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Abstract Many investigations have focused on
steady-state nonlinear dynamics of cantilevers in tap-
pingmode atomic forcemicroscopy (TM-AFM). How-
ever, a transient dynamic model—which is essential
for a model-based control design—is still missing. In
this paper, we derive a mathematical model which cov-
ers both the transient and steady-state behavior. The
steady-state response of the proposed model has been
validated with existing theories. Its transient response,
however, which is not covered with existing theo-
ries, has been successfully verified with experiments.
Besides enabling model-based control design for TM-
AFM, this model can explain the high-end aspects of
AFM such as speed limitation, image quality, and even-
tual chaotic behavior.
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1 Introduction

Atomic force microscopy (AFM) is a powerful tool for
imaging the surface of samples with a sub-nanometer
resolution which has many different applications in
experimental sciences such as physics and biology
[1–4]. Nowadays, AFM is also attracting more and
more attention in the semiconductor industry as an
inspection and metrology tool. The latter applications
demand much stricter requirements regarding through-
put, accuracy, reliability, and nondestructiveness [5–8].
To improve the imaging throughput and reliability of
AFM, it is essential to understand its physics and opti-
mize its mechanical parts and controllers.

A popular and promising AFM-based measurement
technique, both for research and industrial applications,
is the amplitude modulation (AM-AFM) or the tapping
mode AFM (TM-AFM). TM-AFM is mainly popular
because it applies very small forces on the sample sur-
face and, consequently, has lower probability of dam-
aging the sample. The nondestructiveness of TM-AFM
can be so important that, e.g., researchers in the field
of biology refer to it as a blessing [9].

The TM-AFM works as follows: A cantilever with
a sharp tip attached to its free end is excited at a fre-
quency around its fundamental resonance frequency,
and brought close to the surface of the sample. At a
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Fig. 1 Schematic representation of relationship between ampli-
tude and distance, depicting the reasoning for parachuting
effect, coexistence of attractive–repulsive regimes, snap-in phe-
nomenon and transient behavior

certain distance from the sample surface, the tip starts
to interact with the sample via different forces such
as van der Waals (vdW) interaction, Pauli repulsion,
squeezed film damping, hydro-capillarity, electrostatic
forces, etc [10].As a result of the tip–sample interaction
(TSI) forces, the amplitude of the motion of the can-
tilever reduces [11,12].A feedback control loop adjusts
the distance between the cantilever and the sample sur-
face using a piezoelectric (z-stage) actuator, such that
the amplitude of the cantilever is kept constant at a user-
defined fraction of its free air amplitude. While raster
scanning the sample surface, and keeping the amplitude
constant, the output signal of the controller is recorded
and interpreted as the height profile of the sample.

In case the amplitude of the cantilever has a one-
to-one relationship with its distance to the surface,
keeping the amplitude constant would mean keeping
the distance constant. Therefore, any fluctuation in the
height profile of the sample is compensated with the
z-stage control unit, and the height profile of the sam-
ple can be measured via the control signal. However, as
schematically shown in Fig. 1, the relationship between
the amplitude and the distance is not always one-to-
one, and consequently, the height measurement is not
always trivial. For example, at the far right-hand side of
Fig. 1, where the sample is far from the cantilever, obvi-
ously there is no interaction and the amplitude is inde-
pendent of the distance. If this situation happens dur-
ing imaging, the error signal saturates and the so-called
parachuting-type artifacts appear on the image [4,13].
Similarly, at the far left-hand side of the curve in Fig. 1,
where the attractive forces exceed a certain value, the
tip snaps onto the surface and sticks to it, the so-called
snap-in phenomena. Thus, independent of small varia-

tions of the distance, the amplitude remains zero [14].
Another situation where amplitude and height do not
have a one-to-one relationship is the coexistence of the
attractive and repulsive regimes [15]. At two different
distances from the surface, the TSI force can reduce
the amplitude of the cantilever to the same value. In
one regime, the average force is attractive, and in the
other, it is repulsive. In Fig. 1, if the distance between
the cantilever and the sample is h1, the vibration ampli-
tude could be either A1 or A2. Similarly, if themeasured
amplitude is equal to A2, the distance could be either h1
or h2. In this case, a certain amplitude may correspond
to two different height values and vice versa. Hence
the controller fluctuates between the two height values,
which causes artifacts on the image. Researchers have
studied these nonlinear effects, their consequences, and
the related problems, extensively [15–17]. However,
all these studies consider a steady-state condition and
the transient response of the cantilever is neglected.

The nonlinearities are not the only cause for distor-
tion of the amplitude–distance relationship, also tran-
sient behavior of the cantilever can distort this one-to-
one relationship. The amplitude–distance relationship
in Fig. 1 is only valid for steady-state situations, i.e.,
where the amplitude signal is settled to a constant value.
For example, suppose that the system is initially set-
tled to Point A in Fig. 1, then, suddenly, the surface
is retracted up to a distance corresponding to Point
B. Obviously, the amplitude of the cantilever cannot
adapt suddenly. Therefore, it might follow a different
trajectory than the linear steady-state one. How fast the
amplitude can adjust itself to the variations in the height
totally depends on its dynamic trajectory. This problem
is crucial for high-speedAFM,where the changes of the
distance happen in time intervals that are comparable
or shorter than the cantilevers response time. Note that,
the transient response of the cantilever is not taken into
account in control design for AFM. Hence, such a tran-
sient behavior of the cantilevermay cause a closed-loop
chaotic behavior in presences of nonlinear tip–sample
interactions [18]. It has been previously reported that
this chaotic behavior strictly limits the speed of theTM-
AFM and can only be avoided by reducing the control
gains and imaging speed [18].

To understand and improve the speed limit of AFM,
an in-depth investigation of the transient response of
the cantilever is crucial. However, the transient dynam-
ics of the cantilever, which governs the overall per-
formance of AFM, is often ignored or purely dis-
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cussed from a tip–sample interactions point of view
[19]. Therefore, here we try to answer the following
research question: how does the amplitude (and phase)
of the motion of the cantilever evolve in transient sit-
uations? For this, we derive a set of governing differ-
ential equations based on Fourier components of the
force and displacement. Different aspects of the pro-
posed model are verified with experiments and com-
pared with existing steady-state models. The proposed
model is generic in a sense that it does not contain a cer-
tain tip–sample interaction model and enables graphi-
cal interpretations. A graphical interpretation is helpful
for understanding the effects of cantilever dynamics on
high-end aspects such as image quality and speed limit.
Moreover, the proposedmodel can be a first step toward
designing model-based controllers for high-speed non-
destructive TM-AFM.

