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Andrei B. Fărăgău · Andrei V. Metrikine ·
Karel N. van Dalen

Received: 1 February 2019 / Accepted: 17 June 2019 / Published online: 4 July 2019
© The Author(s) 2019

Abstract Transition zones in railway tracks are areas
with considerable variation of track properties (i.e.,
foundation stiffness), encountered near structures such
as bridges and tunnels. Due to strong amplification of
the response, transition zones require frequent mainte-
nance. To better understand the underlying degradation
mechanisms, a one-dimensional model is formulated,
consisting of an infinite Euler–Bernoulli beam rest-
ing on a locally inhomogeneous and nonlinear Winkler
foundation, subjected to a moving load. The nonlinear-
ity is characterized by a piecewise-linear stiffness, and
the system thus behaves piecewise linearly. Therefore,
the solution can be obtained by sequentially applying
the Laplace transform combined with the Finite Differ-
ence Method for the spatial discretization and derived
non-reflective boundary conditions. Results show that
the plastic deformation is a consequence of construc-
tive interference of the excited waves and the response
to the load’s deadweight, particularly for the soft-to-
stiff transition. The plastic deformation area decreases
quasi-monotonically with increasing transition length,
and for super-critical velocities, small transition lengths
and/or large stiffness dissimilarities, parts of the foun-
dation experience plastic deformation even in the sec-
ond loading–unloading cycle. Furthermore, the non-
linearity causes the maximum energy associated with
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the waves radiated forward and the maximum energy
input not to occur for the smallest transition length,
contrary to findings in corresponding linear systems.
Moreover, the energy input drastically increases for the
second passage of the moving load, making it a possi-
ble indicator of the damage in the supporting structure.
The novelty of the current work lies in the computa-
tionally efficient solution method for an infinite system
which locally exhibits nonlinear behaviour and in the
study into the influence of the foundation’s nonlinear
behaviour on the generated waves (i.e., transition radi-
ation), and on the resulting plastic deformation. The
model presented here can be used for the preliminary
design of transition zones in railway tracks.

Keywords Nonlinear foundation · Infinite and
inhomogeneous system · Moving load · Transition
radiation · Laplace transform · Non-reflective
boundaries

1 Introduction

Transition radiation is emitted when a source moves
along a straight line with constant velocity and acts on
or near an inhomogeneous medium [1,2]. It occurs, for
example, when a train crosses an inhomogeneity in a
railway track, such as a variation in foundation stiff-
ness. The velocity of high-speed trains or conventional
trains running on soft soils may approach the critical
velocity in the supporting structure leading to strong
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transition radiation. Apart from potentially giving rise
to vehicle instability and passenger discomfort, transi-
tion radiation has been addressed as one of the causes of
track and foundationdegradationdue to the often strong
amplification of the stress and strain fields [3–6]. This
leads to a high frequency of maintenance required for
transition zones in areas with soft soils, which can be
3–8 times higher than for the regular parts of the rail-
way track [7,8]. Frequent maintenance leads to high
costs and reduced availability of the track.

The first study on transition radiation of elas-
tic waves was published by Vesnitskii and Metrikin
[9]. It considered an infinite string on a piecewise-
homogeneous Winkler foundation subjected to a mov-
ing point force and a moving point mass, respectively.
To also account for the flexural rigidity of the system,
Vesnitskii and Metrikin [10] analysed transition radia-
tion in a semi-infinite beam on elastic springs clamped
at one end. This system is equivalent to an infinite one
where part of the foundation has infinitely high stiff-
ness. Later on, the problem of a beam resting on a
piecewise-homogeneous Winkler foundation was also
addressed by others using different solution methods:
modal expansion techniques [11,12] and the moving
element method [13]. To study wave propagation in
the ground due to transition radiation, 2-D models of a
continuum acted upon by a moving load were anal-
ysed. The continuum was modelled as a piecewise-
homogeneous half-space [14,15] and as a piecewise-
homogeneous finite-depth layer [16,17].

The geometry of the transition zone has a strong
influence on the transition radiation, and modelling it
as piecewise homogeneous usually does not suffice for
design purposes. The detailed geometry of the transi-
tion zone has beenmore accuratelymodelled using 2-D
and 3-D finite-element models or combined boundary-
element models and finite-element models [e.g., 18–
24]; a good review of models for transition zones can
be found in [7]. Such models are necessary at the final
stage of designing a transition zone, but they are com-
putationally demanding. A simplified way to model a
transition zone in a 1-Dmodel, butmore accurately than
assuming a piecewise-homogeneous foundation, is to
incorporate a smooth transition between domains with
constant support stiffness. This has been introduced by
Metrikine et al. [25] for the model of an infinite string-
foundation system. Incorporating a smooth transition
in a 1-D model opens the possibility of studying the

performance of different transition-zone geometries in
earlier design stages.

Many studies about the dynamic response of rail-
way tracks assume linear behaviour of the supporting
structure. However, the influence of the foundations
nonlinearity on a railway track is significant, as shown
experimentally by Dahlberg [26], and should not be
overlooked. A study of the steady-state response of an
infinite string supported by nonlinear elastic springs
subjected to two moving point loads can be found in
[27]. To also account for theflexural rigidity, the steady-
state response of a beam on a homogeneous and non-
linear elastic foundation subjected to amoving load has
been analysed, considering a finite system [28–30] and
an infinite one [31–33]. In addition, Hoang et al. [34]
studied the steady-state response of an infinite beam
with periodic nonlinear elastic supports.

Transition radiation has also been addressed in sys-
tems with nonlinear elastic behaviour of the support-
ing structure. Castro Jorge et al. [35] used a nonlinear
elastic foundation to analyse the effect of the nonlin-
earity on the maximum displacements in a finite and
piecewise-homogeneous system. In addition, Varandas
et al. [36,37] considered nonlinear elastic behaviour of
the supporting structure in a 3-D finite-element model
of a transition zone. However, to study the degrada-
tion in a transition zone, the employed model should
incorporate plastic behaviour of the foundation. To this
end, Varandas et al. [38] developed a finite 1-D model
describing the accumulated permanent deformation in
a transition zone using a phenomenological model for
the cyclic degradation of the supports. Moreover, Gal-
lego Giner et al. [39] used an elastic-perfectly plastic
model (i.e., Drucker–Prager) for the supporting struc-
ture in his study of a transition zone using a 3-D finite
element model.

Detailed 3-D models of finite and inhomogeneous
systems that incorporate nonlinear behaviour of the
foundation are available in the literature, as shown pre-
viously.However, simplifiedmodels of transition zones
in infinite systems with nonlinear elasto-plastic foun-
dation behaviour are not available in the literature. This
motivates the aim of the current work, which is to for-
mulate a 1-Dmodel of an infiniteEuler–Bernoulli beam
on a smoothly inhomogeneous and nonlinear elasto-
plasticWinkler foundation, subjected to amoving load,
and to study the effect of the nonlinear behaviour on
the transition radiation and the degradation in the tran-
sition zone. The novelty of the current work is twofold.
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Firstly, a computationally efficient solution method
for an infinite system which locally exhibits nonlin-
ear behaviour is presented. Secondly, the influence of
the foundation’s nonlinear behaviour on the generated
waves (i.e., transition radiation), and the resulting plas-
tic deformation are studied. The model presented here
can be used for preliminary designs of transition zones
in railway tracks by assessing thepotential damage (i.e.,
plastic deformation) occurring in the transition zone
as a function of the smoothness of the transition (i.e.,
length of the transition), of the moving load velocity, of
the system’s damping and of the stiffness dissimilarity.
Furthermore, the results presented here offer insight
into the physical mechanisms leading to degradation in
the supporting structure.

This paper is structured as follows. In Sect. 2, the
problem statement is presented and the solution is
derived. Section 3 introduces the constitutive relation
of the foundation stiffness and the assumptions consid-
ered. In Sect. 4, the results are presented and discussed,
while Sect. 5 presents the drawn conclusions.

2 Model and solution

2.1 Problem statement

In this section, a 1-D model is formulated, consist-
ing of an infinite Euler–Bernoulli beam resting on a
smoothly inhomogeneous and nonlinearWinkler foun-
dation, subjected to a constant moving load (Fig. 1).
In view of practical relevance (degradation is often
encountered inside or close to the transition zone),
the nonlinear behaviour of the supporting structure is
restricted to the transition zone and its vicinity; this

domain is referred to as the computational domain. The
computational domain is connected at the boundaries
to two linear and homogeneous semi-infinite domains
to accommodate the infinite extent of the railway track.
The equations of motion for the three domains read

w′′′′
l + ρ ẅl + cd,l ẇl + kd,l wl

= −F0 δ(x − vt) H(−t), −∞ < x < 0, (1)

w′′′′ + ρ ẅ + cd(x) ẇ + Fk,W(x, w)

= −F0δ(x − vt)

(
H(t) − H

(
t − L

v

))
, 0 < x < L ,

(2)

w′′′′
r + ρ ẅr + cd,r ẇr + kd,r wr

= −F0 δ(x − vt) H

(
t − L

v

)
, L < x < ∞, (3)

where primes denote partial derivatives with respect to
x , overdots denote partial derivatives with respect to
t , and all parameters have been scaled by the beam’s
bending stiffness E I ; ρ represents the scaled mass per
unit length of the beam; kd,l and cd,l are the scaled
(homogeneous) foundation stiffness and damping of
the left semi-infinite domain, respectively; kd,r and cd,r
represent the same quantities for the right semi-infinite
domain; Fk,W(x, w) and cd(x) are the scaled force
exerted by the foundation and the scaled foundation
damping of the computational domain, respectively;
F0 and v represent the scaled magnitude and the veloc-
ity of the moving load; δ(. . .) denotes the Dirac delta
function, and H(. . .) the Heaviside function; 0 and L
represent the positions of the left and right boundaries
of the computational domain, respectively. Finally, wl,
wr and w are the unknown displacements of the left
and right semi-infinite domains, and of the computa-

kd(x),cd(x)

ρ,EI

x = 0

w(x,t)

kd,l,cd,l

x=vt
v

F0

kd,r,cd,r

x → -∞

x

x
x = L x → ∞

wr(x,t)wl(x,t)

Fig. 1 Schematization of the model: infinite Euler–Bernoulli beam supported by an inhomogeneous and nonlinear Winkler foundation,
subjected to a moving load

123



2438 A. B. Fărăgău et al.

tional domain, respectively. The space and time depen-
dency of the unknown displacements is omitted from
the expressions for brevity.

