffT

)
(8c)

ÛK1 = ÛK with β2 = 0 and ÛK2 = ÛK with β1 = 0
(8d)

We assume here that themutual interaction of the oscil-
lators, described by ε, is considerably smaller than the

nonlinearity parameter χi of any of the oscillators.
Additionally, the value of ε is also lower than (or at
least equal to) the external interaction strength β so
that the dominant parameter of the system is the third-
order susceptibility χ . Usually, in optical systems, it is
expected thatKerr nonlinearity isweak.However, there
are numerous examples of physical models in which
theKerr-type nonlinearities are sufficiently strong—for
example, see the systems in which electromagnetically
induced transparency (EIT) effects in atomic configu-
rations appear [80]. We would like to emphasize that
our proposalmore likely should be referred to the group
of systems (optical, optomechanical, etc.) in which the
Kerr nonlinearity appears, for example, as a result of
strong atom-cavity mode or qubit-nanoresonator field
interactions. Such systems can be described by the
effective Hamiltonians which involve Kerr-like non-
linearities. In consequence, the values of the effective
third-order susceptibility parameters can be externally
controlled and one can fulfill the conditions assumed
in the present considerations.

3 Entanglement generation in the system with
single-mode excitation

In further considerations, we are mainly interested in
the generation of entangled quantum states, especially
MES. Therefore, for the analysis of the degree of entan-
glement obtained in the system, we shall use as the
entanglement measure, the negativity. It is defined as
[81,82]:

N (ρ) = 1

2

∑

j

|λ j | − λ j , (9)

where λ j is j-th eigenvalue of the matrix ρTi—a par-
tially (with respect to one of the subsystems i = 1 or 2)
transposed density matrix ρ describing the whole sys-
tem. The negativity can be treated as a pure measure
of the entanglement when it is applied to two-qubit or
qubit–qutrit systems. For such cases, it can differenti-
ate between entangled and not entangled states—it is
equal to the unity for MES and zero for the separable
states.

As a starting point in the detailed analysis of the
formation of entangled states within the system of two
nonlinear oscillators, we choose a single-mode excita-
tion case. This problemwas already partially presented
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in [53]. In presented here considerations we shall com-
pare the results corresponding to the models assum-
ing continuous external excitations (discussed in many
aspects in [26] or in general in [53]) to those corre-
sponding to our system excited by a train of pulses.

In the review paper [53] devoted to the formation of
truncated quantum states in various nonlinear systems,
we have shown that when coupled anharmonic oscil-
lators are excited by ultra-short pulses, the system’s
evolution can be restricted to a few states only. In [79],
when only one of the coupled oscillators was exter-
nally driven, we have shown that despite the contin-
ual excitations by ultra-short pulses, only four resonant
states are populated and in fact, such system behaves as
NQS. In consequence, the probability amplitudes cor-
responding to the populated states |0〉|0〉, |0〉|1〉, |1〉|0〉
and |1〉|1〉 showoscillatory behaviorwith characteristic
frequencies describing their evolution [79].

First, we shall concentrate on the situation when
cross-coupling is omitted (χ12 = 0). Thus, the equa-
tions describing the time evolution of the probability
amplitudes are given as in [79] by:

c00(k) = 1

2TΩ0ε

[(
2β2 − Ω2

1

)
cos

(
kΩ2√

2

)

−
(
2β2 − Ω2

2

)
cos

(
kΩ1√

2

)]
(10a)

c01(k) = β

Ω0

[
cos

(
kΩ2√

2

)
− cos

(
kΩ1√

2

)]
(10b)

c10(k) = iβ√
2T εΩ0Ω1Ω2

×
[
−2

(
ε2T 2 + β2

)
Ω1 sin

(
kΩ2√

2

)

+ εT (εT − Ω0)Ω2 sin

(
kΩ1√

2

)
+ Ω2

1

]

(10c)

c11(k)= i

√
2β2

Ω0

[
1

Ω1
sin

(
kΩ1√

2

)
− 1

Ω2
sin

(
kΩ2√

2

)]
,

(10d)

and the frequencies: Ω0 = √
4β2 + ε2T 2, Ω1 =√

2β2 + ε2T 2 − εTΩ0 and
Ω2 = √

2β2 + ε2T 2 + εTΩ0.

