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Abstract Two methods based on stochastic reduced-
order models (SROM) are proposed to solve stochastic
stable nonlinear ordinary differential equations. One
general method available for the probabilistic charac-
terization of the response of nonlinear systems sub-
jected to random excitation is Monte Carlo (MC),
wherein the response of the nonlinear system must be
calculated for a large number of samples of the input,
which can be very computationally demanding. Ran-
dom vibration theory is also inadequate for calculat-
ing response statistics for both linear systems under
non-Gaussian inputs and nonlinear systems subjected
to any kind of excitation. The two methods proposed
are based on SROM, i.e., stochastic models with a
finite number of optimally selected samples. The first
method uses a SROMmodel for the random input. The
second method is based on a surrogate model for the
response of the nonlinear system defined on a Voronoi
tessellation of the input samples. The newly proposed
methods are applied for stable nonlinear ordinary dif-
ferential equations, with deterministic coefficients and
stochastic input, that are used in engineering appli-
cations: single-degree-of-freedom Duffing and Bouc–
Wen systems, and a two-degree-of-freedom nonlinear
energy sink system. The numerical results suggest that
SROMs are able to estimate statistics of the stochastic
responses for these systems efficiently and accurately,
results validated by the benchmark MC results.
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1 Introduction

Random vibration theory and numerical methods to
date provide efficient solutions for second-moment
properties of the states of arbitrary linear systems sub-
jected to Gaussian random input. Unless the input is
Gaussian and the system is linear or the output can
be assumed to be Gaussian, the first two moments of
the response are insufficient for calculating response
statistics [1] (Sect. 5.3). This is a significant limita-
tion since realistic dynamic systems behave nonlin-
early under strong random vibrations and the distri-
bution of the response is non-Gaussian. For exam-
ple, the distribution of the pressure field acting on a
spacecraft during atmospheric re-entry is highly non-
Gaussian [2]; the assumption that the responses of
structures under extreme wind [3] or seismic [4] exci-
tations are linear may be inadequate; the aircraft main
landing-gears are nonlinear complex systems, which
require time-consuming dynamic simulations to calcu-
late steady-state solutions [5]. Thus, the reliability of
such structures cannot be obtained within the frame-
work of the random vibration theory. The conceptu-
ally simple framework of the random vibration the-
ory cannot be used in such complex applications since
some concepts cannot even be defined. The first- and
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226 A. Radu

second-moment equations for linear systems in random
vibration theory are formal since it views white noise
as a process with constant spectral density, i.e. a pro-
cess with infinite variance, which is not defined in the
second-moment sense [6] (Sect. 7.2).

Monte Carlo (MC) is one general and reliable
method available for solving complex nonlinear
dynamic systems subjected to complex stochastic
input, i.e. non-Gaussian, non-stationary non-white
noise. The method is asymptotically correct since it
approaches the exact solution as the number of simula-
tions increases indefinitely. However,MC simulation is
computationally impractical for complex realistic non-
linear systems [5,7,8] since it involves repeated deter-
ministic dynamic analyses for randomly selected sam-
ples of the random excitation. Efficient alternatives to
the MC method have been studied before, such as the
quasi-Monte Carlo simulation [7,9–11], Latin hyper-
cube [12,13], or change of measure [6] (Sect. 5.4). The
limitation of theMCmethod has encouraged the devel-
opment of approximate methods for finding statistical
properties of the dynamic systems under random exci-
tation. Some approaches are based on heuristic argu-
ments, such as the equivalent stochastic linearisation
[14–16],while others rely on rigorous but rather restric-
tive conditions, as in the stochastic averaging method
[17–19] or perturbation [1] (Sect. 6.2), [20]. Other
well-tested methodologies used for the calculation of
response statistics of nonlinear systems involve the use
of the Fokker Plank equation [21–23], moments and
cumulant closures [24,25], stochastic modelling using
polynomial chaos [26,27], or reduced orders of the
nonlinear system by using linear or nonlinear normal
modes [28–30]. This enumeration of methods used for
solving stochastic nonlinear equations is not exhaus-
tive, but so far using these approaches proved to make
capturing statistics of extreme responses of nonlinear
systems difficult or even impossible due to their built-in
limitations [31], because they have solutions only for
special cases [32], or are too computationally expensive
[33].

The goal of this paper is to propose novel meth-
ods that can be used to calculate response statistics of
engineering systems, characterised by stable, nonlin-
ear ordinary differential equations with deterministic
coefficients and general non-Gaussian, non-stationary
stochastic input. Even though the methodology pro-
posed is general for the described setup, the study of
complex systems such as turbulent or chaotic systems,

or infinite-dimensional systems with multiple insta-
bilities is beyond the scope of this paper. However,
considerable advances on developing efficient meth-
ods to quantify the uncertainty in complex stochas-
tic highly nonlinear systems like Earth’s climate or
oceans [28,34] must be acknowledged. The two meth-
ods proposed in the current study to solve the afore-
mentioned engineering systems are conceptually sim-
ple, accurate, non-intrusive and computationally effi-
cient and are based on stochastic reduced-order mod-
els (SROMs) [35]. Stochastic reduced-ordermodels are
stochastic processes that have a finite number of sam-
ples selected in an optimal manner from the samples
of the target process. Like MC simulation, the meth-
ods use samples of seismic load processes to charac-
terize structural response and are not intrusive in the
sense that their construction uses deterministic solu-
tions. However, the proposed SROMs use small num-
bers of input samples selected in an optimal manner. In
contrast, MC simulation uses a large number of sam-
ples selected at random. The use of optimally selected
samples allows to reduce the number of simulations
required by the MC method by one or two orders
of magnitude while retaining accuracy. The method
has been originally developed for dynamic response
[36]. It has been shown that for static problems the
SROM-based method can be improved significantly
[37], and an adaptive method to further refine SROMs
used in solving stochastic equations was proposed in
[38]. Recently, SROMs have already been used suc-
cessfully in applications for the quantification of the
uncertainty in electromagnetic-signals interference in
cables [39], or in the inter-granular corrosion rates [40].
SROMs have also been used in solving inverse prob-
lems, with applications in the identification of material
properties in elastodynamics [41], traditionally solved
using Bayesian inferences or stochastic-optimisation
approaches.

