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Abstract In this paper, model tests were carried out,
which mainly focused on the numerical mapping of
the characteristics of the gear backlash. In particu-
lar, the effect of the approximation function on the
value of the largest Lyapunov exponent was investi-
gated. The generated multi-coloured maps served as
a criterion for verifying the results of the model tests.
The analysis involved polynomial functions of the third
degree, itsmodified structure, and the logarithmic equa-
tion. As a pattern to which the results of model tests
were derived, the mathematical model of the gear was
used, in which the characteristics of the backlash were
modelled with a non-continuous function describing
the so-called dead zone. We show that the dependen-
cies described by polynomials imprecisely describe the
dynamics of a single-stage gear transmission mecha-
nism. Additionally, the value of the logarithmic coeffi-
cient, which approximates the backlash characteristics,
for which the Poincare cross section corresponds with
its model counterpart, is determined. The coefficient of
the logarithmic function was optimized on the basis of
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bifurcation diagrams, which were used to determine its
horizontal asymptote. The elimination of discontinu-
ities significantly simplifies computer simulations and
increases their effectivenesswithout losing information
about the phenomena occurring in the gear transmis-
sion.
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1 Introduction

Modern design solutions of gear transmissions assume
that the ratio of the effective value of power trans-
mitted by gears to their mass is as small as possi-
ble. In addition, there is a tendency to minimize the
load on the teeth by increasing the speed of the rotat-
ing wheels. From an operational point of view, the
rotational speed of the transmission input cannot be
increased indefinitely, being limited by the dynamic
properties of the drive motors. In addition, an increase
in the rotational speed of the rotating elements in the
drive system causes an increase in the amplitude of
the excited mechanical vibrations [1]. High load val-
ues adversely affect the exploitation of the machine
and its operator [2,3]. Increased vibroacoustic activity
adversely affects the durability and reliability of the
gear transmission. Failures caused by material fatigue
are very often causedby cyclically varying loads,which
most often occur at low excitation frequencies. From
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the theoretical point of view, the cheapest method of
testing the dynamic properties of machines and their
subassemblies is via computer simulation. They are
carried out on the basis of phenomenological models,
attempting to take into account the most important fea-
tures of the physical system and omitting those which
are of minor importance.

For the assessment of the forces arising from the
meshing of gears, discrete models consisting of two
discs coupled with a parallel connection of elastic and
dissipative element are most often used [4]. The proper
meshing of the gears ensures the presence of gear back-
lash, which is one of the main factors introducing non-
linearity. In most studies, this nonlinearity is repro-
duced by a discontinuous function containing a so-
called dead zone [5], or a straight broken line [6,7].
When designing gearboxes, the value of backlash is
assumed to be 0.04 of the tooth module. However,
according to DIN 3967, its value should be in the range
from 100 to 400μm [8]. Increasing its value causes
transmission impact loads, and the cooperation of the
gear wheels runs chaotically [9]. For this reason, the
modification of the backlash is possible only to a lim-
ited extent.Due to the simplifications related to numeri-
cal calculations, the discontinuous characteristics of the
gear backlash are sometimes approximated by polyno-
mial functions of degree three [10,11]. An alternative
approach to the numerical mapping of the backlash is
the approximation with a continuous function, with the
equation proposed in the paper [12]. The use of this
type of simplification is mainly related to the strong
nonlinearity of gear backlash, which causes computa-
tional problems, in particular manifested by inaccurate
mapping of time series and derivatives of higher orders
in generalized coordinates [13]. Meshing stiffness is
variable and is directly related to the number of inter-
meshing teeth. In the case of only one pair, the meshing
teeth are subject to the greatest deflection, because the
cooperating pair of teeth is affected by the highest load.
The easiest way to identify the stiffness of the teeth is to
treat them as a fixed beam. Although this simplification
provides approximate information, it is, nevertheless,
sufficient to carry out initial quantitative and qualitative
model tests. Much more accurate results are obtained
using models based on the finite element method [14].
In model tests, the periodic stiffness of the intermittent
teeth is usually mapped using a periodic function [15]
and less frequently with a rectangular [16] or trape-
zoidal [17] profile. The source of the excited mechani-