This paper is further organized as follows: In Sect. 2,
we present a detailed derivation of the proposed math-
ematical model based on an averaging approach. In
Sect. 3, we present analytic, numerical, and experi-
mental results based on the proposed model. This is
divided into four different subsections. The first sub-
section shows that the linear steady-state response of
the proposed model is exactly equal to a steady-state
response of a one-degree-of-freedom (DOF) resonator.
The second subsection compares the nonlinear steady-
state response of the proposed method with the exist-
ing theories for TM-AFM. In the third subsection, we
introduce the transient response in time domain and
verify it with experiments. Finally, in the fourth sub-
section, we use a specific experiment to verify the tran-
sient response in frequency domain and try to explain
some of the existing experimental results. Section 4 is
devoted to practical implications of the transient behav-
ior for high-speed TM-AFM. This section consists
of two subsections. The first subsection explains the
effect of cantilever dynamics on image quality based on
closed-loop nonlinear simulation. The second subsec-
tion graphically explains the reason behind the chaotic
behavior of TM-AFM as a consequence of high control
gains as previously reported in [18].

2 Mathematical modeling

According to experiments and previously achieved
numerical results, despite the strong nonlinearities of
the tip–sample interactions, themotion of the cantilever

in conventional TM-AFM is harmonic up to a large
extent [20]. The reason behind this harmonic motion is
the extreme contrast between the sensitivity of the can-
tilever to different forces. The cantilever is highly sen-
sitive to the forces that correspond to its resonance fre-
quency, and almost not responsive to any other forces.
Therefore, the Fourier component of the forces which
correspond to the fundamental resonance frequency of
the cantilever generates a measurable displacement,
while the effects of the other forces are likely to be
obscured by the noise [20]. When this contrast is low
[low quality (Q)-factor [21] or multi-harmonic can-
tilevers [22,23]] or if the TSI force is so strong that it
compensates for the low sensitivity, the motion of the
cantilever can contain some higher frequency compo-
nents. However, for conventional TM-AFM, and in the
presence of measurement noises, it is almost impos-
sible to measure the higher frequency content of the
motion.

Considering only a single harmonic motion, it is a
legitimate choice tomodel theAFMcantilever as a one-
DOFmass–spring–damper system.For brevity,we start
with a non-dimensional form of a one-DOF model of
the AFM cantilever as:

ẍ + ξ ẋ + x = Fdcos(ωt) + fts, (1)

where x is the non-dimensional displacement of the tip,
with over-dot representing the time derivative. ξ = 1

Q
is the damping ratio, with Q being the Q-factor of the
cantilever. Fd, fts and ω represent the normalized driv-
ing force, TSI force, and excitation frequency, respec-
tively.

Although Eq. (1) represents the dynamics of the
cantilever up to a reasonably high precision, it is not
very useful for control design purposes. As mentioned
before, the motion of the cantilever only contains one
harmonic component and the controller observes its
amplitude, which by definition variesmuch slower than
themotionof the cantilever. In practice, a lock-in ampli-
fier (LIA) demodulates themotion of the cantilever into
its amplitude and phase and feeds them to the con-
troller. The details of the LIA are outside the scope
of this paper, however, it is essential to note that there
does not exist any transfer function or linear approx-
imation for the LIA. Hence, to incorporate the func-
tionality of the LIA, one should either solve for the
strongly nonlinear multiple-time-scale dynamics of the
cantilever which is coupled with the LIA, or derive a
demodulatedmodel, directly.Obviously, thefirstwould
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not be efficient for applications such as control design
or long time-horizon simulations. Moreover, the TSI
force ( fts) in Eq. (1) is normally a continuous, but non-
differentiable function. Theoretically, such functions
do not have any Taylor series approximation, which
makes it even more elusive for stability analysis in
control design. To overcome these problems, we opt
for deriving a demodulated model for the cantilever.

Defining s1 � ẋ and s2 � x , Eq. (1) reads in state-
space format:{
ṡ1
ṡ2

}
=
{−ξs1 − s2 + fts + Fdcos(ωt)

s1

}
. (2)

Since the amplitude and the phase evolve with a much
slower time scale, it is useful to define a new time
coordinate τ , assuming that the signals in τ domain
are constant during one cycle of vibration of the can-
tilever. Thus, τ shall be used to describe any slowly
varying function. A function f (τ ) is called “slow” in
contrast to a rapidly varying periodic function g(t)with
the periodicity of T , if it has the following property:

T∫
0

f (τ )g(t)dt ≈ f (τ )

T∫
0

g(t)dt (3)

Note that, τ by itself does not differ from t , it is only a
notation which is introduced to explicitly separate the
slowly varying functions from quickly changing ones.

Assuming that each of the state variables are har-
monic functions with slowly varying amplitude and
phase (hereafter referred to as semi-harmonic), one can
write:

si (t)≈Ai (τ )cos(ωt+ϕi (τ ))=�[Ai (τ )e j (ωt+ϕi (τ ))].
where i = 1, 2, j = √−1, and � indicates the real
operator (� will be used for the Imaginary operator).
Note that the static component and all the higher har-
monics of the s signal is filtered by LIA, and bandwidth
of the A and ϕ is limited to that of the LIA. By defin-
ing Xi (τ ) � Ai (τ )e jϕi (τ ) ∈ C, the state variables can
be written as the following explicit multiplication of a
slowly varying complex function and a pure harmonic
function:

si (t) = �
⎡
⎣Xi (τ )︸ ︷︷ ︸

slow

e jωt︸︷︷︸
harmonic

⎤
⎦ . (4)

Hence, the complex variable Xi (τ ) represents the
amplitude and phase of si (t) corresponding to fre-
quency ω. Using the chain rule of differentiation, and

since differentiation is distributive for the � operator,
we have:

ṡi = d

dt
�
(
Xi (τ )e jωt

)
= �

(
dXi

dτ
e jωt + Xi

de jωt

dt

)

= �
(
Ẋie

jωt + jωXie
jωt
)

. (5)

In the samemanner, theTSI force is a semi-periodic sig-
nal. Thus, it can be decomposed into its semi-harmonic
components as:

fts(t) = �
( ∞∑
n=0

F (n)
ts (τ )e jnωt

)
(6)

where F (n)
ts (τ ) ∈ C represents the amplitude and phase

of the nth harmonic component of the tip–sample inter-
action force. Note that Eq. (6) differs from the standard
complex Fourier transformonly in away that the ampli-
tude values are not necessarily constant, but represent
slowly varying functions in time domain τ .