The first method presented in this paper, referred
to as the SROM method, constructs a SROM using
directly the input samples. The secondmethod, referred
to as the extended SROM method , i.e., the ESROM
method, builds upon the SROM method to constructs
an SROM-based surrogate model for the response of
the dynamic system, defined on a Voronoi tessellation
of the input samples. Both methods proposed in this
paper may be used as alternatives to MC for calcu-
lating response statistics for dynamic nonlinear equa-
tions, with just a fraction of the computational effort
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Stochastic reduced-order models 227

required by MC. The SROM method provides quick
response statistics within some error of the MC results,
while the superior ESROMmethod can provide reliable
results even in the extreme tails of the response proba-
bility distributions. Thus, the ESROMwould allow for
a simulation-based design of highly reliable nonlin-
ear engineering systems for probability of no-collapse
of the 10−6 order for earthquake-resistant structures
[42], or probability per flight hour of catastrophic fail-
ure for aircrafts as low as 10−9 [43], probabilities that
otherwise would require billions or even trillions of
MC dynamic analyses [7]. Applications of the meth-
ods proposed are shown for simple second-order, one-
and two-degree-of-freedom nonlinear dynamic ordi-
nary differential equations (ODEs) with determinis-
tic coefficients and stochastic input. Response statis-
tics such as probability tail distributions and stochas-
tic moments are compared with the reference MC
results.

2 Nonlinear dynamic system definition

Nonlinear dynamic systems subjected to random input
can be represented by nonlinear stochastic ODEs with
the general form

∑N
j=0 Ψ j

(
t, X (t),Y ( j)(t)

) = 0, t ≥
0, where Ψ j are linear or nonlinear differentiable func-
tions of time t with deterministic or stochastic coeffi-
cients;Y ( j)(t) = d jY (t)/dt j , j = 1, . . . , N are the j-
th derivativeswith respect to timeof the stateY (t)of the
dynamic system; and X (t) is the stochastic input. Func-
tions Ψ j for the example systems in Eqs. (2–5) used
to demonstrate how the proposed framework works,
have deterministic coefficients, and are power, or expo-
nential functions, but any other nonlinear differential
function would work too. The response of the nonlin-
ear dynamic system is described by the state Y (t), for
given initial conditions Y (k)(0), k = 1, . . . , n − 1.

The stochastic process X (t) can be any stochastic
process, and thus we assume a type of process that fits
the general case of a zero-mean, non-Gaussian, non-
stationary process:

X (t) = f (t)
[
F−1
T ◦ Φ(G(t; g(ν)))

]
, (1)

where g(ν) = (νθ2
√
2π)−1 exp{−0.5(ln(ν)−θ1)

2/θ22 }
is a one-sided power spectral density function, with
parameters (θ1, θ2), that provides the second-order

moment properties and the frequency content of X (t);
f (t) = θ3tθ4 exp(θ5t) is an amplitude-modulation
function with parameters (θ3, θ4, θ5) that describes the
non-stationary character of X (t);Φ(.) is the cumulative
probability distribution function for the standard nor-
mal distribution;G(t; g(ν)) is a standardGaussian pro-
cess with second-order moment properties given by the
function g(ν); and FT (.; nT ) is the Student’s T distribu-
tion with nT degrees of freedom. Functions f (t), g(ν)

and FT (.; nT ) are customary and define the probability
law of X (t), but can be replaced by any other functions
that describe the amplitude non-stationarity character,
the frequency content, and the distribution of X (t),
respectively. Function f (t) is called a Gamma func-
tion and has been used before to describe, for example,
the non-stationarity in seismic ground motions [44].
The choice of the Student’s T distribution for X (t) is
justified by its heavy tails specific to heavy-tailed phe-
nomena to which engineering systems are subjected,
such as: offshore structures subjected roughwaves [45],
high-rise structures subjected to strong wind [46], or
earthquake [4] loads. The distribution FT (.; nT ) can
be replaced by other more complex, multi-modal dis-
tributions. However, for the purpose of loads with high
peaks, the Student’s T distribution has a kurtosis higher
than 3 that can be fit to data, and thus experience
tails higher than Gaussian processes, similar to real-
istic loads with this characteristics, such as: the wind
pressure on low-rise structures tested in wind tunnels
[47]; the coastal-wave elevations measured in Duck,
North Carolina [48]; the seismic ground-acceleration
for earthquakes recorded on rock sites [44]; or the
unevenness of a railway track in India [49]. The repre-
sentation of non-Gaussian processes inEq. (1) is known
as a memoryless transformation [50] and provides an
intuitive way to simulate samples of non-Gaussian pro-
cesses. Numerical examples are shown for the scalar
parameters (θ1,...,5) = (2, 0.5, 0.5, 1.5,−0.35) and
nT = 3. Note that the process X (t) has variance∫
ν≥0 g(ν)dν = 1, which can also be customised to

a value σ 2
X , by multiplying g(ν) by it. Figure 1a, b

shows the function g(ν) for two sets of parameters
(θ1, θ2) = {(2, 0.5), (1, 1)}, and corresponding sam-
ples of X (t), respectively.