As interface conditions between the domains, conti-
nuity in displacement and slope, as well as in shear
force and bending moment, is imposed. The set of
boundary conditions is completed by imposing that,
due to the presence of damping, the displacements of
the left and right domains are zero as x tends to negative
and positive infinity, respectively:

wl(0, t) = w(0, t), wr(L , t) = w(L , t), (4)

w′
l(0, t) = w′(0, t), w′

r(L , t) = w′(L , t), (5)

w′′(0, t) = w′′
l (0, t), w′′(L , t) = w′′

r (L , t), (6)

w′′′(0, t) = w′′′
l (0, t), w′′′(L , t) = w′′′

r (L , t),
(7)

lim
(x−vt)→−∞ wl(x, t) = 0, lim

(x−vt)→∞ wr(x, t) = 0.

(8)

For computational efficiency, the simulation is per-
formed for the time interval when the moving load is
close to and inside the transition zone. Therefore, the
choice of initial conditions is crucial for ensuring that
the infinite extent of the model is respected. In real-
ity, before reaching a transition zone, the displacement
field caused by a train can be considered to be in the
steady state. Consequently, the initial conditions have
to be chosen such that they represent the steady state
at the beginning of the simulation. These initial condi-
tions are referred to (in this paper) as the input initial
conditions. The input initial conditions read

wl(x, t = 0) = win
l (x), ẇl(x, t = 0) = ẇin

l (x), (9)

w(x, t = 0) = win(x), ẇ(x, t = 0) = ẇin(x),
(10)

wr(x, t = 0) = win
r (x), ẇr(x, t = 0) = ẇin

r (x),
(11)

where superscript “in” stands for the input initial con-
ditions, which are derived in Sect. 2.3.1.

Equations (1) to (11) constitute a complete descrip-
tion of the problem. In the next section, the solution
method is presented.

2.2 Locally inhomogeneous and nonlinear system

Several time-domain methods are available for obtain-
ing the solution to a system representing a railway

track with nonlinear behaviour of the foundation [e.g.,
28,37,39,40]. These methods are suitable for systems
that exhibit nonlinear behaviour continuously through-
out the simulation. An alternative method is using the
Laplace transform sequentially, as shown by Hoving
andMetrikine [41]. Themain condition for this method
to be applicable is that the system’s behaviour is piece-
wise linear, implying that the system behaves linearly
between the moments at which its parameters, being
functions of the field variables (displacements, veloci-
ties, etc.), change abruptly (i.e., nonlinear events). This
method has the potential of being computationally effi-
cient for systems that have a limited number of nonlin-
ear events.

For simplicity of the derivation in this section, the
foundation’s constitutive law is assumed to be bilin-
early elastic. A more realistic constitutive relation, dis-
cussed in Sect. 3, is adopted for the results presented
in this paper. Here, the force provided by the Winkler
foundation springs is given by

Fk,W(x, w) =
{
kAd (x) w, w ≤ wel,

kBd (x) w − �kd(x) wel, w > wel,

(12)

where kAd (x) and kBd (x) represent the foundation
stiffness related to the first and second branches of
the bilinear constitutive law (see Fig. 6, considering
just branches A and B for loading and unloading),
�kd(x) = kBd (x) − kAd (x) is the stiffness difference
between the two branches, and wel represents the elas-
tic displacement limit at which the stiffness changes
from branch A to branch B. Note that, due to the inho-
mogeneity, both stiffness parameters kAd (x) and kBd (x)
are functions of space; however, the elastic displace-
ment limit wel is independent of the spatial coordinate.
The choice of the parameters is discussed in Sect. 3.

Assuming that the system is in the linear regime at
the start of the simulation and applying the Laplace
transform over time to Eq. (2), the Laplace-domain
equation of motion valid in the computational domain
reads

ŵ′′′′
1 + [ρ s2 + cd(x) s + kAd (x)] ŵ1 = F̂ IC

1 + F̂ML
1 ,

(13)

where ŵ1 represents the unknown displacement in the
Laplace domain; s = σ + iω is the Laplace variable,
where σ is a small and positive real number and ω rep-
resents the angular frequency; subscript 1 represents
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that the analysis is performed for the system before
the elastic displacement limit wel is exceeded for the
first time. Furthermore, F̂ML

1 represents the Laplace-
domain force exerted by the moving load and F̂ IC

1 rep-
resents the forcing induced by the input initial condi-
tions:

F̂ML
1 = − F0

v
e−s x

v , (14)

F̂ IC
1 = ρ(s win + ẇin) + cd(x) win. (15)

It must be noted that the Dirac delta function which
describes the moving load in the time domain becomes
a spatially distributed load in the Laplace domain, as
can be seen in Eq. 14.

Because of the spatial variation of the foundation
stiffness and damping, Eq. (13) cannot be solved ana-
lytically for all stiffness and damping profiles. There-
fore, the fourth-order spatial derivative is approximated
using the Finite Difference Method. A central dif-
ference scheme of order O(�x6) is used inside the
domain, and a hybrid between a central and a for-
ward/backward scheme is used at the boundaries. The
coefficients used for the finite difference discretiza-
tion are given in Appendix A. As boundary condi-
tions for the computational domain, the reaction forces
delivered by the semi-infinite domains, namely the
bending moment Eq. (6) and the shear force Eq. (7),
are employed. These reaction forces are derived in
Sect. 2.3.2 by imposing the displacement Eq. (4) and
slope Eq. (5) of the computational domain as bound-
ary conditions for the semi-infinite domains. Note that
for the non-reflective boundaries derived in Sect. 2.3.2
to be correct, the computational domain must behave
linearly at the boundaries. Therefore, the length of
the computational domain must be chosen such that
the expected nonlinear behaviour is located between
its boundaries. After applying the Finite Difference
Method to discretize the computational domain, the
Laplace-domain equation of motion reads

[Ki j + (ρ s2 + cd,i s + kd,1,i )Ii j ] ŵ1, j

= F̂ IC
1,i + F̂ML

1,i + F̂D
1,i , (16)

where Ki j represents the bending stiffness matrix of
the beam incorporating the contribution of the bound-
ary conditions which is proportional to the unknown
displacement, while F̂D

1,i represents the contribution of
the boundary conditions independent of the unknown

displacement, which is regarded as an external forc-
ing (see Sect. 2.3.2); Ii j is the identity matrix. The
Laplace-domain displacement ŵ1, j is obtained by left-
multiplying Eq. (16) by the inverse of the dynamic stiff-
ness matrix (i.e., the term in the square brackets). Then,
the inverse Laplace transform is numerically evaluated
to obtain the solution in the time domain. Making use
of the symmetry properties of the imaginary and real
parts of the Laplace-domain spectrum, only positive
frequencies are considered. For the results presented in
this paper, the Trapezoidal Rule is used to evaluate the
integral numerically.

The obtained time-domain solution is correct until
the first nonlinear event, defined as the moment in time
at which the solution exceeds the elastic limit wel at
a certain location inside the computational domain. To
obtain the correct solution after the first nonlinear event
(i.e., time moment τ1), the equation of motion of the
computational domain, Eq. (2), is changed as follows:

– TheWinkler stiffness profile is modified by assign-
ing the adequate stiffness to the nodes where the
elastic limit has been exceeded.

– A new time variable is introduced, namely t2 =
t − τ 1 for t ≥ τ 1. Note that time t represents
the global time. Furthermore, for clarity, the time
moment of a nonlinear event in the global time axis
t is represented with an overbar (τ n), while in the
local time axes tn , this moment is indicated without
the overbar (τn). Figure 2 offers a graphical repre-
sentation of the different time axes and nonlinear
events.

– To ensure continuity, the displacement and velocity
of the previous system at τ1 are prescribed as initial
conditions for the new system:

t0

t20

t30

tn0

τ1 τ2 τ3 τn-1 τn

τ2

τ3

τn

Fig. 2 Definition of the time intervals and the local and global
(overbar) nonlinear events
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w2(x, t2 = 0) = w1(x, t = τ1), (17)

ẇ2(x, t2 = 0) = ẇ1(x, t = τ1). (18)

Note that these initial conditions differ from the
input initial conditions defined in Sect. 2.3.1.

– The boundary conditions are updated, as shown in
Sect. 2.3.2.

– The position of the moving load is updated accord-
ingly.

The updated system behaves again linearly until the
next nonlinear event. Therefore, the forward Laplace
transform is applied with respect to the new time vari-
able t2. The Laplace-domain equation of motion of the
new system reads

[Ki j + (ρ s22 + cd,is2 + kd,2,i)Ii j ] ŵ2, j

= F̂ IC
2,i + F̂ML

2,i + F̂NL
2,i + F̂D

2,i , (19)

where s2 represents the Laplace variable associated
with the new time variable t2, ŵ2 is the unknown
Laplace-domain displacement of the new system, and
subscript 2 represents that the analysis is performed for
the system in the second time interval. The term F̂ML

2,i
is associated with the moving load acting on the new
system, while the initial conditions for the new time
interval are accounted for through F̂ IC

2,i :

F̂ML
2,i = − F0

v
e−s2

(
xi
v

−τ 1

)
H

(
xi
v

− τ 1

)
, (20)

F̂ IC
2,i = ρ(s2 w1,i (τ1) + ẇ1,i (τ1)) + cd,i w1,i (τ1).

(21)

The Laplace-domain force exerted by the foundation is
split into its contribution proportional to the unknown
displacement, kd,2,i ŵ2, and the one independent of the
unknown displacement, which is accounted for through
the external force F̂NL

2 , with superscript NL standing
for nonlinear:

kd,2,i ŵ2,i =
{
kAd,i ŵ2,i , w2,i (t2 = 0) ≤ wel,

kBd,i ŵ2,i , w2,i (t2 = 0) > wel,
(22)

F̂NL
2,i =

{
0, w2,i (t2 = 0) ≤ wel,
�kd,iwel

s2
, w2,i (t2 = 0) > wel.