Substituting Eqs. (4) to (6) in Eq. (2) yields:

�
[
(Ẋ1(τ ) + jωX1(τ ) + ξ X1(τ ) + X2(τ ))e jωt

−
∞∑
n=0

F (n)
ts (τ )e jnωt − Fde

jωt
]

= 0 (7a)

�[(Ẋ2(τ ) + jωX2(τ ) − X1(τ ))e jωt ] = 0 (7b)

Multiplying both sides of Eq. (7) with e jωt and inte-

grating through a vibration cycle

(∫ 2π
ω

0 (·)e jωtdt
)
, one

can project the equations onto the space of the first
harmonic component as:
2π
ω∫

0

�
[
(Ẋ1 + jωX1 + ξ X1(τ ) + X2(τ ) − Fd − F (1)

ts (τ ))e jωt
]
e jωtdt

︸ ︷︷ ︸
Γ1

−
2π
ω∫

0

�
[
F (0)
ts (τ )

]
e jωtdt

︸ ︷︷ ︸
Γ0

−
2π
ω∫

0

∞∑
n=2

�
[
F (n)
ts (τ )e jnωt

]
e jωtdt

︸ ︷︷ ︸
Γn

= 0

(8a)

2π
ω∫

0

�
[
(Ẋ2 + jωX2 − X1)e

jωt
]
e jωtdt = 0 (8b)

Notice that we deliberately expanded the zeroth and
first harmonics of the TSI force (Γ0, and F (1)

ts in Γ1)
out of the

∑
(sum) operator. In this way, the equations

are rearranged in frequency order whereΓ0, Γ1, andΓn
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represent the terms with zero frequency, first harmonic,
and higher harmonics, respectively.

Moreover, from the orthogonality of harmonic func-
tions, it is easy to check that, for ∀ n ∈ N, c ∈ C we
have:

1. If n 	= 1,⇒
2π∫
0
e jθ�[ce jnθ ]dθ = 0.

2. If
2π∫
0
e jθ�[ce jθ ]dθ = 0,⇒ c = 0.

Considering the first statement of the orthogonal-
ity above, and the definition in Eq. (3), the last term
in Eq. (8a) vanishes (Γn = 0). Applying the second
statement of orthogonality to the remaining terms in
Eq. (8), the � operator drops and the following differ-
ential equations are obtained:

Ẋ1 = − jωX1 − ξ X1 − X2 + F (1)
ts + Fd (9a)

Ẋ2 = − jωX2 + X1 (9b)

Equation (9) is an ordinary differential equation
with complex variables and coefficients. By defin-
ing new state parameters as q � [q1, q2, q3, q4]T =
[�(X1),�(X1),�(X2),�(X2)]T ∈ R

4 and separating
the real and imaginary parts of Eq. (9), the governing
differential equations for the modulated system can be
written in the standard real valued state-space form as:

⎧⎪⎪⎨
⎪⎪⎩

q̇1
q̇2
q̇3
q̇4

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

−ξ ω −1 0
−ω −ξ 0 −1
1 0 0 ω

0 1 −ω 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Λ

⎧⎪⎪⎨
⎪⎪⎩

q1
q2
q3
q4

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

Fd + �(F (1)
ts )

�(F (1)
ts )

0
0

⎫⎪⎪⎬
⎪⎪⎭

, (10a)

A2(τ ) =
√
q23 + q24 ,

ϕ2(τ ) = tan−1
(
q3
q4

)
,

(10b)

where

F (1)
ts (τ ) = �(F (1)

ts ) + j�(F (1)
ts ) =

2π
ω∫

0

fts(t)e
jωtdt,

is the slowly varying first Fourier component of the TSI
force, A2(τ ) represents the amplitude of the motion,
and ϕ2(τ ) is the phase.

It might be counterintuitive to observe that the
second-order system in Eq. (1) is converted to a fourth-
order system in Eq. (10). However, it is straightforward
to check that Eq. (10) is a minimal realization, mean-
ing that, four is the minimum dimensionality of the
state-space that can accurately represent the modulated
system.

It is useful to summarize the physical meaning of
the equations and the derivation steps. We started with
a single-DOF mass–spring model of the cantilever in
Eqs. (1) and (2). Then, assumed that the amplitude and
phase of the cantilever change significantly slower than
themotion of the cantilever in Eqs. (3) and (4). Further-
more, by projecting the equations onto the Fourier ker-
nel in Eq. (8), the differential equations for amplitude
and phase at the slow timescale Eq. (10a) have been
achieved. According to Eq. (10a), the amplitude mod-
ulated cantilever is a fourth-order linear dynamic sys-
tem, with a nonlinear sensing (amplitude and phase).
The dynamic properties of this system depend on itsQ-
factor and excitation frequency. The input of the mod-
ulated system only consists of the dither force and the
first harmonic of the tip–sample interaction force.

The first harmonic of the force (F (1)
ts ) has a nonlin-

ear relationship with the state variables (qi ) and the
distance of the cantilever from the sample surface.
“Appendix A” presents the derivation of F (1)

ts as a func-
tion of the distance and the state parameters for the
well-known Derjaguin–Muller–Toporov (DMT) force
model.

3 Numerical and experimental results

In this section, the proposed formulation is used to
study the dynamic behavior of AFM cantilevers. First,
the steady-state response of the proposed model is ver-
ified with existing models. Next, the transient behav-
ior of the cantilever is studied in time and frequency
domains and verified with experiments.