Three simple nonlinear ODEs with various appli-
cations in engineering are used as examples. The first
system is the single-degree-of-freedom (SDOF) Duff-
ing oscillator [51,52] used, for example, in modelling
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Fig. 1 a Power spectral
density function g(ν), b
samples of the input process
X (t)

(a) (b)

vibration-control systems with cubic stiffness [53] in
mechanical engineering:

Ÿ (t) + 2ζνẎ (t) + ν2(Y (t) + ρY 3(t)) + X (t) = 0.
(2)

The second system described by the following ODEs is
the Bouc–Wen SDOF system [54,55] used, for exam-
ple, to model buildings’ seismic ductility demand [56]
in civil engineering:

Ÿ (t) + 2ζνẎ (t) + ν2(ρY (t)

+ (1 − ρ)W (t)) + X (t) = 0 (3)

Ẇ (t) = −γ Ẏ (t) + α|W (t)|η−1W (t) + βẎ (t)|W (t)|η,

where the process W (t) is known as the hysteresis
response of the Bouc–Wen oscillator. Finally, the last
system solved as an example for the proposed method-
ologies is the two-degree-of-freedom (2DOF) non-
linear energy sink (NES) system [57], used for the
reduction of the response of ocean-engineering sys-
tems subjected to extreme loading [58], whose state is
described by the bi-variate stochastic process Y (t) =
[Y1(t),Y2(t)] defined by:

Ÿ1(t) + 2ζνẎ1(t) + ν2Y1(t) + λ1(Ẏ1(t) − Ẏ2(t))

+ c1(Y1(t) − Y2(t))
3 + X (t) = 0 (4)

Ÿ2(t) + λ2(Ẏ2(t) − Ẏ1(t))

+ c2(Y2(t) − Y1(t))
3 + X (t) = 0. (5)

In all three systems of ODEs in Eqs. (2–5), Ẏ (t) =
dY (t)/dt and Ÿ (t) = d2Y (t)/dt2 are the first- and
second-order derivatives of the systems’ states Y (t)
with respect to time t , and zero initial conditions are

assumed. The following systems’ parameters ν = π ,
ζ = 0.1, α = 4, β = −7, γ = 0.25, ρ = 0.3, η = 2,
c1 = 1, c2 = 9, l1 = 0.1 and l2 = 0.9 were used for
the numerical examples shown in the remainder of the
paper. The goal of the paper is to calculate statistics
of the responses Y (t) of nonlinear equations using two
novel and efficient computational methods based on
stochastic reduced-order models (SROMs), that could
substitute reliably the solutions provided by the tradi-
tional MC simulations. The ODEs in Eqs. (2–5) are
used just as examples to illustrate the benefits and lim-
itations of the methodologies proposed.

3 Solutions and response statistics

Monte Carlo (MC) simulation is a general method
available for finding statistical properties of the state
Y (t) of an arbitrary nonlinear dynamic system sub-
jected to stochastic input. However, the method is
impractical for complex systems due to its high com-
putational cost. The objective of this paper is to adopt
practical, accurate and efficient methods for calculat-
ing statistics of the response Y (t) of nonlinear dynamic
systems under general stochastic excitation. We pro-
pose two novel methods for calculating response statis-
tics of the response Y (t) of nonlinear dynamic systems
subjected to stochastic input X (t). Both methods are
based on stochastic reduced-ordermodels (SROMs) for
the input: one, more straightforward, uses the SROM
directly to find the response of the system for a small
number of optimally selected samples; the second one,
referred to as the extended SROM, uses the input
SROM to construct a surrogate model for the system’s
response based on a first-order Taylor expansion. A
SROMof X (t) is a stochastic process X̃(t) represented
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Stochastic reduced-order models 229

by a finite number m of samples x̃k(t) of X (t) with
probabilities pk, k = 1, . . . ,m, such that the proba-
bility laws of X (t) and X̃(t) are similar in some sense.

The SROM-based methods will be tested against
MC results, through the comparison of statistics of the
state Y (t). In this case, we will aim to compare the
tail distributions and high-order moments. MCmethod
requires the calculation of the response yk(t) for a large
number n of input samples xk(t), k = 1, . . . , n. The
moments of order q, and the tail distribution func-
tion can be estimated using the MC response samples,
respectively, as:

E[Y (t)q ] = 1

n

n∑

k=1

ỹk(t)
q , (6)

F(y) = P(Y (t) > y)

= 1

n

n∑

k=1

1(max
t≥0

|ỹk(t)| > y), (7)

where 1(.) is the indicator function. The two methods
proposed are presented in the following two sections.
Thefirst one, involves the construction of a SROM X̃(t)
for the input X (t), with m << n samples. The second
method, referred to as the extended SROM (ESROM),
constructs a surrogate model Ỹ (t) for the state Y (t) of
the system, based on X̃(t).

