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Abstract Wepresent analytical andnumerical double-
periodic solutions of the one-dimensional nonlinear
Schrödinger equation and its extended versions in the
form of Talbot carpets. The breathers and rogue waves
of different orders are obtained using numerical simula-
tions, starting from the initial conditions calculated by
the Darboux transformation. To suppress undesirable
aspects of modulation instability leading to homoclinic
chaos, Fourier mode pruning procedures are invented
to preserve andmaintain the twofold periodicity of car-
pets. The novelty of this paper is analytical Talbot car-
pets for Hirota–quintic equation and ability to obtain
them dynamically by controlling the growth of the
Fourier modes. In addition, the new period-matching
procedure is also described for periodic rogue waves
that can be utilized to produce Talbot carpets without
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Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, Belgrade 11080, Serbia

O. A. Ashour
Department of Physics, University of California, Berkeley,
Berkeley, CA 94720, USA

Y. Q. Zhang
Department of Applied Physics, School of Science, Xi’an
Jiaotong University, Xi’an 710049, China

S. A. Chin
Department of Physics and Astronomy, Texas A&MUniversity,
College Station, TX 77843, USA

mode pruning. Tablot carpets may find future utility in
optoplasmonic nanolithography.
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1 Introduction

Nonlinear Schrödinger equations (NLSEs) of different
orders continue to elicit acute attention of numerous
researchgroups around theworld, for their utility in var-
ious branches of mathematics and physics [1–8]. Here,
our attention is focused on the one-dimensional NLSEs
arising in the extension of the basic cubic NLSE up to
the fifth-order in nonlinearity and dispersions, of utility
in nonlinear fiber optics. In particular, we are interested
in the unstable solutions of thesemodelswhen themod-
ulation instability sets in.

Modulation instability (MI) is the basic nonlinear
optical process in which a weak periodic perturbation
of the fundamental pump wave produces an exponen-
tial growth of a finite number of spectral sidebands
locked to and growing at the expense of the pump
[4,5,9]. Although commonly known as the Benjamin–
Feir instability of Stokes waves, that appeared in the
1960s, the MI of the cubic NLSE debuted already in
1947, in the Bogoliubov’s work on the uniform Bose
gas [10]. It is widely believed that MI is the root cause
of the appearance of rogue waves (RWs) in nonlinear
optics. The problem is, how to systematically incorpo-
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rate the process of MI into the dynamics of generation
andobservationofRWs in theNLSEsof different types.

A convenient handle in this process is provided by
the existence of a family of exact solutions to the basic
cubicNLSE in the formofAkhmediev breathers (ABs),
Kuznetsov–Ma (KM) solitons, and the Peregrine soli-
ton, whichmay be regarded as the elementary solutions
on a finite background from which higher-order RW
solutions can be formed. In this sense, ABs seem to
be especially relevant [11,12], which can be general-
ized to the doubly periodic solutions (as well as to the
extended NLSEs). They allow for an easy systematic
buildup of higher-order breathers that can be regarded
as prototype RWs [13,14].

The complication is that these basic and higher-
order solutions represent homoclinic orbits of unstable
Stokes waves in the dynamics of cubic NLSE [15–18].
The generic long-time dynamics of modulated Stokes
waves, for example, ABs with two or more unstable
modes, is chaotic. Once the system, for a range of rel-
evant parameters and initial and boundary conditions,
enters homoclinic chaos, the predictive power of the
model diminishes. The question has even been raised
whether the chaos seen belongs to the model itself or is
induced by the numerical procedure applied [15,16].

For these reasons, a school of thought has emerged
which holds that it is not important to follow exact
dynamics of individual members of the family of exact
solutions, but to look at the statistics of RWs in the
chaotic regime [4,6,13,19,20]. Optical RWs are rare
extreme events in the fluctuation of optical fields; there-
fore, their statistical features, such as long-tailed proba-
bility distributions, should be considered as their defin-
ing features. Thus, one should proceed with the numer-
ical solution of different NLSEs with appropriate ini-
tial conditions seeded with noise of various types, and
after many runs compare the associated statistics of the
resulting field distributions with the available experi-
mental data.