When χ12 �= 0, the equations for the probability
amplitudes take the following much simpler form:

c00(k) = 1

Ω2

[
ε2T 2 + β2 cos (kΩ)

]
(11a)

c01(k) = βεT

Ω2 [−1 + cos (kΩ)] (11b)

c10(k) = −i
β

Ω
sin (kΩ) , (11c)

where Ω = √
β2 + ε2T 2. We see that for such a case

only three resonant states are populated, and oscilla-
tions are governed by a single frequency depending
mainly on the strengths of the excitation and inter-
actions between oscillators. In Fig. 2, we present the
analysis of the system externally driven in one mode.
We plotted only the maximal values of the negativity
N0110 for MES defined in the space spanned over the
group of two-mode states {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}
describing of the whole system. We have chosen two
exemplary values of the relations between external (β)
and internal (ε) interactions.Moreover, we present here
two situations: when χ12 = 0 (Fig. 2a, c) and that cor-
responding to χ12 = 1 (Fig. 2b, d).

In each of the cases, we can easily find the ranges
of the values of parameters for which the strongest
possible entanglement in the two-qubit system can be
achieved. In general, when only self-Kerr-type nonlin-
earities are present in the system, no significant dif-
ferences between the maximal values of N0110 for the
pulsed and continuous excitations can be noticed. The
maximal values of the negativitywhich can be achieved
are listed in Table 1. The time dependencies of the neg-
ativity slightly differ between each other, but the results
are comparable. However, when additional cross-Kerr-
type interaction is added to the model, the situation
changes significantly, and hence, one can obtain much
higher values of the negativity for pulsed excitations in
a wide range of the time T (see in Fig. 2d where exter-
nal excitation strength is dominant over themutual cou-
pling between the oscillators). That problem was also
pointed out in [79], but it was discussed there only for
one arbitrarily chosen set of parameters. The analy-
sis performed here allows us identifying much broader
ranges of the values of the parameters for which pulsed
excitations are more efficient in producing MES.

Additionally, a large decrease in the negativity can
be seen for the extrema—for small and large values of
T (time of free evolution). Especially, when χ12 = 0
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Fig. 2 Maximal values of the negativity N0110 when only one
oscillator is excited (solid lines) versus the time T of the free
evolution of both oscillators: a β/χ = ε/χ = 1/25, χab = 0;
b β/χ = ε/χ = 1/25, χab = 1; c β/χ = 1/25, ε/χ =
1/100, χab = 0;d β/χ = 1/25, ε/χ = 1/100, χab = 1.Addi-

tionally, the reference dashed line corresponding to the value of
N0110 for the same model but with continuous driving in one
mode is plotted. The nonlinearity parameter χ = 1. Mark “x”
corresponds to the results discussed in [79]

Table 1 The maximal values of the negativity which can be gained for the single-mode excitation model

The system with continuous driving The system with pulsed excitations

β/χ = ε/χ = 1/25 χab = 0 max N0110 = 0.9923 max N0110 = 0.9937

β/χ = ε/χ = 1/25 χab = 1 max N0110 = 0.9176 max N0110 = 0.9965

β/χ = 1/25 ε/χ = 1/100 χab = 0 max N0110 = 0.9977 max N0110 = 0.9994

β/χ = 1/25 ε/χ = 1/100 χab = 1 max N0110 = 0.5935 max N0110 = 0.9995

(see Fig. 2a, c). Such a decrease is an effect of the
fact that for the considered here values of T , a larger
group of two-mode states is populated in the evolution
of the whole system. Apart from the states belonging

to the setB = {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}, which are
responsible for obtaining entanglement measured by
N0110, there are also nonzero probabilities correspond-
ing to the states |0〉|2〉 and |2〉|0〉. Although correlations
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responsible for the entanglement formation between
those two states are negligible, nonzero population of
the states which do not belong toB is the main reason
for not having the maximum entanglement N0110 for
the cases of the short (smaller than ≈ 0.1π ) and long
(close to 2π ) time T . For other values of T , the analy-
sis of N0110 shows that the only two-mode states which
are populated in the evolution of the whole system are
the states {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}.

We would also like to emphasize that it is evident
from the analysis presented in Fig. 2c, d that there is a
much broader range of parameters for which the states
which are close to theBell-like ones are generatedwhen
using pulsed excitations rather than using continuous
driving.