3.1 SROM-based solution

Let {(xl(t), l = 1, . . . , n} be a large enough set of
samples of the input process X (t) that can charac-
terise its probability law. Any number m << n of
samples {(x̃k(t), pk), k = 1, . . . ,m}, selected from
{(xl(t), l = 1, . . . , n}, with probabilities pk such that∑m

k=1 pk = 1 define a stochastic reduced-order model
(SROM) X̃(t) of X (t). Similar to MC, the SROM
also uses random samples of X (t), but unlike in the
case of MC they are not equally likely, but weighed
by distinct probabilities. It is shown in [36,59] that
it is possible to select a small number m of samples
{(x̃k(t), pk), k = 1, . . . ,m} of X (t) such that X (t)
and X̃(t) have similar probability laws. We are looking
for a SROM X̃(t) with a range {x̃k(t), k = 1, . . . ,m}
of a relatively small numberm of independent samples
of X (t). Our objective is to find pk such that the dis-
crepancies between the probability laws of the SROM

X̃(t) = {(x̃k(t), pk), k = 1, . . . ,m} and X (t) aremin-
imized [60]. Processes X̃(t) and X (t) are defined on
the same probability space, and in order for the SROM
X̃(t) to characterize the original model X (t), the m
samples selected need to be largely spaced from each
other in order to explore the entire range of X (t) sam-
ples, rather than being clustered in small subsets. Algo-
rithms such as the integer optimisation [61], dependent
thinning [62] or pattern classification [63] may be used
to select the samples that define X̃(t). The probabil-
ity laws of stochastic processes are defined by their
moments, marginal distributions and covariance func-
tions. Target moments μX (t; q) of order q, marginal
distribution FX (x; t) and covariance functionΣX (t, s)
of X (t) can be calculated directly from its probabil-
ity law, if available, or from its samples. The statistics
for the SROM X̃(t) are estimated from a selection of
m samples, weighed by their probabilities. Thus, the
moments μ̃X (t; q) of order q, the marginal distribu-
tion F̃X (x; t) and the covariance function Σ̃X (t, s) of
the SROM X̃(t) are calculated, respectively, as:

μ̃X (t; q) =
m∑

k=1

pk x̃
q
k (t), (8)

F̃X (x; t) =
m∑

k=1

pk1 {x̃k(t) ≤ x} , (9)

Σ̃X (t, s) =
m∑

k=1

pk x̃k(t)x̃k(s). (10)

Note that pk are the likelihood probabilities assigned
to the input samples x̃k(t) of the SROM and they have
the following properties: (1) ifm is very large and x̃k are
independent samples of X , then optimal probabilities
pk ≈ 1/m, as it approaches the case of Monte Carlo
when all samples are equally likely; (2) the moments
μ̃X (t; q) and distribution F̃X (x; t) of X̃(t) are unbi-
ased estimators of the corresponding statistics of X (t)
with variances depending on the range of X̃(t); and
(3) if Y (t) = h(X (t)) is the solution of a stochastic
algebraic, differential or integral equation depending
on X (t), the solution Ỹ (t) of this equation with X̃(t) in
place of X (t) is given by the samplesỹk(t) = h(x̃k(t))
with probabilities pk . The last property is essential
for the success of the SROM method, and its proof
relies on the argument that if the probabilities pk par-
tition the probability space of the input X (t), then the
expected solution h(X (t)) in a given partition char-
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230 A. Radu

acterised by (x̃k(t), pk) is given by the deterministic
solution ỹk(t) = h(x̃k(t)) with probability pk . More
comprehensive arguments and detailed proves using
measure theory for these properties are presented in
[35]. Optimization algorithms for the construction of
SROMs have been developed in [35,41]. A least mean
square algorithm is used to identify the optimal prob-
abilities pk that minimise the discrepancies between
X (t) and X̃(t) herein, for a given cardinal m and a set
of samples x̃k(t). Based on the aforementioned prop-
erty (1), the initial values of pk = 1/m are assumed as
the starting point in the optimisation algorithm.

Figure 2 shows the first two-order moments
μ̃X (t; q), q = 1, 2 of the SROM X̃(t) for (a) m = 20
and (b)m = 103, in comparisonwith the respectiveMC
moments μX (t; q), q = 1, 2 calculated from n = 104

samples. In order to already see the advantaged of
SROMs, Fig. 2c, d shows 30 trials of calculating the
same moments μX (t; q), q = 1, 2 using MC, but just
with a limited number of independent equally likely
samples n = 20 and n = 103, respectively. By com-
paring panels (a) with (c), and (b)with (d), respectively,
we can see that unlike SROM, MC is incapable of cap-
turing the properties of X (t)with just a fewsamples, the
variability between the estimated of themoments being
significant. Similar observations about the efficiency of
the SROMvs.MCwith the same small number of sam-
ples can be done regarding to themarginal distributions
and the covariance functions, but due to the space limi-
tations and given the scope of the paper, such additional
preliminary results are not presented. Figure 3 shows
(a) the marginal distribution of X (t) calculated by MC
with n = 104 samples, and the marginal distributions
F̃X (x, t) of the SROM X̃(t) for (b) m = 20 and (c)
m = 103. Similarly, Fig. 4 shows (a) the covariance of
X (t) calculated by MC with n = 104 samples, and the
covariance functions Σ̃X (t, s) of the SROM X̃(t) for
(b) m = 20 and (c) m = 103.