In this paper, we adopt a different approach. It is our
belief that for specific applications, one still must per-
form carefully designed numerical simulations of indi-
vidual well-defined RW solutions, even when it leads
to following their dynamics deep in the chaotic region.
The general idea is to discern order from chaos. The
specific goal is to investigate the possibility of pro-
ducing Talbot carpets out of ABs of different orders,
with an eye on possible applications in nanolithogra-
phy. Such an investigation requires launching an exact

breather and following its repeated self-imaging recur-
rences for as long as possible.

Thus, we examine how AB and RW solutions may
be obtained for the NLSE and its extensions, the Hirota
and quintic equation, and used to accomplish the goal
stated. To this end, of immense importance are the ana-
lytical solutions to the NLSE that are periodic both
along the spatial and temporal axes, and can be viewed
as Talbot self-images, introduced in [12]. This study
was extended in [21,22], where the nonlinear Talbot
carpets of rogue waves were reported for the first time.
These solutions are associated with the Talbot effect,
first described in the nineteenth century [23], about the
same time the solitarywaveswere discovered.An inter-
esting feature of the nonlinear Talbot effect is that it
only displays the primary and secondary images.

The Talbot effect is a near-field diffraction effect,
observed when light beams diffract at some periodic
structure (such as gratings) and produce recurrent self-
images at equidistant planes. In-between the planes,
fractional and even fractal images are observed, lead-
ing to intricate light patterns that are called the Tal-
bot carpets. Later, the self-imaging phenomena have
been reported in many areas of physics, such as atomic
[24,25] and quantum [26] optics, waveguide arrays
[27], Bose–Einstein condensates [28,29], photonic lat-
tices [30], and X-ray imaging [31]. Talbot self-images
can even be regarded as an example of Fermi–Pasta–
Ulam recurrence [9]. Nonlinear Talbot effect from non-
linear photonic crystals was experimentally demon-
strated in [32]. An overview of the recent advances
of Talbot effect in modern science is presented in [33].

Themajor advances in this paper can be stated as fol-
lows.We present the dynamical generation of breathers
and rogue waves in Talbot carpet-like arrangements,
for the NLSE and its extensions. We calculate the first-
and higher-order breathers using Darboux transforma-
tion (DT) and extract initial conditions in a wide box
that is a multiple of the main breather’s period [34].
We invent two pruning procedures for Fourier modes,
to suppressmodulation instability that ruins the double-
periodic pattern of high-intensity peaks. We generalize
the NLSE solution formula from [12] and obtain exact
solutions for the Hirota–quintic equation. We display
a new class of solutions and analyze different mode
pruning algorithms for their dynamical stabilization.
We introduce a novel way for generating Talbot carpets
for the quintic equation on nonuniform backgrounds,
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basedon specific ratios of the breather and elliptic back-
ground periods on which the breathers ride.

The paper is organized in the following fashion. In
Sect. 2, we introduce the model of generalized NLSEs
and analyze a numerical algorithm for generating non-
linear Talbot carpets from their solutions that may or
may not require mode pruning. In Sect. 3, we pro-
vide exact solutions of the Hirota–quintic equation and
exhibit dynamical procedure for producing Talbot car-
pets for this specific extended NLSE. In Sect. 4, we
build double-periodic RWs on a dnoidal background
for the quintic equation and arrange them also in the
form of Talbot carpets. In Sect. 5, we summarize our
results.

2 Dynamical double-periodic solutions of the
extended NLSE

In this paper, we study double-periodic solutions of
the extended nonlinear Schrödinger equation, called
the quintic NLS equation (QNLSE)

iψx + S[ψ(x, t)] − iαH [ψ(x, t)]
+ γ P[ψ(x, t)] − iδQ[ψ(x, t)] = 0.

(1)

Here, the transverse variable is denoted by t and the lon-
gitudinal variable by x , while α, γ and δ are arbitrary
real numbers used to introduce higher-order terms. The
wave functionψ ≡ ψ(x, t) represents the slowly vary-
ing envelope that could be optical, plasmonic or other
in nature. A distinct value of Eq. (1) is that it represents
a general extension of the NLS equation to the quintic
order that includes in a consistent manner various dis-
persive and nonlinear contributions of relevance to the
propagation of pulses in fibers.