(23)

The solution of the new system is obtained in the
same manner as for the previous one. Moreover, the
procedure of searching for the next nonlinear event,
modifying the system and then solving it using the

Laplace transform, is repeated. To this end, the pro-
cedure is generalized. The Laplace-domain equation
of motion for the nth time interval reads

[Ki j + (ρ s2n + cd,i sn + kd,n,i )Ii j ] ŵn, j

= F̂ IC
n,i + F̂ML

n,i + F̂NL
n,i + F̂D

n,i , (24)

where the generalizedmoving load and initial condition
forces are given as

F̂ML
n,i = − F0

v
e−sn

(
xi
v

−τ n−1

)
H

(
xi
v

− τ n−1

)
, (25)

F̂ IC
n,i = ρ

(
sn wn−1,i (τn−1) + ẇn−1,i (τn−1)

)
+ cd,i wn−1,i (τn−1). (26)

The described procedure is repeated until the whole
solution is obtained in the time domain. The dis-
cretized displacement of the computational domain
thus becomes

w j (t) = [w1, j (0, . . . , τ1 − �t), w2, j (0, . . . , τ2 − �t),

. . . , wN , j (0, . . . , tmax − τ N−1)], (27)

where �t is the time spacing, N is the index of the last
time interval, and tmax is the final moment in time of
the simulation.

To obtain correct results, the continuity of displace-
ments and velocities at the nonlinear events is of cru-
cial importance. However, the Laplace-domain spectra
of the two quantities exhibit a poor decay due to the
applied initial conditions. Consequently, the numerical
integration must be performed up to very high frequen-
cies leading to a significant computational effort. In the
following section, a method of incorporating the high
frequencieswithout increasing the computational effort
is presented.

2.2.1 Improvement of the frequency-spectra decay

The high-frequency regime of the Laplace-domain dis-
placement, obtained from Eq. (24), is dominated by the
initial conditions as follows:

ŵn, j ∼ wn−1, j (τn−1)

σ + iωn
+ ẇn−1, j (τn−1)

(σ + iωn)2
, ωn −→ ∞.

(28)

Similarly, theLaplace-domain velocity v̂n, j in the high-
frequency regime reads
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v̂n, j ∼ ẇn−1, j (τn−1)

σ + iωn
+ ẅn−1, j (τn−1)

(σ + iωn)2
, ωn −→ ∞.

(29)

The initial displacement, velocity and acceleration in
the numerators of Eqs. (28) and (29) are clearly inde-
pendent of frequency. Therefore, the Laplace-domain
spectra are dominated by the expressions in the denom-
inator, exhibiting the slow decay proportional to 1/ωn .

To incorporate the high frequencieswithout the need
to integrate numerically up to very high frequencies,
the high-frequency approximations, Eqs. (28) and (29),
could be subtracted from ŵn, j and v̂n, j , respectively.
However, in doing so, a high peak is introduced in the
remaining frequency spectra close to ωn = 0, which
would require a very small step in frequency for obtain-
ing accurate results. To overcome this issue, the high-
frequency approximations are only subtracted over part
of the frequency axis ωn ≥ ωA. The only criterion for
choosing ωA is that it is sufficiently distant from the
origin ωn = 0 to ensure that the resulting spectrum
does not exhibit a high peak. The Laplace-domain dis-
placement and velocity can now be expressed as

ŵn, j = ŵ
imp
n, j + wn−1, j (τn−1)

σ + iωn
H(ωn − ωA)

+ ẇn−1, j (τn−1)

(σ + iωn)2
H(ωn − ωA), (30)

v̂n, j = v̂
imp
n, j + ẇn−1, j (τn−1)

σ + iωn
H(ωn − ωA)

+ ẅn−1, j (τn−1)

(σ + iωn)2
H(ωn − ωA), (31)

where ŵ
imp
n, j and v̂

imp
n, j represent the improved (i.e., with

strong decay) Laplace-domain expressions of the dis-
placement and velocity, respectively. To obtain the
time-domain response, the inverse Laplace transform
is evaluated numerically for the improved expressions,
and analytically for the high-frequency approxima-
tions, as follows:

wn, j = 1

π

∫ ωmax

0
Re(ŵimp

n, j e
sn tn )dωn

+ wn−1, j (τn−1) Ia(tn) + ẇn−1, j (τn−1) Ib(tn),
(32)

ẇn, j = 1

π

∫ ωmax

0
Re(v̂imp

n, j e
sn tn )dωn

+ ẇn−1, j (τn−1) Ia(tn) + ẅn−1, j (τn−1) Ib(tn),
(33)

whereωmax represents themaximum frequency of inte-
gration, while Ia(tn) and Ib(tn) represent the time-
domain images of the high-frequency approximations
divided by the corresponding initial condition terms.
Their expressions are not presented here for brevity;
however, they can be easily computed using a symbolic
mathematics tool (e.g., Maple).

By evaluating the inverse Laplace transform ana-
lytically for the high-frequency approximations, fre-
quencies up to infinity are actually included, which
represents an improvement not just in computational
time, but also in accuracy (although the results are still
approximations since ŵ

imp
n, j and v̂

imp
n, j are not completely

zero at ωmax). Using the improvement presented in this
section, the solution obeys the continuity conditions
(i.e., displacement and velocity) imposed at nonlin-
ear events. The input initial conditions and the non-
reflective boundary conditions are derived in the next
section.

2.3 Infinite extent of the model

2.3.1 Moving-load entry of the computational domain

At the start of the computation, the position of themov-
ing load is at x = 0. For computational efficiency,
this point must be as close as possible to the tran-
sition zone. To correctly represent the behaviour as
described by Eqs. (1) to (3), which assume that the
load has been active for a long time, the input initial
conditions must be chosen such that the system is in
the steady-state regime. Assuming that the system is
initially in the linear regime (w(x, t = 0) < wel),
the input initial conditions are based on the steady-
state field of the approaching load, also referred to as
the eigenfield we(x, t). The steady-state response of
an infinite Euler–Bernoulli beam resting on a homoge-
neous and linear Winkler foundation to a moving con-
stant load was derived using different methods (e.g.,
time-domain method, transform method) in, for exam-
ple, [42]. Accounting also for the viscous damping of
the supporting structure, the eigenfield reads

we(x, t) =
{
A1e−ike2(x−vt) + B1e−ike3(x−vt), x < vt,

A2e−ike1(x−vt) + B2e−ike4(x−vt), x ≥ vt,

(34)

where A1, A2, B1 and B2 represent the complex-valued
amplitudes and ke1, k

e
2, k

e
3 and k

e
4 represent the complex
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wavenumbers of the eigenfield. Their expressions are
given in Appendix B. It must be noted that we(x, t) in
Eq. (34) is real-valued.

The eigenfield is derived assuming a homogeneous
Winkler foundation. Consequently, choosing the input
initial conditions based on the eigenfield is correct only
if the field is not disturbed by the inhomogeneity (tran-
sition zone). The length of the computational domain
and the position of the transition zone should thus be
chosen such that the input initial state (i.e., displace-
ment field, velocity field) based on the eigenfield has
decayed before the inhomogeneity. Therefore, the part
of the computational domain to the left of the transition
zone has as input initial conditions the eigenfield part
in front of the load, while the left semi-infinite domain
has as input initial conditions the eigenfield part behind
the load. Moreover, the input initial conditions at the
inhomogeneity and to the right of it, including the right
semi-infinite domain, are trivial. Equating t to 0 in Eq.
(34) and in its time derivative, the input initial condi-
tions, Eqs. (9) to (11), become

win
l (x) = we(x, t = 0), −∞ < x < 0,

ẇin
l (x) = ẇe(x, t = 0), −∞ < x < 0, (35)

win(x) = we(x, t = 0), 0 < x < L ,

ẇin(x) = ẇe(x, t = 0), 0 < x < L , (36)

win
r (x) = 0, L < x < ∞,

ẇin
r (x) = 0, L < x < ∞. (37)

With these input initial conditions, the system
reaches the steady-state regime instantly at the start of
the computation.Next, boundary conditions are derived
such that the waves generated inside the computational
domain are not reflected at the boundaries.

2.3.2 Derivation of the non-reflective boundary
conditions

In Sect. 2.2, the boundary conditions for the computa-
tional domain, imposed bending moment Eq. (6) and
shear force Eq. (7), were kept general. In this sec-
tion, the reaction forces of the semi-infinite domains
at the interfaces with the computational domain are
derived. When these forces are prescribed as bound-
ary conditions of the computational domain, the finite
system will behave exactly as the infinite one. There-
fore, these interface reaction forces constitute non-

reflective boundary conditions for the computational
domain. The goal is to express the interface reaction
forces (bending moment and shear force) of the left
and right domains as functions of the unknown dis-
placement and slope of the computational domain at
the corresponding interfaces. To this end, the forward
Laplace transform is applied over time tn to the equa-
tions of motion of the two semi-infinite domains, Eqs.
(1) and (3):

ŵ′′′′
l,n − k4l ŵl,n = F̂ IC

l,n , (38)

ŵ′′′′
r,n − k4r ŵr,n = F̂ IC

r,n + F̂ML
r,n , (39)

where ŵl,n and ŵr,n represent the unknown Laplace-
domain displacements of the left and right semi-infinite
domains, respectively, for the nth time interval, and
F̂ML
r,n represents the Laplace-domain moving load act-

ing on the right domain, given by Eq. 26, but with a
continuous spatial coordinate x . kl and kr represent
the wavenumbers of the two semi-infinite domains and
read

kh = 4
√

−ρ s2n − cd,h sn − kd,h, h = {l, r}, (40)

where the branches of the complex wavenumbers are
chosen such that Im(kh) < 0 and Re(kh) > 0. Fur-
thermore, F̂ IC

l,n and F̂ IC
r,n represent the Laplace-domain

initial condition forces given by

F̂ IC
h,n(x, sn) = (ρsn + cd,h) wh(x, τ n−1)

+ ρ ẇh(x, τ n−1), h = {l, r}. (41)

At infinity, the condition of zero displacements is
imposed, Eq. (8), while at the interfaces the unknown
Laplace-domain displacement and slope of the compu-
tational domain are prescribed:

ŵl,n(0, sn) = ŵn(0, sn), ŵr,n(L , sn) = ŵ(L , sn),
(42)

ŵ′
l,n(0, sn) = ŵ′

n(0, sn), ŵ′
r,n(L , sn) = ŵ′

n(L , sn).
(43)

The Laplace-domain displacement of the two semi-
infinite domains can be obtained by solving Eqs. (38)
and (39) with the above-discussed boundary condi-
tions. By taking the second- and third-order deriva-
tives with respect to space and evaluating them at the
interfaces, the reaction forces of the two semi-infinite
domains are expressed as functions of the displacement
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and slope of the computational domain prescribed at the
corresponding interfaces:(