3.1 Linear steady-state response

The most simple test to check the proposed model is
to evaluate it for linear steady-state case. For this, the
steady solution of Eq. (10) can be calculated by putting
the TSI force and the left-hand side of Eq. (10a) equal
to zero (F (1)

ts = 0, q̇ss = O), thus:
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⎡
⎢⎢⎣

−ξ ω −1 0
−ω −ξ 0 −1
1 0 0 ω

0 1 −ω 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

q1
q2
q3
q4

⎫⎪⎪⎬
⎪⎪⎭

ss

= −

⎧⎪⎪⎨
⎪⎪⎩

Fd
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

. (11)

The subscript ss stands for steady state. This algebraic
set of equations can be solved analytically as follows.
The last two equations in Eq. (11) can be solved sepa-
rately as: q1 = −ωq4 and q2 = ωq3. Substituting this
results in the first two equations of the Eq. (11) gives:[
1 − ω2 −ξω

ξω 1 − ω2

]{
q3
q4

}
ss

=
{
Fd
0

}
. (12)

Solving the above equation analytically, the stationary
state variables become:

q3 = Fd(1 − ω2)

(1 − ω2)2 + ξ2ω2 ,

q4 = −Fdξω

(1 − ω2)2 + ξ2ω2 .

Substituting the static solution for state variables into
Eq. (10b), the following well-known relations are
obtained:

Ass = Fd√
(1 − ω2)2 + ξ2ω2

, (13a)

ϕss = tan−1 ξω

(1 − ω2)
. (13b)

This shows that the static response of the proposed
model in linear case indeed leads to the steady-state
response of a one-DOF linear resonator [24].

3.2 Nonlinear steady-state response

The proposed model eliminates the fast timescale and
represents the dynamics of AFM cantilever in slow
timescale. Therefore, its static response corresponds
to the steady-state response of the AFM cantilever,
whereas its dynamic response represents the transient
behavior. In this subsection, the steady response of the
proposed model is compared to the existing theories
presented in [12,17,25]. Similar to the previous sub-
section, by putting the left-hand side of Eq. (10a) equal
to zero, the steady-state response of theAFMcantilever
can be obtained. However, in contrast to the previous
section, the TSI force is not equal to zero, but its rela-
tionship with state parameters has to be calculated via a
so-called forcemodel. For this, we used the Derjaguin–
Muller–Toporov (DMT) model which consists of the
attractive van der Waals (vdW), repulsive Hertz, and

dissipative viscoelastic forces. For details on thismodel
please refer to “Appendix A” and the references [26–
28].

Using this model, the first harmonic component of
the TSI force can be written as:

�(F(1)
ts ) =

(
βA

1
2
2 I2

(
h

A2
,

σ

A2

)
− α

A32
I1

(
h

A2
,

σ

A2

))
q3

+γ A
− 1

2
2 I3

(
h

A2
,

σ

A2

)
q1, (14a)

�(F(1)
ts ) =

(
βA

1
2
2 I2

(
h

A2
,

σ

A2

)
− α

A32
I1

(
h

A2
,

σ

A2

))
q4

+γ A
− 1

2
2 I3

(
h

A2
,

σ

A2

)
q2, (14b)

where, α = HR
6k A3

0
, β = 4EEff

√
RA0

3k , and γ = ωη

√
RA3

0,

are the coefficients of the vdW, Hertz and viscoelas-
tic forces, respectively. H, R, EEff , h, A0, A2, and σ

are Hammaker constant, tip radius, effective stiffness
of tip–sample contact, separation of the sample sur-
face and the cantilever in its undeflected configura-
tion, free air amplitude, actual amplitude at any time
[as described in Eq. (10b)], and the intermolecular dis-
tance, respectively. The integral functions (I1, I2 and
I3) as a function of their arguments (ζ1, ζ2) are defined
as:

I1(ζ1, ζ2) =
2π∫
0

cos(θ)dθ

(ζ1 − cos(θ))2Dζ2

, (15a)

I2(ζ1, ζ2) =
2π∫
0

(cos(θ) − ζ1 + ζ2)
3
2
D0
cos(θ)dθ, (15b)

I3(ζ1, ζ2) =
2π∫
0

(cos(θ) − ζ1 + ζ2)
1
2
D0
cos(θ)dθ. (15c)

where the discontinuity function (a)Db is defined to
impose the discontinuity of the forces during the con-

tact as: (a)Db =
{
a if a ≥ b

b if a < b
. A detailed derivation

of the force model for slow timescale and the details of
DMT model is presented in “Appendix A”.

Typically, an arc-length continuationmethod is used
to calculate the nonlinear frequency response of a
nonlinear system. However, the frequency response
of the system represented by Eq. (10) can always be
transformed to a quadratic algebraic problem in terms
of excitation frequency squared (ω2), irrespective of
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Fig. 2 Nonlinear frequency response curves of cantilever inTM-
AFM for different cantilever-sample separations; red represents
the smallest and blue represent the largest distance. The green-
dashed curve schematically represents the amplitude–distance

relationship as shown in Fig. 1. Simulation parameters are the
same as reference [25], and the results in this figure are in good
agreement with literature, for example see reference [25]. (Color
figure online)

the type of the nonlinearity. Hence, its nonlinear fre-
quency response can also be calculated analytically as
well. The details of calculating the nonlinear frequency
response of the cantilever using the proposedmodel are
presented in “Appendix B”.

Figure 2 shows the steady-state nonlinear fre-
quency response of the cantilever considering differ-
ent cantilever-sample separations. These results were
calculated with the same parameters as in [25] (spring
constant 2 N/m, resonance frequency 52.4 kHz, qual-
ity factor 66.7, tip radius 20nm Hammaker constant
2.96 × 10−19 J, intermolecular distance 2.0 Å, and
free air amplitude 100 nm). The nonlinear frequency
responses in Fig. 2 are in good agreement with the
results presented by Lee et al. [25], whereas the dashed
green curve represents the amplitude–distance relation-
ship depicted in Fig. 1.

These results show that the static response of the pro-
posedmodel agreeswith the existingmodels for steady-
state response of the AFM cantilever. The next sections
will study the transient behavior of the AFM cantilever
which captures the dynamic transition between each of
the lines in Fig. 2.

3.3 Transient response in the time domain

To investigate the evolution of the amplitude and phase
in the time domain, here the step response of the modu-
lated system is studied. The assumption is that the can-
tilever is initially at rest (zero amplitude). Suddenly,
a harmonic force with a constant amplitude and fre-
quency is applied (i.e., dither piezo turned on). Fig-

ure 3 shows the dynamic trajectory of the amplitude
and phase from rest to its steady-state.