Operators S, H , P , and Q comprise the nonlinear-
ity terms and higher-order spatial dispersions. They
arise in an infinite hierarchy of NLSEs [7,8,35]. Their
expressions are as follows:

S[ψ(x, t)] = 1

2
ψt t + |ψ |2ψ, (2)

H [ψ(x, t)] = ψt t t + 6|ψ |2ψt , (3)

P[ψ(x, t)] = ψt t t t + 8|ψ |2ψt t + 6|ψ |4ψ + 4|ψt |2ψ
+6ψt

2ψ∗ + 2ψ2ψ∗
t t , (4)

Q[ψ(x, t)] = ψt t t t t + 10|ψ |2ψt t t

+30|ψ |4ψt + 10ψψtψ
∗
t t

+10ψψ∗
t ψt t + 20ψ∗ψtψt t + 10ψ2

t ψ∗
t ,

(5)

where the subscripts t [and x in Eq. (1)] represent the
partial derivatives. Additional terms of higher-order
dispersion and nonlinearity are required for the descrip-
tion of ultrashort pulse propagation through optical
fibers [2,36–39].

The third-order term (Hirota) is used to explain the
generation of supercontinuum [5] and pulse-deforming
phenomena in fibers [40]. The fourth-order
(Lakshmanan–Porsezian–Daniel) operator appears in
the analysis of Heisenberg spin chains [35]. The fifth-
order dispersion (quintic) is noticeable in laser experi-
ments with ultrashort pulse duration (below 20 fs) [41].

When α = γ = δ = 0, Eq. (1) reduces to the well-
known cubic NLSE, which is the fundamental equa-
tion of nonlinear optics [4,9,20,42,43]. If only α �= 0,
we deal with the Hirota equation [44–47]. In case of
nonzero α and δ with γ = 0, we talk about Hirota–
quintic equation.

Various solutions of the QNLSE, such as soli-
tons [48,49], breathers [49,50], and RWs [51], have
been discussed in the literature. It is well known that
breathers and solitons of arbitrary order can be obtained
analytically using the DT technique. These solutions
are single periodic: breathers along t , and solitons along
x direction. Single-periodic NLSE solutions, such as
ABs, can be utilized to dynamically construct nonlin-
ear Talbot carpets, which are also intimately connected
with the double-periodic solutions of NLSE.

The period of an AB (first order or higher order)
is determined by the single parameter a < 0.5 of the
solution [9]:

L = π√
1 − 2a

. (6)

The initial condition for dynamical generation is
derived from exact AB solutions at a certain value of
the evolution variable x = x0, using Darboux transfor-
mation [52]. Here, it is essential to adjust the size of
the transverse box (t1, t2) to an integer multiple M of
the fundamental breather’s period and apply periodic
boundary conditions,

ΔT = t2 − t1 = ML . (7)
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Fig. 1 Double-periodic numerical solutions, made of the first-
order NLSE breathers (α = γ = δ = 0), using the pruning
procedure in FFT. The breather parameter is a = 0.36. a One

breather in the box, no pruning. b Its spectrum. c Three breathers
(3 periods) in the box, with the pruning. d The corresponding
spectrum

Numerical solutions of NLSEs in this paper are
obtained using the second-order split-step fast Fourier
transform (FFT) method. When the box size is exactly
equal to the breather’s fundamental period L , the
Fourier harmonics form the basic set of spatial frequen-
cies

S1 = {
ω j = jΩ; | 0 ≤ j < N

}
, (8)

where Ω = 2π/L is the mode spacing and N the total
number of modes. The mode growing out of this basic
set will be the stable fundamental breather mode. How-
ever, if the box is larger (M > 1), the fundamental

mode andmode spacings are smallerΩM = Ω/M , and
Fourier modes form a new set SM with a larger num-
ber of modes (NM). All modes from SM that are not
elements of S1 exponentially grow from infinitesimal
amplitudes, owing to modulation instability. Now, the
modes from S1 are also under MI and grow exponen-
tially, but they interfere constructively and only form
the fundamental AB mode.

The key point in generating nonlinear Talbot carpets
is to suppress the undesirable unstable Fourier modes.
This can be achieved in different ways. In the simplest,
after each numerical iteration one simply eliminates the
unstable subharmonics, leaving only the ones responsi-
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Fig. 2 Dynamical generation of Talbot carpet from the first-
order breathers using a DT initial condition, with a = 0.36 and
M = 5. a A failed attempt, due to MI. b The corresponding
Fourier spectrum, displaying loss of Talbot periodicity due to

the exponential growth of non-quintuplet modes. c Successful
generation of the Talbot carpet using the pruning procedure. d
Fourier spectrum after the pruning is applied

ble for the formation of the fundamental AB (labeled as
0, ±M ,±2M , ±3M , etc). It effectively eliminates MI.
The procedure is illustrated in Fig. 1. Although quite
drastic, it apparently works. The other ways include
suppressing the unstable modes selectively and to a
degree.