ŵ′′′
l,n(0, sn)

ŵ′′
l,n(0, sn)

)
=

(
kl,Vυ kl,Vφ

kl,Mυ kl,Mφ

) (
ŵn(0, sn)
ŵ′
n(0, sn)

)

−Dl,n, (44)(
ŵ′′′
r,n(L , sn)

ŵ′′
r,n(L , sn)

)
=

(
kr,Vυ kr,Vφ

kr,Mυ kr,Mφ

)(
ŵn(L , sn)
ŵ′
n(L , sn)

)

−Dr,n −
(
V̂L,n(sn)
M̂L,n(sn)

)
, (45)

where the entries of the matrices represent the dynamic
stiffness coefficients giving rise to the boundary forces
proportional to the unknown displacement and slope at
the boundary; subscript V stands for shear force, M for
bending moment, υ for translation, and φ for rotation.
The coefficients read

kh,Vυ = (−1 + i)k3h, kh,Vφ = ik2h, (46)

kh,Mφ = (1 + i)kh, kh,Mυ = ik2h, h = {l, r}.
(47)

In addition, Dl,n and Dr,n are vectors containing the
influence of the initial conditions Eq. (41) on the reac-
tion forces, giving rise to boundary forces independent
of the unknown displacement and slope of the com-
putational domain. The two vectors are given by the
following expressions:

Dl,n =
(

ŵ′′′
l,n,p(0, sn)

ŵ′′
l,n,p(0, sn)

)
+

(
kl,Vυ kl,Vφ

kl,Mυ kl,Mφ

)(
ŵl,n,p(0, sn)

ŵ′
l,n,p(0, sn)

)
,

(48)

Dr,n =
(

ŵ′′′
r,n,p(L , sn)

ŵ′′
r,n,p(L , sn)

)
+

(
kr,Vυ kr,Vφ

kr,Mυ kr,Mφ

) (
ŵr,n,p(L , sn)

ŵ′
r,n,p(L , sn)

)
,

τ n−1 ≤ L

v
,

(49)

where ŵl,n,p(0, sn) and ŵr,n,p(L , sn) are the particular
solutions that account for the initial condition forcing in
Eqs. (38) and (39). Furthermore, V̂L,n and M̂L,n are the
shear force and bending moment, respectively, exerted
by the moving load on the right boundary after it has
entered the right semi-infinite domain:

V̂L,n(sn) = iF0
(
sn + (1 + i)krv

)
(krv + sn)(krv − isn)

e−sn
(
L
v
−τ n−1

)
,

τ n−1 ≤ L

v
, (50)

M̂L,n(sn) = −iF0v

(krv + sn)(krv − isn)
e−sn

(
L
v
−τ n−1

)
,

τ n−1 ≤ L

v
. (51)

Note that Dr,n , V̂L,n and M̂L,n as given in Equations
(49) to (51), respectively, are valid for τ n−1 ≤ L

v
,

meaning that the nonlinear events occur while themov-
ing load is inside the computational domain. They still
correctly describe the dynamics when the load is in
the right domain, up to the moment a nonlinear event
occurs. When nonlinear events occur while the mov-
ing load is in the right domain, this is divided into two
domains, one behind the load and one in front, render-
ing the expressions forDr,n , V̂L,n and M̂L,n lengthy for
τ n−1 > L

v
. Therefore, these expressions are given in

Appendix C.
To obtain the particular solutions in Eqs. (48) and

(49), the Green’s-function approach is used as follows:

ŵl,n,p(x, sn) =
∫ 0

−∞
ĝl(x − ξ, sn) F̂

IC
l,n(ξ, sn) dξ,

(52)

ŵr,n,p(x, sn) =
∫ ∞

L
ĝr(x − ξ, sn)F̂

IC
r,n(ξ, sn) dξ, (53)

where ĝl(x − ξ, sn) and ĝr(x − ξ, sn) are the Laplace-
domain Green’s functions of two infinite domains hav-
ing the same properties as the corresponding semi-
infinite ones. The particular solutions are needed only
at the interfaces, as seen in Eqs. (48) and (49). There-
fore, excitation variable ξ is smaller than or equal to
the observation point x = 0 for the left domain and ξ

is larger than or equal to x = L for the right domain.
Consequently, the Green’s functions are given by [43]

ĝl(x − ξ, sn) = − 1

k3l
(ie−ikl(x−ξ) + e−kl(x−ξ)), (54)

ĝr(x − ξ, sn) = − 1

k3r
(ie−ikr(ξ−x) + e−kr(ξ−x)). (55)

Now, the only unknowns left for deriving the non-
reflective boundary conditions are the initial condi-
tions of the two semi-infinite domains in Eq. (41). The
state (i.e., displacement field, velocity field) of the two
domains at time moment τ n−1 consists of a superpo-
sition of the eigenfield and the waves generated inside
the computational domain which have propagated to

123



2444 A. B. Fărăgău et al.

wf '(0,t)

x = 0

wf (0,t)

xρ, EI
wl(x,t)

x → -∞

x

wf '(L,t) wf (L,t)
ρ, EI

x  = L x → ∞

wr(x,t)

Fig. 3 Time-domain boundary value problems to be solved for
obtaining the initial states of the left and right domains due to
the free field at time moment t = τ n−1

the two semi-infinite domains, referred to as the free
field wf . The eigenfield’s contribution can be evaluated
analytically by equating global time t to τ n−1 in Eq.
(34) and in its time derivative, and inserting the relevant
medium parameters. The state of the two domains as
induced by the free field can be obtained by solving two
boundary value problems for the two domains with the
time history of the free-field displacement and slope
of the computational domain observed at the bound-
aries prescribed as boundary conditions (Fig. 3). The
free-field displacement at the boundaries is obtained by
subtracting the eigenfield from the displacement of the
computational domain Eq. (27), which is known until
time moment τ n−1:

wf(0; t = 0, . . . , τ n−1) = w(0; t = 0, . . . , τ n−1)

− we(0; t = 0, . . . , τ n−1),

(56)

wf(L; t = 0, . . . , τ n−1) = w(L; t = 0, . . . , τ n−1)

− we(L; t = 0, . . . , τ n−1).

(57)

After computing the free-field slopes numerically, the
boundary value problems needed to determine the
state of the left and right domains (Fig. 3) are solved
using the Laplace transform over global time t . Note
that wf(0, t > τ n−1) and wf(L , t > τ n−1) are still
unknown and by default equal to zero. Consequently,
the discontinuity in the free-field displacements and
slopes at τ n−1 introduces high-frequency content in its
Laplace-domain counterparts.

To avoid this, an artificial smooth continuation is
imposed on the free-field displacements and slopes
for t > τ n−1, which does not affect the response for

t ≤ τ n−1. Then, the Laplace-domain free-field dis-
placements are given as follows:

ŵf
l (x, s) = Cl e

iklx + Dl e
klx , (58)

ŵf
r (x, s) = Cr e

−ikrx + Dr e
−krx , (59)

where Cl, Dl, Cr and Dr represent complex-valued
amplitudes which read

Cl = 1 + i

2kl
[kl ŵf(0, s) − ŵf′(0, s)], (60)

Dl = 1 − i

2kl
[kl ŵf(0, s) + iŵf′(0, s)], (61)

Cr = 1 + i

2kr
[kr ŵf(L , s) − ŵf′(L , s)] eikrL , (62)

Dr = 1 − i

2kr
[kr ŵf(L , s) − iŵf′(L , s)] ekrL . (63)

Note that the forward Laplace transform is appliedwith
respect to the time variable t because the displacement
and slope imposed as boundary conditions act from the
timemoment t = 0 until t = τ n−1. Therefore, ŵf(0, s)
and ŵf(L , s) represent Laplace-domain history contri-
butions for the new system and need to be computed
for each nonlinear event.

To obtain the time-domain displacement and veloc-
ity of the two semi-infinite domains needed in Eq. (41)
and thus for the derivation of the non-reflective bound-
ary conditions, the inverse Laplace transform is applied
to Eqs. (58), (59) and the corresponding velocities and
is evaluated at τ n−1:

wl(x, τ n−1) = 1

2πi

∫ σ+i∞

σ−i∞
ŵf
l (x, s) e

sτ n−1ds

+ we(x, τ n−1), (64)

ẇl(x, τ n−1) = 1

2πi

∫ σ+i∞

σ−i∞
s ŵf

l (x, s) e
sτ n−1ds

+ ẇe(x, τ n−1), (65)

wr(x, τ n−1) = 1

2πi

∫ σ+i∞

σ−i∞
ŵf
r (x, s) e

sτ n−1ds

+ we(x, τ n−1), (66)

ẇr(x, τ n−1) = 1

2πi

∫ σ+i∞

σ−i∞
s ŵf

r (x, s) e
sτ n−1ds

+ ẇe(x, τ n−1). (67)

The particular solutions are now obtained by substi-
tuting Eqs. (64) to (67) in Eqs. (41), and (41) in Eqs.
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End of the simulation

Fig. 4 Synoptic chart describing the algorithm; n denotes the time interval and indices i and j represent the node number

(52) and (53), and then changing the order of integra-
tion:

ŵl,n,p(x, sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn + cd,l + ρs) esτ n−1

·
∫ 0

−∞
ĝl(x − ξ, sn)ŵ

f
l (ξ, s) dξds

+ ŵe
l,n,p(x, sn), (68)

ŵr,n,p(x, sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn + cd,r + ρs) esτ n−1

·
∫ ∞

L
ĝr(x − ξ, sn)ŵ

f
r (ξ, s) dξ ds

+ ŵe
r,n,p(x, sn), (69)

where ŵe
l,n,p(x, sn) and ŵe

r,n,p(x, sn) represent the par-
ticular solutions accounting for the parts of the eigen-
field in the left and right domains, respectively, at τ n−1.
The integration over ξ can be performed analytically,
while the inverse Laplace transform evaluated at τ n−1

should be performed numerically. Moreover, the spa-
tial derivatives needed in Eqs. (48) and (49) can be
evaluated analytically.