cal vibrations ofmeshing gear teeth is the so-called per-
formance and location errors. They are mainly caused
by radial beating and geometric deviations of the tooth
profile. This parameter depends on the accuracy of the
production and assembly of the cooperating wheels.
In mathematical models, this quantity is described by a
single harmonic function or a superposition of harmon-
ics [18]. An additional adverse phenomenon affecting
the increase in dynamic loads is the wear of the tooth
surface and possible damage occurring as the time of
machine operation increases [19–22]. The entire men-
tioned factors mean that the phenomenon of energy
dissipation in cooperating toothed wheels is a complex
issue. Admittedly, works are undertaken in the field of
its mathematical description [23,24]. However, due to
the complexity of the energy dissipation phenomenon
inmeshing, the energy losses are usuallymodelledwith
a viscous damper [25]. Taking into account these fac-
tors leads to a nonlinear mathematical model of a gear
transmission in which chaotic phenomena may occur.

The subject of this paper is the evaluationof the func-
tion modelling gear backlash influence on the effec-
tiveness of computer simulations. Numerical experi-
ments were carried out for three methods of mapping
the backlash. For each characteristic, multi-coloured
maps of the largest Lyapunov exponent were gener-
ated, and on this basis the ranges of variability of the
mathematical model parameters, in which the chaotic
movement takes place, were identified. The obtained
results enabled the rejection of the backlash models
approximated by functions based on the polynomials
of the third degree, due to significant differences in
the distribution of chaotic motion zones. For further
research, the model of backlash described by the loga-
rithmic function was adopted, for which the coefficient
responsible for the nature of its variability was opti-
mized.

2 Formulation of the mathematical model of the
gear transmission

The object of the model tests is a single-stage gear with
total transmission ratio i = 36.85, which is an integral
component of a hoisting mechanism with a load capac-
ity Q = 12.5t and hoisting speed vp = 9.7m/min.
The dynamics of the gearbox have been modelled by
a vibrational mechanical system with two degrees of
freedom. The model consists of two non-deformable
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Fig. 1 A phenomenological
model of a single-stage gear
transmission

discs with radii R1 and R2, whose inertial properties
are given by mass moments of inertia J1 and J2. The
discs rotate rigidly supported with respect to the axes
O1 and O2. The gears are coupled by a parallel connec-
tion of the spring element cZ and dissipative element
bZ . Due to the complexity of the phenomena caused by
the friction between cooperating teeth, the dissipative
properties were approximated using a linear viscous
damper. The formulated model also includes an ele-
ment modelling the error of gear wheels cooperation
e(t), which is connected in series with the spring ele-
ment cZ and dissipative element bZ . The transmission
movement is caused by the external drive torque MN ,
acting on gear wheel with radius R1. In contrast, to
the wheel R2 the load moment MO has been applied.
The LZ value is a constant equal to half the backlash
value. The schematic diagramof the phenomenological
model is shown in Fig. 1.

On the basis of such a formulated phenomenologi-
calmodel of single-stage gear transmission, differential
equations of motion were derived:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

J1ϕ̈1 + R1bZ (R1ϕ̇1 − R2ϕ̇2 − ė (t))

+ R1cZ (R1ϕ1 − R2ϕ2 − e (t)) f (u) = MN ,

J2ϕ̈2 − R2bZ (R1ϕ̇1 − R2ϕ̇2 − ė (t))

− R2cZ (R1ϕ1 − R2ϕ2 − e (t)) f (u) = − MO .

(1)

Differential equations of motion (1) can be derived
using the classic formalism of Lagrange equations of
the second order or using non-classical methods such
as graphs [26,27].

2.1 A reduced mathematical model of gear
transmission

The quantitative and qualitative assessment of the phe-
nomena occurring during intermeshing of cooperating
wheels is most efficiently analysed using a reduced

model with one degree of freedom. The starting point
for its derivation is the system of differential equations
(1). After several transformations and the introduction
of a new coordinate q = R1ϕ1 − R2ϕ2, the mathemat-
ical model is reduced to the form:

mredq̈ + bZ (q̇ − ė (t)) + cZ (q − e (t)) f (u)

= mredδ, (2)

where

mred = J1 J2
J2R2

1 + J1R2
2

, μ = M0

MN
,

δ =
(
R1

J1
+ R2μ

J2

)

M1, e (t) = e1 cos(ωz t).