In [79], we have shown that the system of cou-
pled oscillators, which initially are in the vacuum state,
excited in one mode only, can be a source of the Bell-
like states of the form:

|B〉1,2 = 1√
2

(|0〉|0〉 ± i |1〉|1〉) (12a)

|B〉3,4 = 1√
2

(|0〉|1〉 ± i |1〉|0〉) (12b)

Depending on the value of the cross-interaction, one
can obtain |B〉1 state (for χ12 = 0 and ε < β) or |B〉3,4
(for χ12 �= 0 and ε < β) with the probability close to
the unity, whereas the state |B〉2 can be produced with
a smaller probability.

4 Synchronous excitations

Here, we shall concentrate on the cases when the pulses
in both modes act on the system synchronously—at the
same moments of time. For such situation, the times
between two subsequent pulses are identical for the
two pumping modes—we assume here that T = π . In
consequence, the quantum mapping procedure can be
described by the equation (6). Moreover, for simplic-
ity, we assume that the excitations of both oscillatory
modes are of the same strengths, i.e., β1 = β2.

Depending on the fact whether the cross-Kerr-type
interaction is present or not, different entangled two-
qubit states can be produced. Thus,when only self-Kerr
nonlinearities are included in our model, the above-
mentioned Bell-like states (see Eqs. 12a and 12b) can

be built. However, when we also include the cross-
nonlinearity, only one of such type MES is created:

|B〉 = 1√
2

(|0〉|1〉 + |1〉|0〉) . (13)

Figure 3 depicts the dependence of the maximal
value of negativity max N0110 on the time T of free
evolution between two subsequent external pulses,
where the value of N0110 shows how strong entan-
glement appears in the subspace defined by the states
{|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}. Here, the same as in
Fig. 2, we discuss two representative values of the
ratio β/χ = ε/χ describing the relation between the
internal and external interactions. Moreover, we also
show the results for the two situations—when the cross-
interaction is omitted or included in the model. We see
that for the considered here values of β/χ = ε/χ ,
MES can be created for the broad ranges of the value
of T . Such a process is more pronounced when the
cross-Kerr-type nonlinearity is neglected (Fig. 3a, c).
Therefore, when the system involves only the self-Kerr
nonlinearities, the entanglement generation is not so
much dependent on the careful choice of T—we see
only tiny changes in max(N0110) for the broad range
of T . For π/4 < T � 7π/4 in both considered situa-
tions (Fig. 3a, c), MES can be created very effectively.
Only for T � π/4 and T � 7π/4 such states would
not be formed.

When χ12 �= 0 (Fig. 3b, d), we can also produce
almostmaximally entangled two-qubit states; however,
the range of the values of T when such states can appear
is much smaller than for the previous case. In conse-
quence, for such a situation we should more carefully
control the free evolution time. What is relevant, for
χ12 = 0 when the negativity N0110 = 1, one of the
states (12b), is generated, whereas for χ12 �= 0 when
N0110 = 1 the system is in the state (13).

For the better comparison of our results to those cor-
responding to themodel assuming continuously excited
system (in bothmodes), we denoted by dashed lines the
reference values of the negativity when the external
driving is continuous. It is seen that when we neglect
cross-Kerr-type interaction, themaximal valueof N0110

is slightly closer to the unity (but still very close to
1) than the mentioned above reference values, for the
broad range of T (see Table 2).

When the cross-nonlinearity is included in themodel
(Fig. 3b, d), the differences between max N0110 and
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Fig. 3 Maximal values of the negativity N0110 for the syn-
chronously excited oscillators (solid lines) as a function of free
evolution time T : a β/χ = ε/χ = 1/25, χab = 0; b β/χ =
ε/χ = 1/25, χab = 1; c β/χ = 1/25, ε/χ = 1/100, χab = 0;

d β/χ = 1/25, ε/χ = 1/100, χab = 1. The dashed horizontal
line denotes the reference value of the negativity for the continu-
ously driven system. The values of other parameters are the same
as in Fig. 2

Table 2 The maximal values of the negativity which can be gained for the model involving two-mode excitations

The system with continuous driving The system with pulsed excitations

β/χ = ε/χ = 1/25 χab = 0 max N0110 = 0.9963 max N0110 = 0.9971

β/χ = ε/χ = 1/25 χab = 1 max N0110 = 0.8848 max N0110 = 0.9716

β/χ = 1/25 ε/χ = 1/100 χab = 0 max N0110 = 0.9975 max N0110 = 0.9991

β/χ = 1/25 ε/χ = 1/100 χab = 1 max N0110 = 0.9899 max N0110 = 0.9912

the reference values become more pronounced. This
effect is especially apparent when the external excita-
tions become comparable to the internal ones (Fig. 3b).
Moreover, there is only a narrow range of the values
of T (≈ 〈π/20;π/3〉) for which pulsed system can

generate entangled states characterized by the notice-
able higher negativity than that continuously excited.
In Fig. 3b, we see that for the pulsed system, when the
time T is appropriately chosen, the entangled states
appearing in the system become more close to MES.
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τ τ