The non-reflective boundary conditions for the com-
putational domain are now fully determined. The

Laplace-domain boundary conditions are given by the
following expressions:

(
ŵ′′′
n (0, sn)

ŵ′′
n(0, sn)

)
=

(
kl,Vυ kl,Vφ

kl,Mυ kl,Mφ

)(
ŵn(0, sn)
ŵ′
n(0, sn)

)

− Dl,n, (70)(
ŵ′′′
n (L , sn)

ŵ′′
n(L , sn)

)
=

(
kr,Vυ kr,Vφ

kr,Mυ kr,Mφ

)(
ŵn(L , sn)
ŵ′
n(L , sn)

)

− Dr,n −
(
V̂L,n(sn)
M̂L,n(sn)

)
. (71)

The contribution of the boundary conditions which
is proportional to the yet unknown displacement and
slope is incorporated into the beam’s bending stiff-
ness matrix Ki j (see Eq. (24)), while the contribution
which is independent of the unknown displacement and
slope is accounted for through the boundary-forcing
vector F̃D

n,i . As can be seen, the beam’s bending stiff-
ness matrix does not change from one system to the
other; however, the boundary-forcing vector needs to
be updated at each system change. A synoptic chart of
the developed algorithm is presented in Fig. 4.

Although the obtained non-reflective boundary con-
ditions have been derived for the moving load problem,
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the same procedure can be applied for any arbitrary
loading. Next, the Winkler foundation model used for
the results presented in this paper is described.

3 Winkler foundation

A variety of models have been used to represent the
supporting structure in 1-D systems for railway appli-
cations (e.g., linear elastic, bilinear elastic, cubic super-
linear, etc.); a good overview of models for the founda-
tions in 1-D systems can be found in [44]. One of the
most used nonlinear elastic models is the cubic super-
linear one [e.g., 30–33,35]. It assumes that the founda-
tion springs exert a reaction force (visualized in Fig. 5)
proportional to the displacement, through a linear stiff-
ness term kl, and one proportional to the displacement
cubed, through a nonlinear stiffness term knl. In this
paper, the constitutive relation of the Winkler founda-
tion is based on the cubic super-linear model, but also
incorporates the possibility of plastic deformation by
selecting a different unloading path than that of the
loading, as seen in Fig. 6.

The loading path of the chosen constitutive relation
approximates the cubic super-linear model through a
piecewise-linear profile (Fig. 5) to accommodate the
solution method presented in Sect. 2.2. Firstly, kAd is
assumed to be equal to the stiffness of the equivalent lin-
ear model [45]. This assumption is based on the ballast
being relatively well compacted at the start of the sim-
ulation, represented in Fig. 5 through the nonzero dis-
placement at zero force in the piecewise-linear approx-

−1.5−1−0.50

·10−3

0

0.5

1

1.5
·105

w [m]

F
k
,W

[N
/
m
]

Fig. 5 Piecewise-linear approximation (solid line) of the cubic
super-linear constitutive model (dashed line); Fk,W = −kl w −
knl w3 for the cubic super-linear model with kl = 35.03 ×
106[N/m2] and knl = 1.74 × 1013[N/m4] [31,32]

w

kd
D

wel

Fk,W

kd
A

kd
B kd

C

wpl
kd

A

1

1

2 2

2

2

Fig. 6 Piecewise-linear constitutive law of the foundation; the
loading/unloading path for the linear parts of the computational
domain (1) and the first loading/unloading cycle for the nonlinear
parts of the computational domain (2)

imation. This implies that the initial soft response of
the foundation, as sometimes encountered, is excluded.
Furthermore, assuming that the compaction is uniform
along the track, the compacted configuration is taken as
reference (zero displacement for zero force in Fig. 6).
Secondly, the steady-state eigenfield is assumed to be in
the linear regime. This assumption is based on the fact
that in the homogeneous parts of the railway track, the
steady-state displacement field induced by a train does
not lead to significant degradation of the supporting
structure. Thirdly, the elastic displacement limit wel is
chosen relative to the eigenfield’s maximum displace-
mentwe

max in the soft part of the computational domain,
where the ratio q = wel/w

e
max is larger than 1. If wel is

not exceeded during the simulation, the system remains
in the linear regime (branch (1) in Fig. 6). At locations
where wel is exceeded, the corresponding part of the
foundation enters the second loading branch kBd . The
value of kBd is chosen such that it approximates the
cubic super-linear model (Fig. 5).

The parameters of the cubic super-linear model
which is approximated are chosen as similar to the ones
used in other publications [i.e., 31,32]. However, the
parameters for the unloading path, kCd and kDd , are not
well known. For the moment, the parameters are cho-
sen such that the overall constitutive relation resem-
bles the results of cyclic loading experiments on gran-
ular material [i.e., 46], but specific additional exper-
iments or 3-D modelling might be needed in order
to choose these parameters realistically. The model
developed in this paper can even incorporate cyclic
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behaviour, and the parameters of the constitutive rela-
tion can be modified for each cycle to accommodate
the behaviour as observed in the literature: changing
stiffness with increasing cycle number, as well as a
changing area (energy dissipation). However, the com-
putational time required for the simulation of thousands
of trains passages will be high. Nonetheless, valuable
observations can be made from the short-term cyclic
behaviour which have relevant implications for the
long-term behaviour.

The constitutive model incorporates the possibility
of separation between the rail and the supporting struc-
ture (Fig. 6). When the displacement of the beam is
larger than the plastic deformation (w > wpl), the sep-
aration of the beam and foundation occurs. This results
in a zero foundation force Fk,W as depicted in Fig. 6.
However, this is only allowed at the location where the
plastic deformation has been activated; in the parts of
the computational domain with no plastic deformation,
the beam is in permanent contact with the supporting
structure. In case of separation, besides the founda-
tion stiffness, also the foundation damping is modified.
Consequently, the foundation damping is given by

cd(x, w) =
{
cd(x), w ≤ wpl or wpl = 0,

cSd , w > wpl and wpl �= 0,
(72)

wherewpl represents the plastic deformation which has
a negative value and cSd is the remaining damping coef-
ficient in case of separation which, in fact, could rep-
resent part of the internal damping of the beam.

The parameters of the constitutive relation are not
only functions of the displacement, but also functions
of space, due to the inhomogeneity of themodelled sys-
tem. To study the influence of the transition smoothness
on the plastic deformation in the transition zone and on
the radiated wave field, the spatial profile of the foun-
dation stiffness is chosen based on a sine squared as
follows:

khd (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

khd,l, 0 ≤ x < xtc − lt
2 ,

khd,l

(
1+ sin2

[( x − xtc
lt

+ 1

2

) π

2

]
(p − 1)

)
,

xtc − lt
2

≤ x ≤ xtc + lt
2

,

khd,r, xtc + lt
2 < x < L ,

(73)

where h = {A,B,C,D}; xtc represents the transition
centre, lt the transition length, and p the stiffness ratio
between the stiff and soft domains. The location of the

transition zone inside the computational domain is dic-
tated by the spatial extent of the input initial conditions,
as discussed in Sect. 2.3.1. In addition, a similar spa-
tial variation is chosen for the foundation damping. In
the rest of the paper, the damping is expressed through
the ratio ζ which is defined similar to that of a single-
degree-of-freedom system:

ζ = cd(x)

2
√

ρ kAd (x)
. (74)

Therefore, by maintaining a constant damping ratio ζ

throughout the system, the spatial variation of the foun-
dation damping is proportional to the square root of that
of the stiffness (branch A), except for the parts of the
beam which have lost contact with the foundation.

4 Results and discussion

Here, the proposed model is first validated by consid-
ering a limit case and comparing the obtained results to
a semi-analytical solution. Then, the time-domain dis-
placement field is presented for two specific cases and
the influence of the nonlinear foundation on the tran-
sition radiation is highlighted. Afterwards, the influ-
ence of the transition length, load velocity and stiff-
ness dissimilarity on the plastic deformation is assessed
through a parametric study. Finally, the influence of
the nonlinear foundation on the radiated energy and on
the energy input is discussed. The parameters which
are kept constant throughout the presented results are
given in Table 1, while the ones which are varied are
mentioned for each case individually.

4.1 Validation and convergence

To validate the solution derived in Sect. 2, a limit case is
considered, inwhich the foundation is piecewise homo-
geneous and behaves linearly, but for which artificial
nonlinear events are introduced in the solution. To this
end, a soft-to-stiff case is considered where the foun-
dation stiffness coefficients k

B
d,l, k

C
d,l, k

D
d,l (described in

Sect. 3) are set equal to k
A
d,l. The same is done for the

stiff domain, the stiffness coefficients being equal to

k
A
d,r. To validate the solution, 100 artificial nonlinear

events are introduced in the solution, which is compa-
rable to the total number of nonlinear events in themost
intensive computations encountered.
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Table 1 System parameters
(the overbar represents that
the coefficient has not been
scaled by the beam’s
bending stiffness)

Parameter Value Unit

Bending stiffness EI 6.42 × 106 [N/m2]

Mass per unit length ρ 268.33 [kg/m]

Moving load magnitude F0 80 × 103 [N]

Loading stiffness k
A
d,l 83.33 × 106 [N/m2]

Loading stiffness k
B
d,l 158.33 × 106 [N/m2]

Unloading stiffness k
C
d,l 233.33 × 106 [N/m2]

Unloading stiffness k
D
d,l 83.33 × 106 [N/m2]

Stiff–soft stiffness ratio p 5

Elastic displacement limit ratio q 1.1
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Fig. 7 Error versus space for the linear limit case with imposed artificial nonlinear events (left panel) and without them (right panel);
the abrupt transition is at x = 25m, v = 0.95 cl,ph,min, ζ = 0.05

The limit-case solution is compared to the semi-
analytical solution of a piecewise-homogeneous and
linear system.This semi-analytical benchmark solution
canbeobtainedby solving a systemof two semi-infinite
domains with different foundation stiffnesses by using
the Fourier transform over time. In the Fourier domain,
after imposing interface conditions and the condition of
zero displacements at infinity, the displacements of the
two domains can be obtained analytically [i.e., 16,42].
To obtain the time-domain solution, the inverse Fourier
integral can be applied numerically.