Furthermore,ωz = z1 ·ωS is the frequency of meshing,
whereωS is the angular velocity of the rotor of the drive
motor and z1 is the number of teeth on the gear. Taking
into account the characteristics of periodically variable
meshing stiffness cZ (t) = c0 + c1 cos (ωz t) and using
the substitution q = u + e (t), Eq. (2) takes the form:

mredü + bZ u̇ + (c0 + c1 cos (ωz t)) f (u)

= mredδ + mredω
2
z e1 cos(ωz t). (3)

Until now, gear has been treated as a system in which
there is no backlash. From a mathematical point of
view, its inclusion consists in replacing the displace-
ment u with an adequate function f (u) which maps
the displacement properties, but in the so-called dead
zone takes values equal to zero. It is worth noting that
the physical interpretation of the function f (u) is the
same as the displacement:

mredü + bZ u̇ + (c0 + c1 cos (ωz t)) f (u)

= mredδ + mredω
2
z e1 cos(ωz t). (4)

The mathematical model (4) can be further reduced to
dimensionless form:

ẍ + 2hẋ + [1 + α cos (ωτ)] f (x)

= Fav + Feω
2 cos(ωτ). (5)
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Fig. 2 Graphical visualization of the gear backlash characteristics and their approximation: a the polynomial of the third degree, b the
modified polynomial of the third degree, c the logarithmic function

where

ω2
0 = c0

mred
, h = bZ

2
√
mredc0

, α = c1
c0

, ω = ωz

ω0
,

Fav = mredδ

LZc0
, Fe = e1

LZ
, x = u

LZ
.

The introduction of a new variable x , dependent on the
dimensionless time τ = ω0t , affects the width of the
dead zone of the tooth gap, now fallingwithin the range
limited by the values − 1 and 1.

2.2 Mathematical models of gear backlash

The subject of the research presented in this work is
the assessment of the approximation of the gear back-
lash characteristics impact on the dynamic properties
of the gear. The results of numerical calculations were
computed using a discontinuous function describing
backlash:

f (u) =
⎧
⎨

⎩

u + LZ , u < − LZ ,

0, − LZ ≤ u ≤ LZ ,

u − LZ , u > LZ ,

x= u
LZ⇒

LZ f (x) =
⎧
⎨

⎩

x + 1, x < − 1,
0, − 1 ≤ x ≤ 1,
x − 1, x > 1.

(6)

When conducting computer simulations, instead of
using the conditional function (6), it is more conve-
nient to use the function given by the equation:

f (x) = x + |a2x − 1| − |a2x + 1|
2

. (7)

Bearing in mind the reduction in the numerical calcu-
lations time, simplifications are applied, streamlining

model tests. The most often discontinuous character-
istic of the backlash is represented by the third-degree
polynomial [7]:

f (x) = a1x + a2x
3. (8)

For the approximation of the discontinuous function
(6), the characteristics proposed in paper [28] can also
be used:

f (x) = a1 (|a2x − 1| − |a2x + 1|) + a3x
3. (9)

From the mathematical point of view, the best results
are achieved using the logarithmic function proposed
in the paper [12]:

f (x) = 1

a1
ln

(
1 + ea1(x−1)

1 + e−a1(x+1)

)

. (10)

The accuracy of the approximation of the backlash
characteristics with continuous functions is illustrated
graphically in Fig. 2. With a view to highlighting the
differences between the discontinuous backlash func-
tion and its logarithmic approximation (Fig. 2c), the
relationship (10) is plotted for the coefficient a1 = 10.
This was because the value adopted in further research
meant that the characteristics were practically overlap-
ping.

The numerical values of the coefficients of the
smooth approximations describing the characteristics
of the gear backlash are summarized in Table 1.