T = 2τ

mode 1

mode 2

Fig. 4 The scheme, showing timings of asynchronous excita-
tions

We see that although continuous excitation can lead
to the formation of maximally or almost maximally
entangled states (see, for example, [26]), the main
advantage of the models driven by ultra-short pulses
is that the latter enables obtaining the two-qubit entan-
gled states characterized by higher negativity, espe-
cially when the interactions between the oscillators
are weaker than external excitations. Such an effect
becomes more pronounced when the cross-Kerr-type
coupling is present, and consequently, the states (13),
or (12b) can be formed. For the continuously excited
model, such conditions lead to the formation of states
of the type (12a) but with smaller efficiency. The dis-
cussion concerning such differences between the sys-
tem driven by continuous excitation and that excited by
external kicks can be found, for instance, in [79].

5 Asynchronous excitations

The next step in our considerations is to introduce the
time shift between the trains of pulses corresponding
to the two modes of the field. In consequence, the exci-
tations of two oscillators will not act simultaneously,
and hence, each of the oscillators will be excited at
the different moments of time. In this subsection, we
shall discuss the case when external excitations act
alternately—oneof the trains of pulses is shifted in rela-
tion to the second one, by the time τ . For such a case,
both sequences are characterized by the same T = 2τ
describing the time of free evolution of oscillators. The
scheme of excitations is plotted in Fig. 4. Here, we
will concentrate on the influence of the time shift τ on
the effectiveness of the entangled state’s formation. It
should be noted that the τ and T remain constant during
the whole system’s evolution.

To perform the quantum mapping procedure, we
will apply the parameter τ to the unitary operator (8a),
where T1 = T2 = τ and then, the calculations will
be done according to the formula (7). To check how
the time-shift effect can influence the entangled state’s
generation,wewill vary the value of τ and, analogously

as for the previously discussed cases, will find themax-
imal values of the negativity max N0110 for each value
of τ .

Figure 5 depicts two situations for which the rela-
tions between the two strengths of the interactions are
β = ε andβ < ε are assumed (Fig. 5a–d, respectively).
Moreover, it presents the results for two models: one
involving the cross-Kerr-type interaction (Fig. 5b, d)
and the other omitting it (Fig. 5a, c).

From Fig. 5, we see that the creation of maximally
(or almost maximally) entangled states considerably
depends on the time τ , and thus, the generation of
entanglement can be sensible on the proper choice of
the value of τ .

When the cross-nonlinearity is omitted (Fig. 5a, c),
MES can be formed. For such a case, max(N0110)

remains close to the unity for the broad range of values
of τ . Only when τ is close to zero or π , such states
would not be generated. In consequence, such a situ-
ation seems to be the most promising in the effective
forming of MES.

When χab �= 0, the almost MES can be produced
only for a narrow range of the values of τ . Further-
more, with increasing τ , the maximal value of achiev-
able negativity decreases. Thus, for the systems involv-
ing cross-Kerr-type interaction, to produce MES, one
should more carefully control the time τ .

6 Two-mode excitation with randomly disturbed
free evolution’s times

The analysis of entanglement’s evolution for the cou-
pled nonlinear system driven by ultra-short pulses in
both modes enabled us to find the optimal sets of
parameters for the generation of maximally entangled
two-qubit states. Primarily, we have shown that by the
appropriate tuning of the values of the time shift τ , and
times of free–evolution T one can improve the effec-
tiveness of the process of creation of MES.

As we have shown in the previous section, there are
situations when the formation of MES is not perfect or
even impossible. Here, we shall show how adding some
randomness to the non-ideally chosen values of the
parameters presented in the previous section, can influ-
ence discussed here processes and, in consequence,
improve the generation of entanglement.