In Fig. 1a, we show numerical evolution of the first-
order Akhmediev breather (a = 0.36) when the box
size is equal to the breather’s period (M = 1). One can
see that the intensity peak at t = 0 is repeated along x-
axis at the Talbot periods, forming a stable mode. This
peak is consecutively shifted for half a period along
t-axis, forming the secondary Talbot image at half the

Talbot period. The corresponding Fourier spectrum is
shown in Fig. 1b. Next, we calculate the same breather
over three periods (M = 3). We apply the simple
pruning algorithm to Fourier modes, setting all unsta-
ble mode amplitudes to zero except the triplet modes,
indexed as 0, ± 3, ± 6, ± 9, and so on. The result is an
extended Talbot carpet with alternate shifting of inten-
sitymaxima along x- and t-axes, as presented inFig. 1c.
The spectrum of the triplet mode amplitudes is shown
in Fig. 1d.

In Fig. 2, we display how the simple pruning tech-
nique actually works. We again choose the first-order
breather with a = 0.36 and set the numerical box to
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Fig. 3 Same as Fig. 1 but with Gaussian pruning. a The carpet. b Its spectrum. The modes at the bottom are the suppressed unstable
modes

be exactly five times the breather’s period: M = 5.
In this case, the AB will be formed by the modes
A0, A5, A10, . . . , A5m . If the pruning algorithm is not
applied, the chaotic behavior ruins the carpet after just
one full Talbot cycle, as shown in Fig. 2a. This is the
MI in action: The unstable modes grow exponentially
and prevent the homoclinic orbit (the initial AB mode)
from returning to itself after more than one cycle. This
is clearly observed in the buildup of Fourier spectrum
of all modes (Fig. 2b), which destroys the spatial Tal-
bot periodicity. Note that after the full cycle, another
displaced AB appears but not at half-cycle, interacting

Fig. 4 Double-periodic numerical solution of NLSE, made of
the second-order breathers, having a = 0.41. The box contains
5 breather’s periods. The solution is obtained using the pruning
procedure

with the full mode. As a result of this interaction, or
beating of the two modes, two second-order ABs (that
can be regarded as the second-order RWs) are formed
around x = 45, which constitutes the normal channel
for the production of RWs throughMI. However, when
the pruning procedure is applied, all non-quintuplet
modes are killed after each iteration. Effectively, the
procedure prevents the orbit to wander in the homo-
clinic tangle, forcing it to stick to itself and return back
to the starting point. The result is the perfect nonlinear
Talbot carpet (Fig. 2c), with the perfect Fourier spec-
trum (Fig. 2d).

In Fig. 3, we illustrate the Gaussian pruning algo-
rithm, in which the unstable modes are not eliminated
completely but suppressed by a Gaussian factor. Thus,
the unstable modes are multiplied by a Gaussian factor
that depends on their strength: When weak, they are
allowed to grow; but the more they grow the more they
are suppressed. Effectively, they can grow only up to a
certain level, determined by the Gaussian distribution.
In Fig. 3b, the unstable modes, visible at the bottom
of the figure, cannot grow above the level of approxi-
mately 10−9.

In Fig. 4, we present the nonlinear Talbot carpet con-
sisting of the second-order breathers with consequently
higher peak intensity. It can be regarded as a carpet
composed of rogue waves. The box size is five times
the fundamental breather period, having a = 0.41.
This breather contains two unstable modes. Initial con-
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ditions were derived from DT along a line passing
through the breather’s maximum. As in the previous
figures, the simple pruning algorithm was used, which
left only the quintuplet Fourier modes intact.

Obtaining Talbot carpets composed of the third-
order ABs required tedious mode elimination proce-
dure, due to inherent instability of such solutions and
lowprobability of the triple collisions of breather’s con-
stituents in the xt-plane. No effective pruning algo-
rithm could be devised yet, although different mode
pruning techniques produced nonuniform carpets of
extended stability. We are actively engaged in this
investigation, and hope to resolve the issues in a future
publication.