Finally, following the property (3) of the SROM
samples (x̃k(t), pk), the moments of order q and the
tail distribution of the system’s response Y (t) shown
in Eqs. (6) and (7) can be computed by the following
proxies using the samples ỹk(t), k = 1, . . . ,m calcu-
lated as the response of Eqs. (2–5) to the samples x̃k(t)
of the SROM X̃(t):

E[Y (t)q ] =
m∑

k=1

pk ỹk(t)
q , (11)

F(y) = P(Y (t) > y)

=
m∑

k=1

pk1(max
t≥0

|ỹk(t)| > y). (12)

Note that only m deterministic dynamic analyses are
needed to obtain the solution of Y (t) in this case, i.e.
the solution for Eqs. (2–5) to the m samples of the
SROM X̃(t). The essential benefit of the method con-
sists in the fact that the SROM X̃(t) is built for the input
X (t) and that the only dynamic analyses needed are the
one for the samples x̃k with probabilities pk since they
characterise the probability law of X (t). It must also
be emphasized that the pairs (x̃k(t), pk) describe fully
the probability law of the SROM X̃(t).

3.2 ESROM-based solution

The ESROM method develops a surrogate model Ỹ (t)
for the state Y (t) of the nonlinear ODEs employing the
following four steps. First, a parametric mode for the
input process X (t) is constructed:

X (t) �
d∑

i=1

Ziϕi (t), (13)

where Z = {Zi , i = 1, . . . , d} is a random vector
and {ϕi (t), , i = 1, . . . , d} are deterministic speci-
fied functions of time. Parametric models of this type
can be calculated for any stochastic process. We use
a truncated Karhunen–Loève model to calculate func-
tions {ϕi (t), i = 1, . . . , d} by calibrating it to the first
two moments of X (t), that is, the mean and covari-
ance functions [64]. Functions ϕi (t) are the eigen-
vectors of the covariance matrix Σ(t, s) defined for
0 ≤ t, s ≤ τ . Unlike the Karhunen–Loève expansion,
for which X (t) = limd→∞

∑d
i=1

√
λi Ziϕi (t), t ≥ 0,

where λi are the eigenvectors and Zi are random vari-
ableswith zeromean andunit variance, the randomvec-
tor Z is characterized by its samples. Samples zk,i of Zi

are obtained by minimizing the difference between the
actual samples xk(t) of X (t) and their approximations
∑d

i=1 zk,iϕi (t), where zk,i denotes the i-th component
of sample zk of Z . The parametricmodel

∑d
i=1 Ziϕi (t)

is converging to the original process X (t) as the dimen-
sion d of the vector Z increases. Figure 5 shows one
sample of X (t) and its approximation for two values
(a) d = 50, and (b) d = 100.
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Stochastic reduced-order models 231

In the second step, we construct a SROM Z̃ =
{(z̃k, pk), k = 1, . . . ,m} for Z using the samples of the
random vector Z , following the procedure presented in
theSROM-based solution, in Sect. 3.1.Note thatn sam-
ples of zk of Z are available, one for each sample of
xk(t) of X (t). As discussed previously, we seek to find
optimum probabilities pk, k = 1, . . . ,m for each sam-
ple z̃k defining the SROM Z̃ of Z , with

∑m
k=1 pk = 1,

such that the probability laws of the d-dimensional ran-
dom vectors Z and Z̃ are similar.

In the third step, we construct a Voronoi tessellation
{Γk, k = 1, . . . ,m} on the range of Z , with centres
{z̃k} [37,38]. Each cell Γk contains all samples z j of Z
that are closest to its centre, i.e. Γk = {z j : |z j − z̃k | ≤
|z j − z̃l |, l 
= k}. Note that the probability pk defines
also the probability that Z takes values in cell Γk .

Finally, in the fourth step, a surrogate model Ỹ (t; Z)

for Y (t) is constructed using local piece-wise linear
approximations of Y (t; Z) for each Voronoi cell by
using a first-order Taylor expansion at the centre Z =
zk of the cell:

Ỹ (t; Z)

=
m∑

k=1

1{Z ∈ Γk}
[
Y (t; z̃k) + ∇Y (t; z̃k)(Z − z̃k)

]
,

(14)

where Y (t; z̃k) is the response Y (t) corresponding to
the pair (z̃k, pk) and∇Y (t; z̃k) = {∂Y (t; Z)/∂Zi |Z =
z̃k, i = 1, . . . , d} are the gradients of these response
samples. These gradients can be calculated by solv-
ing the deterministic differential equations

∑N
j=0 ∂Ψ j(

X (t; Z),Y ( j)(t)
)
/∂Zi = 0, i = 1, . . . , d, where

∑N
j=0 Ψ j

(
t, X (t),Y ( j)(t)

) = 0, t ≥ 0 may be any
nonlinear differentiable ODE as described previously,
such as the Eqs. (2–5). The gradients ∇Y (t; z̃k) for
the example ODEs are represented by ∂Y (t; Z)/∂Zi ,
which are the solutions of Eqs. (2–5) differentiatedwith
respect to each coordinate Zi of Z . Explicitly, the gra-
dients∇Y (t; z̃k) for the Duffing ODE in Eq. (2) are the
solutions of the following equation:

∂Ÿ (t, Z)

∂Zi
+ 2ζν

∂Ẏ (t, Z)

∂Zi

+ ν2
∂Y (t, Z)

∂Zi

(
1 + 3ρY 2(t; z̃k)

)
− ϕi (t) = 0.