Numerical experiments were carried out in the
paper, in which the effect of the mathematical model
of the backlash on the dynamics of the gear was com-
pared.
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Table 1 Numerical values
of approximating functions

Function Parameter value

a1 a2 a3

Polynomial function, Eq. (8) − 0.1667 0.1667

Modified polynomial function, Eq. (9) 0.0283 1.1569 0.146

Logarithmic function, Eq. (10) 60

Table 2 Parameters
characterizing the tested
gear model

Name Symbol Value

Module m̂ 5mm

Number of teeth in wheel 1 z1 14

Number of teeth in wheel 2 z2 85

Mass moment of inertia of the wheel 1 J1 0.0011kgm2

Mass moment of inertia of the wheel 2 J2 0.2811kgm2

Coefficient defining energy losses in the system b 3.57 × 103 N sm−1

Average meshing stiffness c0 5.03 × 108 Nm−1

Amplitude of dynamic component of meshing stiffness c1 3.27 × 107 Nm−1

Error in gear wheel cooperation e1 0.01 mm

3 Model studies of gear transmission

Model tests were carried out on the basis of the numer-
ical data (Table 2), characterizing a single-stage gear.
The source of motion of the tested mechanical system
is a 4-pole induction electric motor with rated power
P = 7.5 kW and speed nS = 1450min−1. During
numerical experiments, perfectly rigid shafts connect-
ing gears with the engine and massless element, which
is affected by the load moment, were adopted. In addi-
tion, it was assumed that the value of the moment of
load applied to the gear with a radius R2 is 80% of the
torque value. The substitute damping factor b captures
the total energy losses caused by the movement resis-
tance in the bearings and the friction of the cooperating
gear teeth.

3.1 Identification of chaotic motion zones of backlash
various models

On the basis of the numerical data characterizing the
mathematical model, numerical calculations showing
the effect of normalized frequency ω and the dimen-
sionless error of gear wheel cooperation Fe on the loca-
tion of chaoticmotion zoneswere carried out. Both ana-

lytical methods and numerical algorithms find appli-
cations [29–31] to estimate the so-called largest Lya-
punov exponent λ. This indicator is one of the key con-
cepts of chaos theory through which it is possible to
distinguish where unpredictable chaotic behaviour.

λ = lim
ε(0)→0,n→∞

1

nτ

n∑

i=1

ln

(
εi (t)

ε (0)

)

. (11)

In the above equation, εi (t) represent the vectors con-
necting, at the same instant of time, the trajectory of
the studied motion with a reference trajectory, with the
origins of both trajectories being located in the close
vicinity determined by ε(0). In practical applications,
this method of estimating the largest Lyapunov expo-
nent is reduced to averaging values over many itera-
tions, in an adequate suppression space. In our case,
we assume a phase space containing the displacement
and speed of the transmission model (x, ẋ). Positive
values of λ indicate chaotic behaviour; otherwise, the
trajectories tend towards either stable points or peri-
odic orbits. In the case of discontinuous slack char-
acteristics, the Lyapunov exponent can be incorrectly
estimated on the basis of the Jacobian algorithm; there-
fore, in thisworkwe use the concept of its identification
based on Eq. (11). The results of model tests illustrat-
ing the influence of the function approximating back-
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lash are presented in the form of multi-coloured maps
of the maximum Lyapunov exponent. The procedure
for generating these kinds of multi-coloured maps is
not fundamentally different from the calculationsmade
with respect to a single control parameter.

In order to obtain a satisfactory resolution, the
range of variability of control parameters defining the
abscissa and ordinates is divided into 500 intervals.
The calculated values of the largest Lyapunov expo-
nent depend to a large extent on the assumed distance
of the initial conditions ε(0), of the two trajectories.
In this study, the distance was assumed to be equal
ε(0) = 10−5. On the generated two-dimensional maps
of the largest Lyapunov exponent (Fig. 3), in the rain-
bow scale one can notice areas of chaotic solutions,
which are marked in orange and red.

It isworthmentioning that the calculation time of the
multi-coloured map of the largest Lyapunov exponent,
when the characteristics of backlash was mapped with
the discontinuous function (6), was about 41,000s. In
the case of modelling with functions based on polyno-
mials (7) and (8), the calculation times were on a simi-
lar level and amounted to approx. 5000s. On the other
hand, in the case of approximation of the characteristics
with a logarithmic function (9), the calculation of the
multi-coloured map of the largest Lyapunov exponent
lasted approx. 10,000s.