Note that the dynamic trajectory of the cantilever is
a spiral of which the direction is determined by the
ratio between the excitation frequency and the res-
onance frequency of the cantilever. If the excitation
frequency is lower than the resonance frequency, the
cantilever follows a counterclockwise spiral, and vice
versa. This is illustrated via numerical and experimen-
tal results in Fig. 4. Here, the numerical results show
the step response of linear part of Eq. (10) and experi-
mental results are captured using a commercially avail-
able AFM and LIA , i.e., Bruker Fast-Scan and Zurich
Instruments UHFLI 1.8 GSa/s 600 MHz. In the experi-
ments, first the cantilever was settled to a certain ampli-
tude and phase, then suddenly, we increase the excita-
tion power to twice its steady value. Note that the initial
point in experiments start from different phase values,
with approximately identical amplitudes, because the
excitation frequency was different for the three cases.
Moreover, we did not start the experiment from rest
condition, because the phase signal is defined based
on the dither signal and cannot be defined while the
cantilever is at rest.

The spiral shape of the trajectory is more relevant
when high-speed AFM controllers are concerned. The
spiral-shaped trajectory in Fig. 4 shows that there can
be an initial response in the wrong direction, similar to
the non-minimum-phase (MNP) behavior in linear sys-
tems [29]. Meaning that, if for any reason one expects
the amplitude to drop, it might first increase and then
drop, or vice versa. This wrong direction of the initial
responsemakes it very challenging for high-speed con-
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Fig. 3 Step response of the
amplitude and phase in
polar and Cartesian
coordinates. In the phasor
plot, the distance from the
center of coordinates shows
the amplitude and the angle
shows the phase delay. The
reasoning behind overshoot
of amplitude and the
trajectory of phase is stem
from the spiral trajectory
shown in the phasor plot
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Fig. 4 Dynamic trajectories of amplitude–phase pair with dif-
ferent excitation frequency. a Experimental: a cantilever with the
Q factor ≈ 300, stiffness ≈ 1 N/m and fundamental resonance
frequency ≈ 45 kHz) has been used in a commercial AFM sys-
tem. While the cantilever was far from any sample surface, the

excitation power has been suddenly increased from 3 to 6 V.
b Numerical: step responses of Eq. (10). If the excitation fre-
quency is less than the resonance frequency of the cantilever, the
dynamic trajectory is a clockwise spiral and vice versa

trollers. If the time constant of the controller is shorter
than the settling time of the cantilever, the controller
might take wrong actions based on the wrong direc-
tional response of the cantilever.

3.4 Nonlinear transient response in the frequency
domain

This subsection investigates the frequency domain
response of the demodulated system. In order to under-
stand the model represented by Eq. (10) in frequency

domain, it is assumed that the excitation force is mod-
ulated with another harmonic signal which has a much
lower frequency than the resonance frequency of the
cantilever. Considering the linear dynamics of themod-
ulated system, i.e., Eq. (10a), one observes that the sys-
tem has two pairs of complex conjugate poles [eigen-
values of matrix Λ in Eq. (10)] at:

P1−4 = − ξ± j |
√

4−ξ2±2ω|
2 ≈ − ξ

2 ± j
2±2ω+ ξ2

2 +···
2

(16)
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Fig. 5 Schematic of the
experimental setup for
frequency domain analysis.
LIA 1 modulates and
demodulates the motion of
the cantilever, and the LIA 2
modulates and demodulates
the amplitude signals that
are provided to and received
from the LIA 1. The output
amplitude and phase of LIA
2 represents the dynamic
behavior of the modulated
cantilever in frequency
domain

Normally, an AFM cantilever in ambient conditions
is a highly underdamped system. Therefore one can
simplify Eq. (16) further considering that ω ≈ 1 and
ξ ≈ 0, and ξ2 � (1 − ω).1 In that case, one observes
that the system has one pair of dominant and one pair
of non-dominant poles at:

P1,2 ≈ −ξ

2
± 2 j

P3,4 ≈ −ξ

2
± (1 − ω) j

(17)

The non-dominant pair of poles, with complex part 2
(P1,2), represent the up-modulation of the resonator
and are not relevant for the TM-AFMproblem because,
besides being non-dominant, their response would be
filtered by the LIA. The other two poles (P3,4), which
are dominant, actually determine the transient behav-
ior of the AFM cantilever. Eq. (17) suggests that the
imaginary part of the dominant poles of the modulated
system (P3,4) are approximately equal to the differ-
ence between the excitation frequency and the reso-
nance frequency of the cantilever, i.e., |ωe − ωr| (or
in non-dimensional form |ω − 1|), and their real part
( ξ
2 = 1

2Q ) represent the settling time of the system. In
fact, the real part of the dominant poles which deter-
mine the relaxation time of the system is already known
byAFMexperts as it is a commonknowledge that lower
the Q-factor higher the speed of AFM. However, the
imaginary part is not well understood.

1 The In practice ξ is determined by physical conditions, while
ω is partly the choice of the operator. However, if the system
is not overdamped, the effects of ξ2 are negligible, therefore,
the imaginary part of the poles of the system can be considered
purely dependent on the choice of excitation frequency.

Recently, the relationship between the real part of the
poles (quality factor of the cantilever) has been experi-
mentally confirmed byAdams et al. [30] They used dif-
ferent custom-made cantilevers with various Q-factors
and showed the dependency of the settling time to the
Q-factor. In their experiments, they used a piezoelectric
actuator to modulate the surface height, artificially. In
this way they measured the frequency response of the
amplitude due to height variations. A very interesting
and counterintuitive detail in their experiments is that
the magnitude of the amplitude signal could go beyond
zero decibel at certain frequencies. This effect which
was not explained, is an evidence of the resonance in
the modulated system (see Figure 4.b in [30]). Note
that the presence of a resonance can only be explained
with complex conjugate poles.