The error e(x) presented in Fig. 7 is defined as
the summed-over-time absolute value of the difference
between the limit-case solutionwlin and the benchmark

solution wbench, divided by the summation of the abso-
lute value of the benchmark solution over time:

e(x) =
∑tmax

t=0 |wbench(x, t) − wlin(x, t)|∑tmax
t=0 |wbench(x, t)|

. (75)

This error is caused by twomain factors: the sequential
application of the Laplace transform and the finite dif-
ference discretization. The left panel of Fig. 7 presents
the total error. To isolate the error caused by the finite
difference discretization, the casewith no artificial non-
linear events is presented in the right panel of Fig. 7.
To test the convergence of the derived solution, the
maximum frequency has been varied (also done in
the numerical integration for the benchmark solution).
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Fig. 8 Time-domain displacement field for the nonlinear system
(solid line), for the linear system (dashed line), the plastic defor-
mation (dash-dot line) and the elastic displacement limit (light
grey; given in Table 1) for the soft-to-stiff case; lt = 0.1m,

xtc = 35m, v = 0.95 cl,ph,min, ζ = 0.05; the arrow indicates the
position of the load. Note that panels (g) and (h) have a different
vertical axis scale for clarity

Note that by changing themaximum frequency, accord-
ing to the Nyquist sampling rule, the time stepping also
changes.

Figure 7 shows that the solution derived in Sect. 2
converges to the correct one as the maximum fre-
quency increases. The higher relative error in the stiffer
part of the computational domain can be explained
by the smaller displacements. A higher maximum fre-
quency leads to smaller error; however, the compu-
tational effort increases significantly. For the rest of
the results presented in this section, the maximum fre-
quency was chosen as 1000 Hz.

4.2 Displacement field in the time domain

To study the effect of the nonlinear foundation on the
wave field excited during the transition radiation pro-
cess, a relatively severe case is presented. The load
velocity is chosen as 95% of the minimum phase
velocity in the soft part of the computational domain
(cl,ph,min), and the transition length lt is chosen as 0.1m,
which is close to the piecewise-homogeneous case. To
ensure that the initial displacement and velocity fields
do not interact with the inhomogeneity, the centre of
the transition zone xtc is positioned at 35m. The influ-
ence of the nonlinearity is highlighted by comparing
the response to the linear case, as shown in Fig. 8.
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Fig. 9 Time-domain displacement field for the nonlinear sys-
tem (solid line), the plastic deformation (dash-dot line) and the
elastic displacement limit (light grey; given in Table 1) for the

stiff-to-soft case; lt = 0.1m, xtc = 10m, v = 0.95 cr,ph,min,
ζ = 0.05; the arrow indicates the position of the load

The plastic deformation close to the transition zone
is a result of constructive interference of the approach-
ing eigenfield and the waves generated in the transi-
tion zone. As in the linear case, the eigenfield inter-
acts with the transition zone, generating waves which
mostly propagate towards the softer medium. By con-
structively interfering, the displacement under the load
exceeds the elastic displacement limit (indicated by the
grey line in Fig. 8) giving rise to permanent deforma-
tion in the foundation to the left of the transition zone.

In the nonlinear system, the free field has both larger
amplitude and is sustained for a much longer period
of time when compared to the linear one. This can
clearly be seen in Fig. 8. Both the larger amplitude and
longer duration are consequences of the beam’s sepa-
ration from the foundation. The loss of contact leads to
larger upward displacement which in turn affects the
wave field in areas without loss of contact. The loss of
contact also causes the loss of external damping which
results in the longer duration of the vibration. More-
over, the shape of the radiated waves is also changed.
In the nonlinear case, the contact loss leads to a slight
increase in thewavelength of the freefield (Fig. 8 panels
(d), (e) and (f)). This is in accordance with the findings
in Sect. 4.4.

When the moving load travels from a stiff medium
to a soft one, the displacement field does not exceed the
elastic displacement limit (at all), meaning that plastic

deformation does not develop, as seen in Fig. 9. As
in the previous case (Fig. 8), the large-amplitude free
waves propagate into the softer medium, which in this
case is in the forward direction. This leads to much
less constructive interference between the eigenfield
and the free field and thus to no plastic deformation.
Therefore, in the remainder of the paper, only the soft-
to-stiff case is presented. However, if the load travelled
super-critically (in the soft medium or in both media)
for the stiff-to-soft case, it would move faster than the
minimum phase velocity of the free waves, probably
leading to more pronounced constructive interference,
which could induce plastic deformation to the right of
the transition zone.

4.3 Parametric study

In this section, the damage occurring in the supporting
structure is addressed as a function of the load veloc-
ity, the transition length and the stiffness dissimilarity
p through a parametric study. The area of the plas-
tic deformation, Apl = ∫

wpl(x) dx , is chosen as the
quantifier for the damage in the supporting structure.
The three parameters chosen to be varied influence the
transition radiation phenomenon most. Furthermore,
these parameters can be adjusted in the design stage
of railway tracks to minimize damage in the support-
ing structure.
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Fig. 10 Plastic deformation area versus transition length for different load velocities; ζ = 0.05 (left panel), ζ = 0.20 (right panel) and
p = 5

The plastic deformation area versus varying transi-
tion length is presented in Fig. 10 for different load
velocities and damping ratios. The plastic deforma-
tion area decreases as the transition length increases,
as could be expected, and the decreasing trend is quasi-
monotonic for all load velocities and damping ratios.
For the damping ratio ζ = 0.05 (left panel in Fig. 10),
the transition-length range in which plastic deforma-
tion occurs increases with increasing velocity until the
minimum phase velocity, beyond which it decreases.
However, for the super-critical case (v = 1.05 cl,ph,min)
and small transition lengths (lt = 0, . . . , 3m), the plas-
tic deformation is still larger than for the critical case
(v = 1.00 cl,ph,min), which makes the two lines inter-
sect. This larger plastic deformation is caused by the
fact that parts of the foundation experience additional
plastic deformation produced in the second loading–
unloading cycle. This is not the case for larger transition
lengths (lt = 4, . . . , 6 m), and because the displace-
ment of the eigenfield under the load is smaller in the
super-critical case than in the critical case, a smaller
plastic deformation area results, which explains the
intersection of the two lines. Furthermore, for ζ = 0.20
(right panel in Fig. 10), additional plastic deformation
is not produced in the second loading–unloading cycle
for any of the transition lengths due to the higher damp-
ing ratio, and the range as well as the plastic deforma-
tion area just decrease as the velocity increases beyond
the minimum phase velocity.

Furthermore, the analysis shows that it is not just the
duration of passage tp = lt

v
that governs the resulting

plastic deformation (which could be intuited), but also
the absolute values of the transition length lt and load
velocity v separately. It can clearly be seen in Fig. 10

that for the same duration of passage, significantly dif-
ferent plastic deformation values are observed for dif-
ferent load velocities.

In Fig. 11, the plastic deformation area is presented
as a function of the velocity of the moving load for dif-
ferent transition lengths and damping ratios. The plas-
tic deformation area increases with increasing veloc-
ity until close to the minimum phase velocity, beyond
which it decreases. For ζ = 0.05 (left panel in Fig. 11),
the critical velocity appears to be around 1.05 cl,ph,min

for lt = 0.1 m, and its value decreases with increas-
ing transition length reaching 1.00 cl,ph,min for lt = 4
m. This shows that the critical velocity for the plastic
deformation area is dependent on the transition length.
Moreover, the increasing trend (sub-critical velocities)
and the decreasing trend (super-critical velocities) have
different slopes, which is explained by the fact that in
the super-critical cases parts of the foundation experi-
ence additional plastic deformation caused in the sec-
ond loading–unloading cycle. For ζ = 0.20 (right
panel in Fig. 11), a similar behaviour to the case of
ζ = 0.05 is observed. However, the magnitude of the
plastic deformation area is smaller and the slopes of the
increasing and decreasing trends (left and right of the
critical velocity) are almost identical because the foun-
dation does not experience additional plastic deforma-
tion caused in the second loading–unloading cycle.

The plastic deformation area as a function of the
stiffness dissimilarity p is presented in Fig. 12 for dif-
ferent load velocities and transition lengths. The plas-
tic deformation area increases with increasing stiffness
dissimilarity for all velocities and transition lengths
presented, as could be expected. The increasing trends
tend to constant values, which could be obtained in
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the limit case of the stiff domain being infinitely stiff.
It is clear from the trends that the maximum sensi-
tivity of the plastic deformation area occurs at small
stiffness dissimilarities. Therefore, the maximum gain
in decreasing the damage of the supporting struc-
ture can be obtained at small stiffness dissimilarities.
For small stiffness dissimilarity, the maximum plas-
tic deformation area is observed for a load velocity
v = 1.00 cl,ph,min, but for larger stiffness dissimilarity
the maximum plastic deformation area is obtained for
a load velocity v = 1.05 cl,ph,min. This shows that the
critical velocity, when it comes to the plastic deforma-
tion area, is dependent also on the stiffness dissimilarity
(next to transition length).

To conclude, studying the influence of the transition
length, load velocity and stiffness dissimilarity on the
plastic deformation area provides valuable information
about the value ranges of these parameters where the
initial design of transition zones should aim at so as to
minimize the damage in the supporting structure. Next,
the transition radiation phenomenon is studied from an
energy point of view.

4.4 Energy radiation

In this section, the influence of the nonlinearity on the
transition radiation is studied from the energy point of
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view, which gives additional insight into the properties
of the radiated field. To investigate the energy radiation
solely due to the transition radiation phenomenon, the
study is restricted to sub-critical load velocities. Based
on the solution derived in Sect. 2.2, the energy flux
through cross sections of the beam to the left and right
of the transition zone can be computed as seen in [10,
16,42]. To study the energy associatedwith the radiated
waves induced by the load passing the transition zone,
the power flux correspondingwith the free field Sf (x, t)
through a certain cross-section x of theEuler–Bernoulli
beam is considered [42]:

Sf(x, t) = E I (wf′′′ẇf − wf′′ẇf′), (76)

where wf = w − we represents the free-field displace-
ment; w is the displacement given by Eq. 27, and we

is the eigenfield displacement given by Eq. 34. It must
be noted that in Eq. (76) the power flux propagating in
positive x-direction is considered; to obtain the power
flux in negative x-direction, a minus sign needs to be
added. The total free-field energy flux E f(x) through
a cross section is found by integrating the power flux
over time. Moreover, to visualize the spectral energy
density corresponding to the free field, E f(x) can be
rewritten in terms of the Fourier-domain counterparts
of the time-domain quantities, as shown in [15,16]:

E f(x) = E I
∫ ∞

−∞
(wf′′′ẇf − wf′′ẇf′)dt

= E I

π

∫ ∞

0
Re(w̃f′′′ṽf∗ − w̃f′′ṽf∗′)dω,

(77)

where the integrand in the last expression represents
the spectral energy density E s(x, ω), ω represents the
Fourier-domain angular frequency (rather than that in
the Laplace domain as introduced in Sect. 2.2), the tilde
represents the Fourier-domain quantities, ṽ represents
the Fourier-domain velocity, and the asterisk represents
complex conjugation.