(15)

Note that like Eqs. (2), (15) is also a nonlinear dynamic
ODE with unknown ∂Y (t; Z)/∂Zi , and determinis-
tic input ϕi (t), i = 1, . . . , d. Thus, d deterministic
equations must be solved to calculate the gradients
∇Y (t; z̃k) needed for the construction of the surro-
gate model in Eq. (14). Similarly, the gradients for the
Bouc–Wen ODE in Eq. (3) are calculated by solving
the following d equations:

∂Ÿ (t, Z)

∂Zi
+ 2ζν

∂Ẏ (t, Z)

∂Zi

+ ν2
(

ρ
∂Y (t, Z)

∂Zi
+ (1 − ρ)

∂W (t, Z)

∂Zi

)

− ϕi (t) = 0, (16)

where

∂W (t, Z)

∂Zi
= −γ

∂Ẏ (t, Z)

∂Zi

+ α

(

(n − 1) sgn(W̃k)|W̃k |n−2W̃k + |W̃k |n−1
)

∂W (t, Z)

∂Zi

∣
∣
∣
∣
Z=z̃k

+ β

(
∂Ẏ (t, Z)

∂Zi
|W̃k |n + n sgn(W̃k)

˙̃Yk |W̃k |n−1

∂W (t, Z)

∂Zi

∣
∣
∣
∣
Z=z̃k

)

, (17)

W̃k = (∂W (t; Z)/∂Zi )|Z = z̃k , and
˙̃Yk = (∂Ẏ (t; Z)

/∂Zi )|Z = z̃k . Finally, for the NES system defined in
Eqs. (4–5), the gradient ∇Y (t; z̃k) is a bi-dimensional
vector with components ∂Y1(t, Z)/∂Zi and ∂Y2(t, Z)

/∂Zi calculated by solving the following system of
deterministic ODEs:

∂Ÿ1(t, Z)

∂Zi
+ 2ζν

∂Ẏ1(t, Z)

∂Zi

+ ν2
∂Y1(t, Z)

∂Zi
+ λ1

(
∂Ẏ1(t, Z)

∂Zi
− ∂Ẏ2(t, Z)

∂Zi

)

+ 3c1 (Y1(t) − Y2(t))
2
(

∂Ẏ1(t, Z)

∂Zi
− ∂Ẏ2(t, Z)

∂Zi

)

+ ϕi (t) = 0, (18)

∂Ÿ2(t, Z)

∂Zi
+ λ2

(
∂Ẏ2(t, Z)

∂Zi
− ∂Ẏ1(t, Z)

∂Zi

)

+ 3c2 (Y2(t) − Y1(t))
2
(

∂Ẏ2(t, Z)

∂Zi
− ∂Ẏ1(t, Z)

∂Zi

)

+ ϕi (t) = 0. (19)
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(a)
(b)

(d)(c)

Fig. 2 First two moments μX (t, q), q = 1, 2 of X (t) calcu-
lated by MC with n = 104 samples and the SROM equivalents
μ̃X (t, q), q = 1, 2 with a m = 20 and bm = 103 samples, ver-

sus 30 trials of them being calculated using MC with c n = 20
or d = 103 independent samples of X (t)

(a) (b) (c)

Fig. 3 Marginal distribution functions FX (x, t) of X (t) calculated by aMCwith n = 104 samples, and the SROM equivalents F̃X (x, t)
of X (t) with b m = 20, and c m = 103 samples
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(a) (c)(b)

Fig. 4 Covariance functions ΣX (t, s) of X (t) calculated by a MC with n = 104 samples, and the SROM equivalents Σ̃X (t, s) with b
m = 20, and c m = 103 samples

Fig. 5 One sample of X (t)
(solid, black line) and its
parametric approximation
(dashes, red line)∑d

i=1 Ziϕi (t) for a d = 50
and b d = 100. (Color
figure online)

(a) (b)

In case of more complex systems, for which explicit
ODEs for the gradients cannot be written, they can
be approximated numerically from the differences
between the responses Y (t; Z) calculated at Z = z̃k
and Z = z̃k + Δz̃k , where Δz̃k denotes a perturba-
tion of z̃k . Also, higher-order approximations Ỹ (t; Z)

can be constructed and used in the development of
the surrogate model in Eq. (14), but they require the
calculation of higher-order derivatives of Ỹ (t; Z) with
respect to the coordinates of Z . Given that the nonlin-
ear ODEs considered in this study are stable and are
differentiable with respect to the systems’ states Y (t),
the gradients exist, and are solutions of nonlinearODEs
similar to the original ones. Thus, the effort to calculate
∂Y (t; Z)/∂Zi is similar to calculating Y (t). Therefore,
the number of dynamic analyses needed to construct
the surrogate model Ỹ (t; Z) in Eq. (14) is comprised
ofm analyses to calculate Y (t; z̃k) at each Voronoi cell
centre z̃k , from Eqs. (2–5) and m × d analyses to cal-
culate ∇Y (t; z̃k)(Z − z̃k) from Eqs. (15–19) for each

Voronoi cell with respect to each coordinate of the ran-
dom vector Z . The major advantage of ESROM is that
any number of surrogate response samples ỹk(t) can be
simulated using Eq. (14) in order to increase the accu-
racy of the response statistics, without any additional
computational effort, accounted in the fixed number
m × (d + 1) of dynamic analyses needed to construct
the surrogate model.