During the verification of the obtained results of the
model tests, a priori static characteristics of the back-
lash for the most reliable gear model were assumed,
modelled by the so-called dead zone. This model was
considered a template, because the results of model
tests obtained through it show convergence with the
results of experimental research [22,32]. The direct
comparison of multi-coloured maps of the largest Lya-
punov exponent shows no correlation with respect
to backlash models based on polynomial functions
(Fig. 3b, c). This premise constitutes a formal basis for
omitting them in further model studies. The dynamics
of the toothed gear significantly depend on the param-
eter Fe, representing the accuracy of the execution and
cooperation of gears. Themathematicalmodel inwhich
the characteristics of the backlash are approximated by
the logarithmic function (Fig. 3d) is the only approx-
imation, which shows an acceptable correspondence
with the solution based on the discontinuous backlash
function (Fig. 3a). In order to verify the thesis formu-
lated for a given parameter value Fe = 0.1, bifurcation
diagrams of steady states are plotted. On their basis,

conclusions can still be drawn regarding the nature of
the mechanical vibrations excited in the areas where
the doubling period takes place [33,34].

Bifurcation diagrams are constructed on the basis
of time responses or trajectories recorded on the phase
plane. In our case, theywere plotted on the basis of local
maxima (Fig. 4 points in navy blue) andminima (Fig. 4
points in red) of numerical solutions of data in the form
of time series. To determine the periodicity of solutions,
diagrams of the number of phase stream intersections
with the axis of the abscissawere used (NPSI—number
of phase stream intersection), which correspond with
the bifurcation diagrams of steady states (Fig. 4).

In general terms, the essence of generating NPSI
diagrams is to determine the number of intersections
between trajectories and the axis of phase plane dis-
placements from ẋ = 0. At the same time, only the
intersection points are taken into account, in which
the coordinate representing the speed changes sign,
for example, from negative to positive. In this place, it
should be clearly indicated that the precise assessment
of the number of intersections of the phase trajectory, in
the areas of variability of the control parameter where
the motion of the system is irregular, depends on the
width of the time window. This is due to the fact that in
chaotic motion zones, recorded trajectories are charac-
terized by very long vibration periods.

Irrespective of the characteristics of the backlash
used in the simulation, the obtained results show the
presence of two zones where the irregular movement
of the gearbox takes place. Despite the visual agree-
ment between multi-coloured maps of the largest Lya-
punov exponent (Figs. 2a, 3b), graphical images of the
bifurcation diagrams of steady states show differences.
These differences are observed mainly in the vicinity
of areas of chaotic motion. It is also worth noting that
in terms of frequency ω ∈ 〈0.35, 0.45〉, the solution
(Fig. 4b) suggests the presence of the period doubling
phenomenon. With regard to the discontinuous model
(Fig. 4a), the first zone is estimated to be within limits
ω ∈ 〈0.9, 1.1〉 and second within ω ∈ 〈1.2, 1.6〉. How-
ever, on the bifurcation diagram, the zones in which
the transmission behaves chaotically are limited by the
values of the control parameter, respectively, the first
ω ∈ 〈0.9, 1.15〉 and second ω ∈ 〈1.25, 1.645〉. Direct
comparison of the diagrams of the number of phase
stream intersections (lower graphs of Fig. 4) shows
that, apart from the areas of chaotic solutions, peri-
odic vibrations dominate. However, the 2T-periodic
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Fig. 3 Maps of the Lyapunov exponent generated at zero initial conditions (x0 = 0, ẋ0 = 0) models of backlash represented by the
function: a discontinuous with a dead zone, b polynomial of the third degree, c modified polynomial, d logarithmic approximation
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Fig. 4 Bifurcation diagrams and corresponding diagrams of the number of phase stream intersections (NPSI), for the characteristics
of the backlash modelled by: a a discontinuous function, b a logarithmic function

movement takes place in the vicinity of the bifurca-
tion zones. On the basis of the bifurcation diagrams
and the NPSI, it is difficult to assess the dimension-
less excitation frequency ω on the nature of the solu-
tion. Adequate model test results are depicted in the
form of time courses, amplitude and frequency spec-
tra, andPoincaré cross sections (Fig. 5).When conduct-
ing computer simulations, zero initial conditions were
assumed x0 = 0, ẋ0 = 0. Exemplary results showing
the system response in the time domain plotted in navy
blue represent a solution in which the backlash char-
acteristics are approximated by a logarithmic function
(9). However, the time sequence marked in red corre-
sponds to the backlashmodelledwith the discontinuous
function (5). The width of the time window in which
the system response was observed was determined to
be equal to 20 periods of excitation. The same colour
assignment was applied to the generated frequency–
amplitude spectra. To obtain satisfactory spectral reso-
lution, numerical calculations were carried out on the
basis of data taken from a time window with a width
equal to 350 periods of excitation. Direct visual com-
parison of frequency–amplitude spectra (Fig. 5b) does
not show any noticeable differences in the distribution
of the excited harmonics. These differences become
important in the case of time responses (Fig. 5a) and
Poincaré cross sections (Fig. 5c).