It must be noted that Eq. (77) does not capture
the entire transition radiation energy; it only covers
the energy carried by the isolated free field. The total
energy flux through a certain cross section contains the
eigenfield contribution, the free-field contribution, as
well as an interference term; the last twoboth contribute
to the radiation energy, while only the free-field contri-
bution is considered here. Furthermore, the computed
energy does not represent the total free-field energy
because part of it is absorbed by the foundation before
reaching the considered cross sections left and right of

the transition. Moreover, due to the spatial variation of
the foundation damping, the energy propagating in the
stiff domain is damped more than that propagating in
the soft domain. To avoid the last issue, for the com-
putations performed in this section, the spatial damp-
ing profile is maintained constant throughout the com-
putational domain (where ζ is defined with respect to
the soft domain), except for the parts where the beam–
foundation separation occurs Eq. (72).

The influence of the transition length on the free-
field energy is now addressed through a paramet-
ric study. The energy associated with the leftward-
propagating free field E f

left, presented in the left pan-
els of Fig. 13, decreases with increasing transition
length, as could be intuited. However, for small transi-
tion lengths, E f

left in the lightly damped case (panel a
in Fig. 13) is smaller in the nonlinear system as com-
pared to that in the linear one. This can be explained by
the fact that part of the energy is consumed to plasti-
cally deform the foundation, but also by stronger radi-
ation in the rightward direction (panel b in Fig. 13).
Furthermore, although E f

left decreases with increasing
transition length, the decrease rate is smaller in the
nonlinear case as compared to that in the linear one.
Consequently, for some values of the transition length
(lt ≈ 3, . . . , 7m in panel a of Fig. 13), E f

left is larger in
the nonlinear case. However, the behaviour described
above is not general. The bottom-left panel in Fig. 13
shows that in the system with higher damping ratio
(ζ = 0.20), E f

left is higher in the nonlinear system than
in the linear one for all transition lengths.

Furthermore, the energy associated with the right-
ward-propagating free field E f

right (presented in the
right panels of Fig. 13) is significantly higher in the
nonlinear case as compared to that in the linear one.
Moreover, E f

right is not largest for the shortest transition
length, but for a transition length lt ≈ 0.5, . . . , 2.5m
(depends on the load velocity). This is specific to the
nonlinear case since for all the linear cases considered,
the free-field energy decreases with increasing transi-
tion length. In addition, for the considered cases, E f

right

is clearly smaller than E f
left, implying that the free field

radiated into the soft part of the system carries most
energy, although this is not a necessity as shown in [16].

The spectral energy density E s for the same system
as in Fig. 8 (lt = 0.1m, v = 0.95 cl,ph,min and ζ =
0.05) is presented in Fig. 14. The leftward-propagating
energy E s

left for the nonlinear system exhibits a small

123



2454 A. B. Fărăgău et al.
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lt = 0.1m and ζ = 0.05

shift towards the lower frequencies aswell as a decrease
in energy in the nonlinear case, when compared to the
linear system. The lower frequencies of the radiated
waves in the nonlinear system can also be observed in
the time-domain response (Fig. 8, panels d), e) and f))
through the larger wavelengths of the left-propagating
waves. Furthermore, the energy propagating rightward
E s
right in the nonlinear system has, next to a higher

magnitude (as already observed in the right panel of

Fig. 14), also higher-frequency content as compared to
the linear system.

4.5 Energy input

Besides the influence of the nonlinear foundation on
the energy radiation, presented in the previous subsec-
tion, its influence on the energy input from the moving
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load could also offer valuable insight.While the energy
radiation refers to the far field, the energy input offers
information about the near field, as it relates to the con-
tact point between themoving load and the beam.More
energy input leads tomore energy radiated and/or more
energy dissipated into the foundation, the latter leading
to damage. Therefore, the energy input or the maxi-
mum power input could represent a good indicator of
the potential damage occurring in the foundation. To
investigate the energy input solely due to the transi-
tion radiation phenomenon, the study is restricted to
sub-critical load velocities.

The energy input is defined as the power input inte-
grated over time. Due to the damping present in the
structure, the power input P in is nonzero over thewhole
time axis (i.e., even when the load is not in the vicin-
ity of the transition zone), and therefore, the energy
input is infinite. Consequently, the difference in energy
input between the linear and nonlinear cases is pre-
sented instead. The difference in energy input �E in is
given by the following expression:

�E in =
∫ ∞

−∞
(
P in(t) − P in

lin(t)
)
dt

= F0

∫ ∞

−∞

(
ẇ

∣∣∣
x=vt

− ẇlin

∣∣∣
x=vt

)
dt,

(78)

where P in
lin and ẇlin represent the power input andveloc-

ity at the contact point, respectively, of the linear case.
Figure 15 presents the difference in energy input

�E in as a function of the transition length for different
velocities and damping ratios. It can be observed that
the maximum difference in energy input does not occur
at the smallest transition zone, reinforcing the findings
in the energy radiation study (right panels in Fig. 13).
Furthermore, the difference in energy input increases
with increasing velocity, but the difference is smaller
in the higher-damping case (right panel in Fig. 15).

The normalized maximum power input P in
max is pre-

sented inFig. 16 as a function of the transition length for
different velocities and damping ratios. The maximum
power input is normalized by the steady-state power
input in the soft domain P in

soft. It can be observed that
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the maximum power input decreases with increasing
transition length and decreasing velocity of the mov-
ing load. Moreover, the maximum power input in the
transition zone can be a factor 1.8 larger than the one
in the steady state. Part of this additional power input
could cause damage in the supporting structure.

The difference between the linear and the nonlinear
cases (for the first passage of the moving load) is small
and cannot be seen in Fig. 16, even though the differ-
ence in total energy input can be significant (Fig. 15).
However, the increase is muchmore drastic for the sec-
ond passage of the moving load (i.e., of the system that
has already been deformed plastically) as can be seen in
Fig. 17. Both the maximum power input (left panel in
Fig. 17) and the difference in energy input (right panel
in Fig. 17) exhibit a considerable increase compared to
the first load passage. The maximum power input and
the energy input have the potential to be good indicators
of the damageoccurring in the foundationof the railway
track. However, more extensive research into these two
indicators needs to be performed in order to justify this.

5 Conclusions

In this paper, the influence of the foundation’s non-
linear behaviour on the waves generated by a mov-
ing load crossing an inhomogeneity in the founda-
tion as well as the resulting plastic deformation have
been studied. To this end, a one-dimensional model
has been formulated, consisting of an infinite Euler–
Bernoulli beam resting on a locally inhomogeneous
and nonlinear Winkler foundation, subjected to a mov-
ing load. The reaction of the Winkler foundation has
been characterized by a piecewise-linear (in displace-
ments) constitutive relation which accounts for perma-

nent deformations. The foundation’s piecewise-linear
behaviour allows to obtain the solution by sequentially
applying the Laplace transform over time, while the
Finite Difference Method has been used for the spa-
tial discretization. The infinite extent of the system
has been accounted for through a set of non-reflective
boundary conditions, derived by replacing the semi-
infinite domains by their response at the interfaces,
and through the input initial conditions based on the
steady-state response of a beam with homogeneous
foundation subject to the moving load. The solution
has been validated for the limit case of a linear and
piecewise-homogeneous foundation against a semi-
analytical benchmark solution.

Results have shown that the plastic deformation
originates from constructive interference between the
waves excited at the transition and the response to the
load’s deadweight. Furthermore, through a paramet-
ric study conducted for the soft-to-stiff transition, it
has been found that the plastic deformation decreases
quasi-monotonically with increasing transition length,
and that the decrease rate depends on the velocity of
the load and on the magnitude of the foundation damp-
ing. Moreover, for super-critical velocities, additional
plastic deformation is generated in the second loading–
unloading cycle of the foundation for small transition
lengths and/or large stiffness dissimilarities. The crit-
ical velocity related to the plastic deformation area,
which was chosen to quantify the damage in the sup-
porting structure, was observed to be dependent on
the transition length and on the stiffness dissimilarity.
In addition, the resulting plastic deformation area has
been observed to be influenced not only by the time
of passage of the transition zone, defined as the tran-
sition zone length divided by the load’s velocity, but
also by these quantities individually. Finally, when the
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load travels from a stiff medium to a soft one, no plas-
tic deformation has been observed, which is due to less
pronounced constructive interference.

The influence of the foundation’s nonlinear
behaviour on the radiated field has also been stud-
ied from the energy point of view, by considering the
energy flux associated with the free field through cross
sections left and right of the transition zone. Results
have shown that in the nonlinear system, the maximum
rightward-propagating energy flux does not occur at
the smallest transition length, but at a larger one, a
finding which is reinforced by the difference in energy
input between the linear and nonlinear case. This fea-
ture is specific to the nonlinear system since in the lin-
ear case, the energy flux has been observed to always
decrease with increasing transition length. Further-
more, the spectral energy densities have not only shown
that the nonlinearity redistributes the energy between
frequencies, but have also highlighted the redistribution
between the soft and stiff media. Moreover, it has been
observed that the maximum power input and the differ-
ence in energy input between the linear and nonlinear
case drastically increases for the second passage of the
moving load (i.e., of the system that has already been
deformed plastically). This suggests the use of these
energy quantities as possible indicators of the damage
in the supporting structure.