Figure 6 shows the gradients ∂Y (t; Z)/∂Zi calcu-
lated for the first three coordinates Zi , i = 1, 2, 3 of Z
for the Voronoi cell centred around the first sample z̃1
of the SROM Z̃ , for each of the three nonlinear systems
considered. Figure 7 shows the response samples y(t)
(black, solid line) calculated by direct integration of
Eqs. (2–5) versus the corresponding approximate sam-
ples calculated from the surrogate model in Eq. (14)
(red, dashed line), for the (a) Duffing, (b) Bouc–Wen
and the (c) first and (d) second DOFs of the NES
models.
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(a) (b)

(c) (d)

Fig. 6 Gradients ∂Y (t; Z)/∂Zi |Z = z̃k , for k = 1; i = 1, 2, 3, for the a Duffing, b Bouc–Wen, and c first and d second DOFs of the
NES system

Example. The following two-dimensional example is
considered to illustrate graphically how the ESROM
model works. Let’s assume that the loading process
X (t) is replaced by the bi-variate Gaussian vector
X = (X1, X2), where X1, X2 ∼ N(0, 1) and correla-
tion ρX1,X2 = 0.3; and the state of the nonlinear system
is described by the equationU (X) = sin(X1) cos(X2).
Figure 8a illustrates the first three steps: (i) the green
dots are the samples of xk of X , (ii) the red stars are
the m = 15 samples x̃k of the SROM X̃ , which are
the centres of the (iii) Voronoi cells shown as the black
polygons. Figure 8b, c shows the piece-wise linear sur-
rogatemodel Ũ (X) and the exact solutionU (X) (green
mesh), respectively. Note that in this simple case, for
which the input is a bi-variate random variable rather
than a stochastic process, X and Z are identical.

The ESROM estimates of the response statistics
defined in Eq. (6) and (7) are

E[Y (t)q ] = 1

n

n∑

k=1

ỹk(t)
q (20)

F(y) = P(Y (t) > y)

= 1

n

n∑

k=1

1(max
t≥0

|ỹk(t)| > y), (21)

where ỹk(t) are the samples of Ỹ (t; Z) calculated in
Eq. (14). It is important to note that the response statis-
tics in Eq. (20) and (21) are calculated with response
samples from the surrogatemodel. Thus, the number of
samples used for the calculation of the ESROM statis-
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(a) (b)

(c) (d)

Fig. 7 Response sample of Y (t) (solid, black line) and their corresponding samples from the surrogate model ˜Y (t; Z) for the a Duffing,
b Bouc–Wen, and c first and d second DOFs of the NES system

(a) (b) (c)

Fig. 8 Example. a SROM X̃ for X , b piece-wise linear surrogate solution Ũ (G), for m = 15, and c exact solution U (X) =
sin(X1) cos(X2). (Color figure online)
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(a)
(b)

(c) (d)

Fig. 9 First-order moments E[Y (t)] using MC with n = 104

(black, solid line), SROM with m = 20 (red, dotted line), and
ESROM with d = 100,m = 10 (blue, dashed line), for the a

Duffing, bBouc–Wen, and c first and d second DOFs of the NES
system. (Color figure online)

tics is not resumed to justm, but can go up to n, the total
number of samples of X (t) available, since each sam-
ple ỹk(t) is calculated directly from Eq. (14) using the
sample of Z corresponding to each sample of X (t), as
per the approximation in Eq. (13), without performing
any additional dynamic analyses.

4 Numerical results and discussion

The performance of the two methods proposed in the
previous sections is discussed in terms of the accu-
racy with which they are able to estimate statistics
such as the moments or the tail probability distribu-
tions for the three nonlinear dynamic systems consid-

ered, with respect to the MC estimates of the same
results. Figures 9 and 10 show estimates of the first-
and second-ordermomentsμ(t, q = 1) = E[Y (t)] and
μ(t, q = 2) = E[Y (t)2], respectively, for the nonlin-
ear systems’ responses, by using the SROM-estimates
in Eq. (11) withm = 20 (red, dotted line); the ESROM
estimates in Eq. (20) with d = 100,m = 10 (blue,
dashed line), in comparison with the MC estimates in
Eq. (6) with n = 104 (black, solid line), for each of
the three systems chosen for our examples, i.e. the (a)
Duffing, (b) Bouc–Wen and the (c) first and (d) second
DOFs of the NES systems.

Using the same number of samples as in Figs. 9
and 10, Fig. 11 shows the tail probability distribution
estimates F(y) = P[maxt≥0 |Y (t)| > y] of the non-
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(a) (b)

(c) (d)

Fig. 10 Second-order moments E[Y (t)2] using MC with n =
104 (black, solid line), SROM with m = 20 (red, dotted line),
and ESROM with d = 100,m = 10 (blue, dashed line), for the

a Duffing, b Bouc–Wen, and c first and d second DOFs of the
NES system. (Color figure online)

linear systems’ responses, by using the three SROM
(red, dotted line), ESROM (blue, dashed line) and the
MC (black, solid line), for the same three nonlinear
systems.

The accuracy and the efficiency of the SROM-based
methods proposed depend on the SROM and ESROM
models’ sizes. For example, the accuracy of the SROM
X̃(t) depends on the model size m, but also for a
selected m it depends also on the optimization algo-
rithm used to select its samples x̃(t) and their probabil-
ities pk . It was shown in [41] that the SROM solution
converges to theMC solution asm → ∞. Thus, a large
dimension m of the SROM would produce very accu-
rate statistics of the process X (t), but it comes at a large

computational cost, similar to Monte Carlo [35]. Even
though accurate response statistics have been achieved
with lowvalues ofm [40,41], the sizemmust be chosen
on consideration of computational time. The accuracy
of the response statistics for Y (t) depends on that of
X̃(t) and the approximation used for the mapping of
X (t) into Y (t). Bounds for the errors of SROM-based
methods have been established in [59] and [38], but this
analysis is beyond the scope of this paper.