The numerical simulations indicate that the classic
Fourier’s spectrum is not an appropriate indicator on the
basis of which the reliability of the formulated model
can be assessed.

3.2 The influence of parameter a1 on the
amplitude–frequency spectrum distribution

Much more information about the dynamics of the sys-
tem is provided by spectrograms STFT [35] or wavelet
scales [36,37]. In our research, for the evaluation of the
activity of individual harmonic components, a trans-
form based on a Gaussian wavelet was used in selected
moments of time. In Fig. 6, multi-coloured maps of the
activity of the harmonic components of the backlash
models are provided. Bearing in mind the insight into
the dynamics of the evolution of harmonic components,
spectrograms were calculated on the basis of fixed time
series with the number of samples n = 211, observed
in time windows τW with a width of 400 periods of
external excitation.

The time sequence spectrogram, based on the dis-
continuous backlash model (Fig. 6a), shows the high-
est activity of the harmonic components located in the
range ω ∈ 〈0.082, 0.657〉. The dominant subharmon-
ics, represented in red, are excited irregularly over time.
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Fig. 5 Influence of mapping characteristics of backlash for ω = 1.05 on: a time histories of solutions, b frequency–amplitude spectra,
c Poincaré cross sections

In the low frequency range ω ∈ 〈0, 0.041〉, individual
harmonics are activated cyclically. The largest activ-
ity of spectrogram harmonics, where the backlash was
modelled with a smooth logarithmic function (Fig. 6b),
is located in the area of variability ω ∈ 〈0.167, 0.669〉.
Increasing the parameter a1 of logarithmic function,
approximating the discontinuous backlash characteris-
tics, results in a range change ω ∈ 〈0.084, 0.669〉, in
which the dominant harmonic components are located
(Fig. 6b, c). Differences in graphic images of time
series, Fourier spectra, and in particular bifurcation dia-
grams and Poincaré cross sections, can be minimized
by adjusting the parameter a1 of Eq. (9). Decreasing its
valuemeans that belowω = 0.5 frequency, thewidth of
the 2T-periodic vibration zone (Fig. 4) increases; this
is not found with the discontinuous model. It is also
worth mentioning that limiting the value of a1 causes
overlapping of the firstω ∈ 〈0.9, 1.1〉 and second zones
ω ∈ 〈1.2, 1.6〉 of chaotic movement (Fig. 4a).

3.3 Optimization of parameter a1

The influence of the value of the logarithmic coeffi-
cient of the function approximating the backlash and
the associated evolution of the bifurcation diagrams is
presented in Fig. 7. The value of parameter a1 = 420,
at which 2T-periodic vibrations in the frequency range
from ω 0.4 to 0.5 disappear, is not optimal. In order

to determine the optimal a1, from the point of view of
the numerical experiment, the parameter of the log-
arithmic function was identified on the basis of the
equation, approximating the increment of frequency
ω1. Frequencies ω1 were defined as points of bifur-
cation diagrams in which a 2T-periodic solution does
not appear (Fig. 4a). When the factor a1 reaches values
around 450, 2T-periodic vibrations disappear. On this
basis, the horizontal asymptote to which the approxi-
mated function is aimed, along with the increase in the
a1 parameter, has been established:

ω1 (a1) =
(

0.17a1
0.364a1 + 5.451

)

. (12)