To systematically investigate the resonance of the
amplitude signal,we repeated the experiment presented
byAdams et al. [30]. However, with the difference that,
instead of modulating the surface, we modulated the
amplitude of the excitation signal. In this way the non-
linearities regarding the TSI force are out of the equa-
tion, and the pure dynamics of the cantilever is mea-
sured. For this experiment, two lock-in amplifiers were
used as shown in Fig. 5. One of the LIAs provides the
modulation/demodulation of the cantilever with the so-
called carrier frequency, i.e., the excitation frequencyof
the dither (ωe), whereas the second LIA modulates the
amplitude of the carrier signal and extracts the ampli-
tude and phase of the amplitude of the cantilever. In
this way, effects of the fluctuation of harmonic force
are measured depending on the frequency content of
the fluctuation.
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Fig. 6 Measured (dashed lines) and calculated (solid lines)
response of the amplitude of the cantilever to the fluctuations in
magnitude of the total harmonic force with five different carrier
frequencies. These figures show the input–output relationship of

the modulated system, where the input is amplitude of the total
harmonic force and the out put is the amplitude of the cantilever.
Magnitude and phase are directly measured via the second LIA
shown in Fig. 5

Figure 6 shows both the measured and calculated
frequency response of the amplitude to these fluctua-
tions. The numerical results were achieved as follows:

The transfer functionmatrix for the linear part of the
system [from F(ωM ) toq(ωM )] is calculated as the first
column of (s I − Λ)−1 where s is the Laplace variable
and I is a (4× 4) unit matrix. Therefore, substituting a
probe function as Fd = sin(ωMτ), the amplitude and
phase signals (A2 and ϕ2) can be calculated analyti-
cally. Then, the functionality of the second LIA can be
implemented by multiplying the amplitude signal (A2)
by the probe signal and integrating as:

AA =
√(∫ 2π

0
A2 sin(ωMτ)dτ

)2

+
(∫ 2π

0
A2 cos(ωMτ)dτ

)2

(18a)

ϕA = tan−1

∫ 2π
0 A2 sin(ωMτ)dτ∫ 2π
0 A2 cos(ωMτ)dτ

(18b)

In this way amplitude and phase (AA, ϕA) of the ampli-
tude signal (A2) due to disturbance in total harmonic
force (Fd) were calculated.

In Fig. 6, five different carrier frequencies were cho-
sen around the resonance frequency with an interval
of 500 Hz. As it can be seen, there is a good agree-
ment between the experimental and numerical results.
Both experimental and numerical results demonstrate
that the peak of the amplitude occurs at a frequency

equal to the difference between the carrier and the reso-
nance frequencies (|ωe−ωr|), which confirms Eq. (16).
The experiments were done using a commercial AFM
and LIAs (Bruker Fast-Scan and Zurich Instruments
UHFLI 1.8 GSa/s 600MHz) with a standard cantilever
which has a resonance frequency ofωr = 319.015 kHz
and Q-factor Q ≈ 520. Simulations consider the same
cantilever.

An other important observation from the frequency
domain analysis is the slope of the decay line after res-
onance. The linear part of Eq. (10) suggests that the
system has one pair of dominant complex conjugate
poles. Hence, the system should behave like a second-
order system, and have a decay line with a slope of
−40 dB per decade after the resonance. However, due
to the output nonlinearity [see Eq. (10b)], the slope
of the decay line can differ from −20 till −40 dB
per decade, depending on the carrier frequency. This
observation suggests that it would be very challeng-
ing for any system identification method to find any
reliable integer-order fit for the system. This hinders
the design of model-based controllers. Obviously, this
problem would not appear without the output nonlin-
earity related to A and ϕ. Therefore, to design a model-
based controller, one has to either design fractional-
order controllers [31,32] or use the q3 and q4 as the
control input instead of the amplitude.
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Fig. 7 Time domain simulation results of TM-AFM while
approaching the surface. In this simulation, the distance between
the cantilever and the sample surface starts at 1.5 time the free

air amplitude, while the cantilever is at rest. At time 0, the dither
force and the PI controller are turned on. See the supplementary
material for an animated version

4 Implications of transient behavior of cantilevers
in TM-AFM experiments

In this section, the nonlinear closed-loop behavior of
the system is studied. The results show the practical
implications of the transient behavior of the TM-AFM
on thefinal image quality.Also the origin for previously
reported chaotic behavior of the TM-AFM [18] can be
explained.

4.1 Nonlinear closed-loop behavior of the TM-AFM

To investigate the nonlinear behavior of AFM in a
closed-loop setting, a force model and a model for the
controller are needed, besides the model of the can-
tilever. For the force, we use the slow time domain
DMT model as presented in previous subsections
(Eq. 14). A detailed derivation of the slow time model
is presented in “Appendix A”. As the controller, an
ideal proportional–integral (PI) controller is considered

which assumes that the z-stage actuator is fast enough
not to have any effect on the closed-loop dynamics of
the system. In this way the distance between the can-
tilever and the sample (h) is defined as:

h(τ ) = kp(A(τ ) − Aset) + ki

∫ τ

0
(A(s) − Aset)ds,

(19)

where kp, ki , and Aset are proportional gain, inte-
gral gain and set-point amplitude, respectively. Equa-
tions (10), (14) and (19) representing the cantilever (and
LIA), the tip–sample interactions, and the controller
are coupled with each other through shared signals
A, h, and F (1)

ts . Figure 7 shows the simulated amplitude,
phase, and the magnitude of the harmonic component
of the TSI forces during an approach process.

As it can be seen fromFig. 7, every time that the can-
tilever engages the surface (i.e., the distance becomes
equal to the amplitude of the cantilever) the TSI force
emerges and affects the cantilever and changes its
amplitude and phase. It is important to notice that dur-
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Fig. 8 Phasor plot representation of the amplitude and phase for three different excitation frequencies. The vectors show the steady-state
forces vectors. See [11] for the explanation of the steady-state situation and Supplementary Material for an animated version

Fig. 9 Height image of a calibration sample (UMG02B from
Anfatec Instruments) with three different excitation frequencies,
corresponding to Fig. 8. All three images are taken from the
same spot on the sample, using a standard tapping mode can-
tilever with a resonance frequency of 72 kHz, Q factor of 200,

and spring constant of 2.5 N/m. The free air amplitude, set-point
amplitude, and scan rate for all three cases are 100 nm, 75 nm,
and 1Hz, respectively. The colormasks are applied to exaggerate
the imaging artifacts. Imaging with a lower excitation frequency
adds fewer artifacts

ing the engagement time, the TSI force causes always
a considerable phase lead, while the amplitude mildly
changes. However, after disengaging the surface, the
amplitude value keeps reducing with a larger rate and
then increases again. To further investigate the transient
behavior of the amplitude and the phase, Fig. 8 shows
the dynamic trajectory of the system in phasor plane
for three different excitation frequencies. Using these
graphs, we can study the following three questions: (i)
Why do the tip–sample interactions always induce a
phase lead? (ii) Why does the amplitude keep reducing
and then increasingwhen disengaged from the surface?
(iii)Why is the image quality better whenwe choose an

excitation frequency slightly lower than the resonance
frequency of the cantilever?