Such, randomness appears in all real physical sys-
tems, as they are not perfect. For instance, if we are
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Fig. 5 Maximal values of the negativity N0110 for the asyn-
chronously excited oscillators versus τ : a β/χ = ε/χ =
1/25, χab = 0; b β/χ = ε/χ = 1/25, χab = 1; c β/χ =

1/25, ε/χ = 1/100, χab = 0; d β/χ = 1/25, ε/χ =
1/100, χab = 1. The remaining parameters are identical to those
as shown in Fig. 2

dealing with lasers generating sequences of pulses, the
time interval between two subsequent ones varies ran-
domly from one pair of pulses to the next one—the
timing jitter effect appears in all real laser systems.
In consequence, pulse trains which are generated, e.g.,
in mode-locked lasers, exhibit some deviations of the
temporal pulse positions [83]. Such variations origi-
nate, for instance, from noises present in the electronic
oscillator driving the modulator within the laser [84–
86] and allow manipulating with the statistical prop-
erties of timing. The analogous situation can be found
in systems of the Q-switched lasers in which acousto-
optic Q-switch is applied to influence the time between
two subsequent pulses.

We can also propose a different physical situation in
which we can randomly influence the train of pulses.

Namely, it is possible to apply a delay line in the optical
path which contains a mirror randomly shifted by a
piezo-element. Sending a random signal to the latter,
we can modulate the length of the optical path of the
laser signal and thus the timings of the pulse sequence.

Therefore, we shall modify our model by adding
some random factor to the time τ characterizing the
time of free evolution (see Fig. 4). As an example, we
have chosen here such situations depicted in Fig. 5, for
which the maximal value of the negativity was notice-
ably reduced. Such a situation appears when τ 	 π ,
and such values of τ are chosen for the two considered
here cases corresponding to the two relations between
β and ε.
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Here, we modify the time τ by adding a random fac-
tor. Now, τ can be expressed by the following relation:

τ = π + nξ − ξ

2
, (14)

where n is a number taken from the set of numerically
generated pseudo-random numbers (with the applica-
tion of theMATLAB® software). Such a set of numbers
is characterized by the Gaussian (normal) probability
distribution. The distribution is described by the two
parameters: themean valueμ and standard deviation σ .
The quantity ξ appearing in (14) determines the range
of the values inwhich n is closed.Additionally,we have
added here the term ξ

2 which ensures that the numbers
greater and smaller than π will be chosen with equal
probabilities.

By increasing the value of ξ , we enlarge the interval
of numbers which can be randomly chosen. In conse-
quence, the time τ becomes a subject of more substan-
tial variations between alternate pulses and vice versa,
and smaller values of ξ lead to decreasing changes of τ .

From the other side, a decrease in σ leads to narrow-
ing of the distribution. In consequence, even smaller
values of ξ can lead to significant changes in the values
of chosen numbers. Such an effect is the result of the
normalization of the probability distribution.

The influence of the changes in the values of ξ and σ

on the effectiveness of the entanglement generation is
shown in Fig. 6 and 7. For the all presented in this sec-
tion situations, the parameters β, ε, χ12 and the deter-
ministic part of τ are chosen in such away thatwhen the
random perturbations are neglected a relatively weak
entanglement is generated. However, when such ran-
dom disturbances appear in τ , they influence the nega-
tivity describing two-qubit entanglement.

In Fig. 6a, b, where maximal values of the negativ-
ity N0110 as functions of ξ are presented, the effect of
random changes in the times of free evolution becomes
visible. It appears that starting from the relatively weak
entanglement in the system, by increasing the random-
ness in evolution time (increasing ξ ), one can consid-
erably increase the value of negativity. It means that
the more randomness is applied to the model (to the
parameter τ ), and the more benefits can be obtained
from that fact. It should be emphasized that for such a
case, quantum correlations become more pronounced,
and thus, MES (Bell-like states) can more probably
appear, despite the increase of the randomness in the
value of τ .

In Fig. 7a, b, the influence of the width σ on
max(N0110) is shown. When cross-Kerr-type interac-
tion is neglected, the effect of decreasing max(N0110)

with the increase of distribution width σ is more pro-
nounced. Therefore, by the proper choice of σ , we can
find the best strategy to increase the entanglement in
our system. We see that narrower normal distributions
(the cases when random changes in the time τ are less
pronounced) seem to be preferable.

From the analysis of the cases discussed here, it
becomes clear that the randomness influencing the time
τ , and in consequence in the time of free evolution, can
help in obtaining stronger entanglement in the system.
This fact can especially be relevant from the experimen-
tal point of view. What is surprising, certain instabili-
ties and randomness naturally appearing in the timings
of sequences of the real laser pulses can lead to the
improvement in the entanglement generation. We have
shown that by the proper changes in a characteristic
of such timings (including the application of random
changes), one can enter the region in which the degree
of achieved entanglement will be satisfactory.