3 Talbot carpets for the Hirota and Hirota–quintic
equation

A family of double-periodic solutions of NLSE that
include Jacobi elliptic functions (JEFs) is presented in
[12] and in Eq. (6) of [21]. Here, we report the gener-
alization of this expression to the exact solution of the
Hirota–quintic equation:

ψ(x, t)

= k√
2

A(x, t) · dn ( kx
2 , g = 1

k

) + i
k sn

( kx
2 , g = 1

k

)

1 − A(x, t) · cn ( kx
2 , g = 1

k

) ·

· eix/2,
(9)

where

A(x, t)

=
cn

(√
k

(
t + 2αx + (

4 − 1
2k

2
)
δx

)
, g =

√
k−1
2k

)

√
1 + k

(10)

g is the elliptic modulus, m = g2 is the elliptic modu-
lus squared, and k is a positive real constant. The JEF
functions sn(x, g), cn(x, g), and dn(x, g) are all peri-
odic, with the periods 4K , 4K , and 2K , respectively,
where K (m) = ∫ π/2

0 dθ/
√
1 − g2sin2θ is the com-

plete elliptic integral of the first kind. Therefore, solu-
tions described in Eq. (9) are periodic in both t and x
directions for any k > 0. They allow the formation of
Talbot carpets for the extended NLSE, up to the fifth-
order dispersion.

We use analytical solution from Eq. (9) to dynam-
ically generate Talbot carpets for the Hirota equation
(α �= 0, γ = δ = 0). We calculate initial conditions
for numerics at some particular x value using Eq. (9).
However, the numerical algorithm is different from the
basic NLS equation. Since we have 6|ψ |2ψt terms in
the H operator, comprising both dispersion and nonlin-
earity in a single term, it is not convenient to use FFT.
Instead, we use a finite difference method to calculate
derivatives and the fourth-order explicit Runge–Kutta
method for the evolution of the wave function.

In Fig. 5a, we show a failed attempt to dynamically
generate Hirota Talbot carpet (α = 0.2712, γ = δ = 0,
and k = 1.7286). The box is exactly equal to 10 peri-
ods along the t-axis. At x ≈ 25, modulation instability
starts to ruin the carpet, leading to chaotic behavior
of the modes. The intensity peaks are smeared and of
lower intensity, since the unstable modes increase their
amplitudes during evolution. To overcome the influ-
ence of MI, after each few iterations we perform the
FFT ofψ(x, t) and then set the amplitudes of all modes
to zero, except for the modes with indices 0, ±10,
±20, ±30, etc. In this manner, modulation instabil-
ity is suppressed and Talbot carpet produced, as shown
in Fig. 5b. The numerical solution obtained in this way
is equal to the analytical one, all the way to the total
calculation time (x = 60).

In the next example, we exhibit analytical Talbot
carpets of the Hirota–quintic equation, having γ = 0
and k = 1.772. No pruning is needed here. In Fig. 6a,
we show Talbot carpet obtained for α = −0.2712 and
δ = −0.1. In general, the breathers are tilted. One can
infer that the tilt of each breather-like structure to the
right is caused by the negative signs of quintic parame-
ters. If signs of α and δ are changed, identical intensity
patterns will be produced, but with the tilt in the oppo-
site direction (Fig. 6b). If α and δ have different signs,
thenHirota and quintic termswill tend to tilt and stretch
intensity maxima in different directions. For the given
values of α and δ, one can balance the action of H and
Q operators, and obtain a solution that satisfies both
the NLSE and Hirota–quintic equations. This condi-
tion is met when the coefficient which multiplies x in
Eq. (10) is set to zero: 2α+(4−k2/2)δ = 0. From this
expression, for α = −0.2712 and k = 1.772, one can
calculate δ = −4α/(8 − k2) = 0.2232. The solution
so found is straight Talbot carpet, as shown in Fig. 6c.
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Fig. 5 Hirota Talbot carpet (numerical evolution) with 10 peri-
ods in a box. Initial conditions are given by analytical expression
(9), withα = 0.2712, γ = δ = 0 and k = 1.7286. aNormal evo-

lution of the initial breather, with MI included. b Talbot carpet,
with the pruning procedure applied

Fig. 6 Talbot carpet of Hirota–quintic equation (γ = 0 and k = 1.772). Parameters are: a α = −0.2712 and δ = −0.1, b α = 0.2712
and δ = 0.1, c α = −0.2712 and δ = − 4α