Before the cantilever engages to the surface, the
motion of the cantilever has a phase delay with respect
to the dither force. Since the TSI force is opposite to
the displacement, the direction of the total harmonic
force at the first moment of the contact is upwards
(a positive phase). Also because the TSI force in first
engagement is much stronger than the dither force, the
total harmonic force is mainly dominated by the TSI
force. In this situation, the phase increases and ampli-
tude tries to increase by indenting the tipmore andmore
into the sample surface. Hence, the cantilever follows
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Fig. 10 Cross section of one of the holes in Fig. 9. The profiles
measured with an excitation frequency less than the resonance
frequency of the cantilever show a less noisy, more stable profile

the circular arc in Fig. 8 in counterclockwise. At the
moment that the phase lead does not need to increase
anymore, the cantilever looses contact with the surface
and only the dither force is acting on the cantilever.
After losing the connection, the cantilever follows its
free trajectory which first reduces the amplitude and
then increases. As explained in Fig. 4, the free trajec-
tory of the motion can be either a straight line or a spi-
ral trajectory, depending on the excitation frequency.
Repeating this engaging–disengaging process for few
times, the cantilever reaches its steady-state situation.
The damping needed for this process is provided by
all three elements: the cantilever, the non-conservative
part of TSI force, and the control action.

Comparing the three different cases in Fig. 8, for the
lower excitation frequency, the cantilever has a lower
phase delay before the contact. Thus, it needs to fol-
low a shorter trajectory on the circular arc to lose con-
tact. On the other hand, after losing contact, it follows
a counterclockwise spiral to reach the surface again

which is shorter than a clockwise trajectory to the sur-
face. Therefore, in total the cantilever has a shorter path
to the stable steady-state situation, when it is excited
with a lower frequency. That is why the images cap-
tured with a lower excitation frequency have higher
image quality, which is intuitively known by experi-
enced AFM users and is experimentally demonstrated
in Fig. 9. For this example, a calibration sample is mea-
sured with three different excitation frequencies where
all other parameters are exactly the same for all the
three cases. The difference in image quality can be
observed more clearly in Fig. 10 which illustrates the
added imaging artifacts on the cross section of one of
the holes in Fig. 9.

4.2 Chaotic behavior

It has been reported that if the controller is tuned to
be faster than a certain threshold, the closed-loop sys-
tem shows a chaotic behavior [18]. Although the pres-
ence of chaos was confirmed by studying the Poincaré
sections and Lyapunov exponents, the origin of the
chaos was not explained. Figure 11 shows the differ-
ence between a stable and a chaotic trajectory, and
Fig. 12 shows the images captured with conditions
corresponding to Fig. 11. In the scenario as explained
in the previous subsection, if the controller acts more
aggressive than a certain limit, the cantilever experi-
ences more than 2π radian phase lead before losing the
surface and re-engaging. Therefore, the next attempt
to re-engage does not start from a better initial point.
Thus, the new initial condition is not closer to the stable
point comparing the previous engaging point. Hence,

Fig. 11 Closed-loop
behavior of TM-AFM in
polar coordinates. a
Chaotic. b Stable. The
aggressive control action
causes more than 2π
radians phase lead in each
engage–disengage cycle and
prevents the system from
reaching a stable center
point which generates a
chaotic motion
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Fig. 12 Height image of
the calibration sample
(UMG02B from Anfatec
Instruments) with
parameters corresponding to
Fig. 11. When the cantilever
is in chaotic regime (the
control gains are too high),
the images do not provide
any useful information

the “engage/disengage” process repeats forever in a
periodic or non-periodicmanner, depending on the con-
trol gains. While the periodic “engage/disengage” gen-
erates a quasi-periodic regime, the non-periodic one
represents the chaotic trajectory. Both these regimes
have been reported in [18]. All in all, the chaotic behav-
ior can be attributed to the wrong direction response of
the amplitude signal.

5 Conclusions

In this paper, we presented a dynamic model for ampli-
tude modulation (tapping mode) AFM as the first
step toward a model-based control design. The model
graphically explains thebehavior of theAFMcantilever
in a slow timescale, i.e., the changes in the amplitude,
phase and the control signals. The proposed model
has been verified with experiments and shows that the
behavior of the AFM cantilever in slow timescale is
profoundly affected by the excitation frequency and
Q-factor of the cantilever. According to the presented
model the amplitude per sé is not the best indication
of the distance, and should not be used as the error
signal in the control loop. Instead, to design high-
performance controllers and avoid chaos, one should
consider a modulated transient model of the cantilever
as a multi-input–multi-output system.
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Appendix A: Calculation of the tip–sample interac-
tion force

To derive a relationship between the modulated TSI
force and the state variables of the resonating can-
tilever, we use a generalized form of the well-known
Derjaguin–Muller–Toporov (DMT) model which con-
sist of the attractive van der Waals (vdW) force, repul-
siveHertz, and a dissipative viscoelastic terms [26–28].
According to this model, the physical force f phts can be
written as:

f phts = HR
6(Z−x)2Dσ

− 4
3 EEff R

1
2 (x + σ − Z)

3
2
D0

−ηR
1
2 (x + σ − Z)

1
2
D0

dx
dt ,

(20)

where H, R, Z , and σ are Hammaker constant, tip
radius, separation of the sample surface and the can-
tilever in its undeflected configuration, and the inter-

molecular distance, respectively. EEff =
(

1−ν2tip
Etip

+
1−ν2sample
Esample

)−1

is the effective elasticity of the contact

which is calculated from the elasticity (E) and Poisson
ratio (ν) of the tip and the sample. η is the effective vis-
coelasticity of the contact area. The discontinuity func-
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tion (a)Db is defined to impose the discontinuity of the

forces during the contact as: (a)Db =
{
a if a ≥ b

b if a < b
.