Although one-dimensional models are not able to
model all phenomena, they are useful for initial assess-
ments. The model presented here can be used for pre-
liminary designs of transition zones in railway tracks.
Given the stiffness dissimilarity and/or the magnitude
of the initial plastic deformation, the optimum length
of the transition zone and the maximum velocity of
the train can be obtained such that the damage in the
railway track is minimized.
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Appendix A: Finite difference coefficients

Here, the finite difference coefficients used to discretize
the beam in Sect. 2.2 are provided. The finite difference
scheme with 9 nodes is used. The fourth-order deriva-
tive reads

ŵ′′′′
m ≈ 1

�x4

(
7

240
ŵm−4 − 2

5
ŵm−3 + 169

60
ŵm−2

− 122

15
ŵm−1 + 91

8
ŵm − 122

15
ŵm+1 + 169

60
ŵm+2

− 2

5
ŵm+3 + 7

240
ŵm+4

)
, m = 3 . . . M − 2,

(79)

where M represents the number of nodes of the com-
putational domain. As can be seen from Eq. 79, this
approximation is applied only from node 3 to node
M − 2. This is because there are only two boundary
conditions at each boundary, and thus, only two ghost
nodes can be used. The fourth-order derivative approx-
imations for nodes 1, 2, M − 1 and M are obtained
by using a hybrid between the central scheme and the
forward scheme (for nodes 1 and 2) or the backward
scheme (for nodes M − 1 and M). The expressions are
given in the following:

ŵ′′′′
1 ≈ 1

�x4

(
127

240
ŵ−1 − 11

15
ŵ0 − 77

20
ŵ1

+ 193

15
ŵ2 − 407

24
ŵ3 + 61

5
ŵ4

− 311

60
ŵ5 + 19

15
ŵ6 − 11

80
ŵ7

)
, (80)

ŵ′′′′
2 ≈ 1

�x4

(
− 11

80
ŵ−1 + 53

30
ŵ0 − 341

60
ŵ1

+ 77

10
ŵ2 − 107

24
ŵ3 + 11

30
ŵ4

+ 13

20
ŵ5 − 7

30
ŵ6 + 7

240
ŵ7

)
, (81)

ŵ′′′′
M−1 ≈ 1

�x4

(
7

240
ŵM−6 − 7

30
ŵM−5 + 13

20
ŵM−4

+ 11

30
ŵM−3 − 107

24
ŵM−2 + 77

10
ŵM−1
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− 341

60
ŵM + 53

30
ŵM+1 − 11

80
ŵM+2

)
, (82)

ŵ′′′′
M ≈ 1

�x4

(
− 11

80
ŵM−6 + 19

15
ŵM−5 − 311

60
ŵM−4

+ 61

5
ŵM−3 − 407

24
ŵM−2 + 193

15
ŵM−1

− 77

20
ŵM − 11

15
ŵM+1 + 127

240
ŵM+2

)
, (83)

where the nodes −1, 0, M + 1 and M + 2 represent
the so-called ghost nodes. These nodes are not part
of the computational domain; therefore, the displace-
ments of these nodes (ŵ−1, ŵ0, ŵM+1, ŵM+2) are
expressed in terms of the displacements of the nodes
inside the computational domain by using the four non-
reflective boundary conditions. The resulting equations
are included in Eq. (24).

Appendix B: Coefficients of the eigenfield

Here, the coefficients needed to fully determine the
eigenfield in Eq. (34) are listed:

A1 = iF0
(ke2 − ke1)(k

e
2 − ke3)(k

e
2 − ke4)

, (84)

B1 = iF0
(ke3 − ke1)(k

e
3 − ke2)(k

e
3 − ke4)

, (85)

A2 = iF0
(ke1 − ke2)(k

e
1 − ke3)(k

e
1 − ke4)

, (86)

B2 = iF0
(ke4 − ke1)(k

e
4 − ke2)(k

e
4 − ke3)

, (87)

where ke1, k
e
2, k

e
3 and ke4 are the eigenfield’s complex

wavenumbers. These are found by solving the follow-
ing equation:

k4 − ρk2v2 + ikvcd,l + kd,l = 0. (88)

The expressions of the wavenumber are not presented
due to brevity; however, they can straightforwardly be
obtained by solving Eq. (88) using a symbolic mathe-
matics tool (e.g., Maple). The choice of the sign of the
wavenumbers is as follows:

Re(ke1) > 0, Im(ke1) < 0, (89)

Re(ke2) > 0, Im(ke2) > 0, (90)

Re(ke3) < 0, Im(ke3) > 0, (91)

Re(ke4) < 0, Im(ke4) < 0. (92)

Appendix C: Non-reflective boundary conditions at
the right

In Sect. 2.3.2, the expressions for the non-reflective
boundary conditions have been derived for the situation
in which the nonlinear events occur while the moving
load is inside the computational domain. Due to the rail
losing and regaining contact with the supporting struc-
ture, nonlinear events can still occur while the moving
load is in the right domain. In this section, the expres-
sions for the non-reflective boundary conditions at the
right are derived for that situation. The aim is to express
the reaction forces of the right domain, at the interface
with the computational domain, as functions of the dis-
placement and slope of the computational domain at
the right boundary. The procedure is similar to the one
explained in Sect. 2.3.2. It must be noted that the non-
reflective boundary conditions at the left, derived in
Sect. 2.3.2, remain valid through the simulation.

If a nonlinear event occurs when τ n−1 > L
v
, the

right semi-infinite domain must be divided in two sub-
domains, one sub-domain behind the load (sub-domain
A) and the second one in front of it (sub-domainB). The
forward Laplace transform is applied to the governing
equations, and the solution of the sub-domain behind
the moving load ŵA

r and that in front ŵB
r , already

accounting for the condition of vanishing displacement
at infinity, are obtained as follows:

ŵA
r,n(x, sn) = CA

1 e−ikrx + CA
2 e+ikrx + CA

3 e+krx

+ CA
4 e−krx + ŵA

r,n,p, L < x < xP,

(93)

ŵB
r,n(x, sn) = CB

1 e−ikrx + CB
4 e−krx + ŵML

n,p

+ ŵB
r,n,p, x > xP, (94)

where xP = v τ n−1 is the position of the load at the
moment of the nonlinear event, CA

1 ,CA
2 ,CA

3 ,CA
4 ,CB

1
and CB

4 represent yet unknown complex amplitudes,
ŵA
r,n,p and ŵB

r,n,p represent the particular solutions
accounting for the initial state of the two sub-domains,
and ŵML

n,p represents the particular solution accounting
for the moving load which reads:

ŵML
n,p = − F0 v3

s4n − k4r v4
e−sn

x−xP
v . (95)

The six unknown complex amplitudes are obtained by
employing the two boundary conditions at x = L given
by Eqs. (42) and (43), and four interface conditions at
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x = xP, namely the continuity of displacement and
slope, and the equilibrium of bending moment and
shear force. To find the reaction forces of the right
domain at the interface with the computational domain,
the second and third derivatives of ŵA

r,n with respect to
space are taken and are evaluated at x = L:
(

ŵA′′′
r,n (L , sn)

ŵA′′
r,n (L , sn)

)
=

(
kr,Vυ kr,Vφ

kr,Mυ kr,Mφ

) (
ŵn(L , sn)
ŵ′
n(L , sn)

)

−Dr,n −
(
V̂L,n(sn)
M̂L,n(sn)

)
. (96)

Vector Dr,n now reads

Dr,n =
(

ŵA′′′
r,n,p(L , sn)

ŵA′′
r,n,p(L , sn)

)
+

(
kr,Vυ kr,Vφ

kr,Mυ kr,Mφ

) (
ŵA
r,n,p(L , sn)

ŵA′
r,n,p(L , sn)

)

+
(
aV bV cV dV

aM bM cM dM

)
⎛
⎜⎜⎜⎜⎝

�ŵr,n,p(xP, sn)

�ŵ′
r,n,p(xP, sn)

�ŵ′′
r,n,p(xP, sn)

�ŵ′′′
r,n,p(xP, sn)

⎞
⎟⎟⎟⎟⎠ , τ n−1 >

L

v
,

(97)

where�ŵr,n,p(xP, sn)= ŵB
r,n,p(xP, sn)−ŵA

r,n,p(xP, sn)
represents the difference of the particular solutions of
the two sub-domains evaluated at x = xP; aV, bV, cV,
dV, aM, bM, cM and dM represent complex coefficients
which read

aV = −1 + i

2
k3r

(
eikr(L−xP) + ekr(L−xP)

)
,

bV = 1 + i

2
k2r

(
eikr(L−xP) + iekr(L−xP)

)
,

cV = −1 + i

2
kr

( − eikr(L−xP) + ekr(L−xP)
)
,

dV = 1 + i

2

( − eikr(L−xP) + iekr(L−xP)
)
,

aM = −1 − i

2
k2r

(
ieikr(L−xP) + ekr(L−xP)

)
,

bM = −1 − i

2
kr

(
eikr(L−xP) + ekr(L−xP)

)
,

cM = −1 − i

2

( − ieikr(L−xP) + ekr(L−xP)
)
,

dM = −1 − i

2 kr

( − eikr(L−xP) + ekr(L−xP)
)
.

(98)

The particular solutions ŵA
r,n,p(L , sn), ŵA

r,n,p(xP, sn)

and ŵB
r,n,p(xP, sn) that account for the non-trivial initial

state are obtained as explained in Sect. 2.3.2 and read

ŵA
r,n,p(L , sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn + cd,r + ρs) esτ n−1

·
∫ xP

L
ĝr(x − ξ, sn)ŵ

f
r (ξ, s) dξ ds

+ ŵe
r,n,p(L , sn), (99)

ŵA
r,n,p(xP, sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn + cd,r + ρs) esτ n−1

·
∫ xP

L
ĝl(x − ξ, sn)ŵ

f
r (ξ, s) dξ ds

+ ŵe
r,n,p(xP, sn), (100)

ŵB
r,n,p(xP, sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn + cd,r + ρs) esτ n−1

·
∫ ∞

xP
ĝr(x − ξ, sn)ŵ

f
r (ξ, s) dξ ds

+ ŵe
r,n,p(xP, sn). (101)

The integration over ξ in Eqs. (99) to (101) can be per-
formed analytically, while the integration over s needs
to be performed numerically. Furthermore, the contri-
bution from the moving load in the right domain on
the reaction forces at x = L , namely V̂L,n(sn) and
M̂L,n(sn), also change compared to Eqs. (50) and (51)
and are given by the following expressions:

V̂L,n(sn) = (1 − i) F0
2

(
e−ikr(xP−L)

krv − isn
+ e−kr(xP−L)

krv + sn

)
,

τ n−1 >
L

v
, (102)

M̂L,n(sn) = (1 − i) F0
2 kr

(−e−ikr(xP−L)

krv − isn
+ i

e−kr(xP−L)

krv + sn

)
,

τ n−1 >
L

v
. (103)

Together with the expressions in Sect. 2.3.2, Eqs.
(49), (50) and (51), the non-reflective boundary condi-
tions at the right boundary are now complete.
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