7 Summary

We have considered the simple Bose–Hubbard system
consisting of two linearly coupled nonlinear oscilla-
tors which are excited by ultra-short pulses in one or
two modes. We have discussed such the model in the
context of the possibility of entangled states, espe-
cially MES (Bell-type states), generation. Especially,
we were interesting in finding such conditions in which
our model can lead to the most effective generation of
such states.

For the system discussed here, we have consid-
ered the cases when: (a) one oscillator is excited, (b)
both oscillators are driven simultaneously (by syn-
chronous and asynchronous series of pulses) andfinally
(c) when we apply some randomness to the timings of
pulses.

We have shown that under some conditions, the evo-
lution of ourmodel is closedwithin a finite set of states.
Consequently, themodel considered here can be treated
as a two-qubit system. Moreover, it can also be used as
a good source of entangled states.

For the case when the excitations in a single mode
are present, we have found the values of parameters
describing our system, for which excitations in the
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Fig. 6 Maximal achievable values of the negativity N0110 for systemwith randomly disturbed free evolution’s times versus ξ : a χab = 0;
b χab = 1. The remaining parameters are μ = 0, σ = 0.5
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Fig. 7 Maximal achievable values of the negativity N0110 for system with randomly disturbed free evolution’s times versus σ : a
χab = 0; b χab = 1. The remaining parameters are μ = 0, ξ = π

form of short pulses are more effective in obtaining
MES than continuous driving. We have compared our
results to those previously obtained and discussed in
[79] where such continuous excitations were consid-
ered (it should be emphasized that in [79] only some
exemplary situations corresponding to single values
of the parameters characterizing the system were dis-
cussed).

We have also discussed the possibility of entangle-
ment creation in the system excited in two modes. We
have shown that the effectiveness of the generation
of entangled states strongly depends on the value of
the time of free evolution T . We have identified the

ranges of T for which we can treat the model as a
source of MES – Bell-type states. Additionally, the
same as for the model with a single-mode excitation,
we have shown that when the system is simultane-
ously excited, there are parameters’ ranges for which
the system with continuous excitation is less effective
as a source of entanglement than that assuming pulsed
pumping.

Next, we have discussed the possibility of entan-
glement creation in the system excited in two modes,
where the first and second modes were excited alter-
nately. We have found such a range of the values of τ

describing the time between alternate pulses for which
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the effectiveness of the generation of entangled states
is very high.

Finally, we have discussed how random changes in
the time between two alternate pulses influences the
entanglement generation. The most important result is
that even for specific range of the values of parame-
ters when the system is not effective in the produc-
tion of entangled states, it is possible to enhance the
produced entanglement by an application of random
changes in the time τ ( τ determines the free evolu-
tion of both oscillators between alternate pulses). We
have shown that random changes of times τ may lead
to the noticeable increase in the value of negativity,
even if the parameters describing the system are chosen
such a way that the value of the constant deterministic
term in τ corresponds to the not efficient generation
of the entanglement. It means that randomness can be
responsible for the enhancement of quantum correla-
tions. However, one still should remember that by not
proper choice of the deterministic term of τ such pro-
cess can be spoiled.
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31. Korolkova, N., Peřina, J.: Kerr nonlinear coupler with vary-
ing linear coupling coefficient. J. Mod. Opt. 44, 1525–1534
(1997)
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pler operating onWerner-like states; entanglement creation,
its enhancement, and preservation. J. Opt. Soc. Am. B 31(6),
1290–1297 (2014)

39. Zhang, M., Helmerson, K., You, L.: Entanglement and spin
squeezing of Bose-Einstein-condensed atoms. Phys. Rev. A
68, 043622 (2003)

40. Gerry, C.C., Campos, R.A.: Generation of maximally entan-
gled states of a Bose-Einstein condensate and Heisenberg-
limited phase resolution. Phys. Rev. A 68, 025602 (2003)

41. Vidal, J., Palacios, G., Aslangul, C.: Entanglement dynam-
ics in the Lipkin-Meshkov-Glick model. Phys. Rev. A 70,
062304 (2004)

42. Loss, D., DiVincenzo, D.P.: Quantum computation with
quantum dots. Phys. Rev. A 57, 120–126 (1998)
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