Normalizing the model in Eq. (20) according to the
same scales as in Eq. (1), the non-dimensional form of

the TSI force

(
fts = f phts

k A0

)
can be written as:

fts = α

(h − x)2Dσ

− β(x + σ − h)
3
2
D0

− γ (x + σ − h)
1
2
D0

dx

dt
, (21)

where h = Z
A0
, α = HR

6k A3
0
, β = 4EEff

√
RA0

3k , and γ =
ωη

√
RA3

0, are the coefficients of the vdW, Hertz and
viscoelastic forces, respectively. A0, and k represent
the free air amplitude and the spring constant of the
cantilever. Applying the Fourier operation as explained
in Sect. 2 , we obtain:

F (1)
ts = F (1)

vdW − F (1)
H − F (1)

vis , (22)

where the first harmonic of the van der Waals force
(F (1)

vdW), Hertzian contact force (F (1)
H ), and viscoelastic

damping (F (1)
vis ) are defined as:

F (1)
vdW = α

2π
ω∫

0

e jωtdt

(h − �[X2e jωt ])2Dσ

, (23a)

F (1)
H = β

2π
ω∫

0

(�[X2e
jωt ] + σ − h)

3
2
D0
e jωtdt, (23b)

F (1)
vis = γ

2π
ω∫

0

(�[X2e
jωt ] + σ − h)

1
2
D0

×�[X1e
jωt ]e jωtdt. (23c)

Considering the definition of Xi = Aieϕi , i = 1, 2,
and defining variables θi = ωt+ϕi , i = 1, 2, ζ1 = h

A2
,

and ζ2 = σ
A2
, the integral in Eq. (23a) can be simplified

as:

2π
ω∫

0

e jωtdt

(h − �[X2e jωt ])2Dσ

=
2π+ϕ2∫
ϕ2

e(θ−ϕ2)dθ

(h − A2�[e j (θ)])2Dσ

= e−ϕ2

A2
2

2π∫
0

[cos(θ) + j sin(θ)]dθ(
h
A2

− cos(θ)
)2
D(

σ
A2

)

= −X2

A3
2

2π∫
0

cos(θ)dθ

(ζ1 − cos(θ))2D(ζ2)

.

Note that:
2π∫
0

sin(θ)dθ(
h
A2

− cos(θ)
)2
D(

σ
A2

)
= 0

because it is an odd periodic function of θ .
Repeating the same procedure for Eqs. (23b) and

(23c), we obtain:

�(F (1)
ts ) = (KH − KvdW)q3 + Cvisq1, (24a)

�(F (1)
ts ) = (KH − KvdW)q4 + Cvisq2, (24b)

where KvdW, KH, and Cvis are defined as:

KvdW = α

A3 I1

(
h

A
,
σ

A

)
, (25a)

KH = βA
1
2 I2

(
h

A
,
σ

A

)
, (25b)

Cvis = γ A− 1
2 I3

(
h

A
,
σ

A

)
, (25c)

and can be considered as added negative stiffness due
to the vdW force, added stiffness by the Hertz force,
and the addeddampingof the viscoelastic force, respec-
tively. The integral functions in Eq. (25) are defined as:

I1(ζ1, ζ2) =
2π∫
0

cos(θ)dθ

(ζ1 − cos(θ))2Dζ2

, (26a)

I2(ζ1, ζ2) =
2π∫
0

(cos(θ) − ζ1 + ζ2)
3
2
D0
cos(θ)dθ, (26b)

I3(ζ1, ζ2) =
2π∫
0

(cos(θ) − ζ1 + ζ2)
1
2
D0
cos(θ)dθ, (26c)

and are illustrated inFig. 13.Note that, the conservative
part of the force ((KH − KvdW)X2) is in the opposite
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Fig. 13 Integral functions I1 till I3 as a function their arguments

direction of the modulated displacement (X2), and the
dissipative force (CvisX1) is in the opposite direction
of the modulated tip velocity (X1). Therefore,(KH −
KvdW), and Cvis can be considered as the added stiff-
ness and the damping of the TSI force, respectively.

AppendixB:Calculation of the nonlinear frequency
response curve

The steady-state frequency response of the cantilever
can be calculated by substituting Eq. (24) into Eq. (10)
and putting q̇i = 0 yields:⎡
⎢⎢⎢⎢⎣

[
1 − ω2 −ξω

ξω 1 − ω2

]
+

[
KH − KvdW −Cvisω

Cvisω KH − KvdW

]

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ξ

{
q3
q4

}
︸ ︷︷ ︸
X2

=
{
Fd
0

}
︸ ︷︷ ︸

Υ

.

(27)

As it can be seen from Eq. (25), the added nonlin-
ear stiffness and damping values do not depend on the
phase or frequency, instead they are only a function of
amplitude. It is easy to check that this is the case for
any time-invariant nonlinearity.

To avoid solving the nonlinear equation (27) for
amplitude and phase, we suggest instead to scan the
amplitude, and solve for frequency. Therefore, we
defined Ξ and Υ in Eq. (27) such that Ξ X2 = Υ .
Considering Eq. (10b) (q23 + q24 = A2), one can elim-
inate the phase by multiplying Eq. (27) by Ξ−1, and
left-multiply the transpose of the resultant by itself:

A2 = XT
2 X2 = Υ TΞ−TΞ−1Υ. (28)

Independent of the type of the nonlinearity (only if
the nonlinearity is time independent), Ξ can always
be written as a summation of a skew symmetric matrix
and a scaled unit matrix. Therefore, ΞΞT will always
be diagonal, with both of the elements equal to each
other which leads to the single algebraic equation:

F2
d

A2 = (1+ KH − KvdW −ω2)2 + (ξ +Cvis)
2ω2. (29)

For one-DOF resonators, Eq. (29) is always quad-
ratic in terms of ω2 and has an analytic solution for any
value of the amplitude. The square root of the real and
positive solutions of the Eq. (29) show the frequency
for each amplitude. After calculating the amplitude–
frequency pair, the phase can be calculated simply by
solving the Eq. (27) for X2, which is linear. The main
advantage of this method as compared to arc-length
methods is that in this way the computational time
can be significantly reduced without compromising the
accuracy.However, thismethod, in its present form, can
only deal with one-DOF resonators with nonlinearities
that are not explicitly time dependent.
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