8−k2
= 0.2232

Fig. 7 Quintic Talbot carpet made of the second-order breathers
that arematchedmutually and to the dnbackgroundwave. Param-
eters: c = 1, α = −0.03, γ = −0.0614, δ = 0.7: am = 0.1192,

ν1 = 0.92, ν2 = 0.83, q = 9. b m = 0.0505, ν1 = 0.92,
ν2 = 0.8104, q = 8
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4 Double-periodic rogue waves of the quintic
equation using period-matching procedure

In this section, we discuss the numerical procedure for
generating double-periodic RW solutions of the quintic
equation (α �= 0, γ �= 0, δ �= 0). These are basically
higher-order breathers obtained by the Darboux trans-
formation technique, when one sets JEFs as the starting
seed solutions ψ0(x, t). Being doubly periodic, they
can appear in the form of Talbot carpets. Hence, no
pruning procedure is necessary, owing to the extensive
and very precise periodmatching that ensures construc-
tive nonlinear interference of modes and prevents the
growth of unstable sidebands. Only the fundamental
double-periodic RW mode can grow. This is similar to
the generation of the stable AB in Fig. 1, where also no
pruning was necessary.

The discussion here leans a lot on the results
obtained in [53].We choose the dn function as the back-
ground [7,8,53]:

ψ0(x, t) = ceiφxdn (ct + vx,m) , (11)

with φ = 1
2 (2 − m) c2 + γ c4

(
6 − 6m + m2

)
and v =

(2 − m) αc3 + δc5
(
6 − 6m + m2

)
. Next, we calculate

an arbitrary-order breather on the elliptic background,
using the procedure described in detail in [53].

As shown in Sect. 5 of [53], the matching of the
higher-order breather period TB to the period of the dn
background Tdn may lead to the appearance of periodic
RWs. This means that the ratio of periods q = TB/Tdn
should be a positive integer. In addition, it is also needed
to match the periods TB1, . . . , TBK of the DT con-
stituents that form a K th-order breather (TBj = TB1/j ,
for j = 2, . . . , K ) with the background. An intricate
period-matching procedure ensues, which leads to a
Talbot carpet of periodic RWs that requires no prun-
ing.

Two examples of the quintic Talbot carpets, consist-
ing of the second-order breathers, are shown in Fig. 7.
We take c = 1, α = − 0.03, γ = − 0.0614, and
δ = 0.7. We use expressions from [53] to calculate
m = 0.1192, ν1 = 0.92, and ν2 = 0.83, leading to
q = 9 and TB2 = TB1/2. Here, ν1 and ν2 are the eigen-
values of the first two unstable modes, according to the
DT. We get the double-periodic rogue wave shown in
Fig. 7a. Similarly, we take the second set of values:
m = 0.0505, ν1 = 0.92, and ν2 = 0.8104, and obtain

q = 8. The result is another quintic Talbot carpet, seen
in Fig. 7b.

5 Conclusion

In this paper, we have presented dynamical procedure
for generating Talbot carpets from the solutions of gen-
eralized NLSEs, consisting of the first- and second-
order breathers. We have shown that to this end, it is
necessary to calculate the initial wave for numerics
using DT, and to set the transverse box size equal to
an integer number of breather periods.

We have introduced two pruning algorithms, by
which unstable Fourier modes that produce modula-
tion instability and may ruin the carpet are eliminated
or suppressed (except the ones building the fundamen-
tal breather).

We have next displayed new exact Talbot carpet
solutions of the Hirota–quintic equation, which is a
generalization of the NLSE resulting from a consistent
Taylor expansion of dispersive and nonlinear terms.We
have analyzed how the three parameters in the equation
affect intensity distributions in the carpet. We pointed
out that for particular combination of the parameter
values, common solutions of both NLSE and Hirota–
quintic equation can be obtained.

In the end, we applied the analysis from our previous
work to generate doubly periodic rogue waves of the
quintic equation.Weused an extensive periodmatching
of higher-order breathers and an elliptic background
on which the breather is constructed, to produce rare
periodic RWs which obliviate the need for using the
pruning procedure to suppress MI.

We believe that various Talbot carpet solutions of
extended nonlinear Schrödinger equations (up to the
fifth-order dispersion) can find applications within the
broad class of self-imaging phenomena and possibly
for nano-photonic lithography. An interesting exten-
sion of this work is to invent pruning techniques that
are amenable to experimental generation of modes in
fibers, in which only the adverse effects of MI are sup-
pressed.
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