When calculating the limit of the approximation
function (12), it was found that the position of the
asymptote is set at 0.467. This number approximately
corresponds to the frequency of external load when
there is a hopping of the amplitude of periodic vibra-
tions. Assuming a 1% horizontal mapping error, the
value of the parameter a1 equals 685; this value makes
it possible to approximate the section with acceptable
accuracy. This is confirmed by the calculated correla-
tion dimensions included in the diagrams (Fig. 8a, b).
The relative errors of the correlation dimensions of the
calculated Poincare cross sections, for discontinuous
and approximated backlash characteristics, amount to
0.4% for an excitation frequency ω1 = 1.05 and 0.9%
in case of ω1 = 1.4. Referring to the Poincaré cross
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Fig. 6 Spectrometry of wavelet transformations of backlash models mapped by function (x0 = 0, ẋ0 = 0): a discontinuous ω = 1.05,
b logarithmic ω = 1.05, a1 = 60, c logarithmic ω = 1.05, a1 = 370, d logarithmic ω = 1.05, a1 = 685

sections, which are shown in Fig. 5c, where the approx-
imation function was generated for a1 = 60, the esti-
mated relative error is about 3.5%. However, this error
value does not guarantee compliance of solutions in the
field of time and frequency. Assuming the error row at
the level of 0.1% of the horizontal asymptote mapping,
the value of parameter a1 increases more than 10 times
reaching the value of 6980, in relation to a1 = 685. For
this value, the estimated correlation dimension of the
Poincaré cross section is 1.237, which is approx. 0.08%
of the mapping error of the trajectory points with the
control plane.

Time sequences of solutions obtained on the basis
of a discontinuous gear model are marked in red, while
navyblue corresponds to solutions basedon the approx-

imation of the backlash characteristics by a logarithmic
function (Fig. 9). By increasing the value of the param-
eter a1 by more than tenfold, the solution much bet-
ter reflects the solution of the discontinuous model.
However, as time passes, the solutions start to vary
more and more (Fig. 9b chart at the top). The accu-
racy of the approximation of the backlash character-
istics becomes even more evident when the excitation
frequency assumes values corresponding to the second
chaotic movement zone (Fig. 9b central chart). This
behaviour is therefore dependent on whether the trans-
mission’s operating point is in the chaotic or predictable
motion zone. Accuracy of the approximation between
the characteristics of the backlash, when the frequency
of the external load is located in the chaotic movement
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Fig. 7 Influence of the logarithmic coefficient a1 of the function approximating the backlash, on the evolution of the bifurcation diagram

zone, shows similarity in the behaviour that is observed
during the study of the sensitivity of initial conditions
to a negligible small displacement. Striving to obtain
acceptable compatibility of solutions in the frequency
domain implies the use of very large values of parame-
ter a1. Excessive values significantly extend the time of
numerical calculations, as a result of which the model
based on the approximation of the backlash character-
istics becomes ineffective, as the computer simulation
times do not differ much.

In the case when the system is affected by excitation
with a value that lies outside the chaotic motion zones,
the solution’s compatibility is in principle perfect. Con-

vergence of results is already achieved with a1 = 685;
therefore, there are no solutions for larger values of a1
(Fig. 9a bottom charts), where time responses are pre-
sented in the zones of the control parameterω, in which
the doubling period takes place.

4 Conclusions

Based on the model tests carried out on the nonlinear
dynamics of a single-stage gear transmission, the fol-
lowing conclusions can be made:
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Fig. 8 Poincaré cross section: a ω = 1.05, b ω = 1.4

Fig. 9 Influence of the value of the parameter a1 on the chaotic solution of the system: a a1 = 685, b a1 = 6980
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• The use of functions based on third-degree poly-
nomials in numerical experiments, which approx-
imate the characteristics of the backlash, causes
incorrect and inaccurate results in the computation
of the time dynamics of the system. These errors are
mainly caused by imprecise mapping of functions
at the discontinuity points of the backlash.

• The use of logarithmic functions in model studies
is an alternative approach, providing comparable
information about dynamic phenomena occurring
in the system, which is obtained through a discon-
tinuous model.

• Additionally, the undoubted advantage of the log-
arithmic function, which approximates the charac-
teristics of the backlash, is the reduction in nearly
four times the calculation time, when the coeffi-
cient a1 = 685. Adoption of large values for a1
improves the convergence of solutions in relation
to the discontinuous model, but this is achieved at
the expense of extending the time of numerical cal-
culations.

Our analysis was carried out for the same zero initial
conditions (x0 = 0, ẋ0 = 0) which allowed for paral-
lel calculations for all considered values of the system
parameters. This strategy has allowed to significantly
shorten the time of calculations in comparison with
testing basins of attraction for individual solutions. The
cost of this omission is to narrow our analysis to one
solution for each set of system parameters. The calcu-
lations were carried out using the proprietary program
in the MATHEMATICA environment.
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