Figures 12 and 13 show the same first- and second-
order-moment estimates, similar to Figs. 9 and 10, but
with an increased size of the SROM X̃(t) in the SROM
method to m = 103, which is similar to the com-
putational effort required to build the response sur-
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(a) (b)

(c) (d)

Fig. 11 Tail distribution P[maxt≥0 |Y (t)| > y] using MC with
n = 104 (black, solid line), SROM with m = 20 (red, dotted
line), and ESROM with d = 100,m = 10 (blue, dashed line),

for the a Duffing, b Bouc–Wen, and c first and d second DOFs
of the NES system. (Color figure online)

rogate model in the ESROM method. As expected,
the increase in m provides improved results of the
SROM method, similar to the ones obtained by MC
and ESROM.

While in the SROM method the estimates of the
response statistics are based on a rather crude approx-
imation of the mapping between the response sam-
ples ỹk(t) and the SROM samples x̃k(t), the ESROM
method is based on a more accurate representation of
this mapping, as shown in the previous section. The
accuracy of the ESROM method depends as well on
the dimension m of the SROM model Z̃ of Z , but
also on the dimension d of the vector Z , which is
used to parametrize the input process X (t). The effi-

ciency of the methods proposed will be judged by
the number of deterministic nonlinear dynamic analy-
ses involved to calculate the response statistics. While
MC requires n dynamic analyses, the SROM requires
only m << n dynamic analyses for the samples
(x̃k(t), pk), k = 1, . . . ,m of the SROM X (t). The
ESROM method requires a larger number of dynamic
analyses than SROM, that is,m × (d + 1) analyses. As
a result, the efficiency of the ESROMmethod depends
on the balance between the dimension d of Z and the
dimension m of its SROM Z̃ . In order to get a sense of
how the balance between m and d plays a role in the
development of the ESROM method, Fig. 14a shows
the tail distributions for the response of the Bouc–
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(a)
(b)

(c) (d)

Fig. 12 First-order moments E[Y (t)] using MC with n = 104

(black, solid line), SROM with m = 103 (red, dotted line), and
ESROM with d = 100,m = 10 (blue, dashed line), for the a

Duffing, bBouc–Wen, and c first and d second DOFs of the NES
system. (Color figure online)

Wen model for approximately the same computational
effort, i.e. approximately 103 dynamic analyses, but
for two sets of m and d, i.e. m = 20, d = 50 and
m = 10, d = 100, respectively. It is noticed that an
increase in the size m of the Z̃ at the expense of the
dimensiond of Z leads to results that are divergent from
the MC solution. Thus, the accurate representation of
X (t) in Eq. (13), which is controlled by the dimen-
sion of Z (see Fig. 5), is essential for the success of
the method. This conclusion is in line with expectation
since the higher the dimension d is, the better the fre-
quency content of X (t) is modelled, and the response
of nonlinear dynamic systems is sensitive to the fre-
quency content of the excitation. Figure 14b shows that

an increase in the dimension m in the SROM method,
provides better results also for the tail distribution of
the response of the Bouc–Wen system, as already seen
for the moments in Figs. 12 and 13.

Further plots and discussions on the accuracy and
efficiency of the two methods proposed for the tail dis-
tributions of the response of the other two systems are
shown in Figs. 15 and 16. Figure 15 shows the response
tail distributions in Fig. 11 in a logarithmic scale includ-
ing for extreme values of the response, i.e. y > 1. It can
be seen that the solutions provided by MC (n = 104),
SROM (m = 20) and ESROM (m = 10, d = 100)
diverge as y increases.

123



240 A. Radu

(a)
(b)

(c) (d)

Fig. 13 Second-order moments E[Y (t)2] using MC with n =
104 (black, solid line), SROM with m = 103 (red, dotted line),
and ESROM with d = 100,m = 10 (blue, dashed line), for the

a Duffing, b Bouc–Wen, and c first and d second DOFs of the
NES system. (Color figure online)

Fig. 14 Tail distribution
P[maxt≥0 |Y (t)| > y] using
MC with n = 104 (black,
solid line) and a ESROM
with d = 100,m = 10
(blue, dashed line), ESROM
with d = 50,m = 20 (blue,
dot-dashed line); b SROM
with m = 20 (red, dotted
line), SROM with m = 103

(red, dot-dashed line) for
the Bouc–Wen systems.
(Color figure online)

(a) (b)
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(a)
(b)

(c) (d)

Fig. 15 Extreme tail distribution P[maxt≥0 |Y (t)| > y] using
MC with n = 104 (black, solid line), SROM with m = 20 (red,
dotted line), and ESROM with d = 100,m = 10 (blue, dashed

line), for the a Duffing, b Bouc–Wen, and c first and d second
DOFs of the NES system. (Color figure online)

Figure 16 shows the same results as in Fig. 15, but
for a larger number of MC samples, increased from
n = 104 to n = 106, and for a larger dimension m in
the SROM method from m = 20 to m = 103. A very
large number of samples (n = 106) are required for the
MC method to reach convergence in the extreme tails
for values of y > 1. Regarding the SROM method,
we notice that a large size m = 103 is still insufficient
to improve results in the extreme tails. However, the
ESROM results for the initial values m = 10, d = 100
provide excellent results, similar to the MC results
calculated for n = 106. Thus, with only approxi-
mately one thousandths of the computational effort,
the ESROM is able to provide accurate results even

in the tail of the response of the distribution of Y (t).
Nevertheless, the SROM is a very efficient and reliable
alternative to MC for calculating the other response
statistics, at just a very small fraction of the computa-
tional effort.

Indisputable advantages of the ESROM method are
shown in the analyses of extreme values of the state
Y (t) of the nonlinear systems. In order to analyse the
extreme values of Y (t), Fig. 15 shows the tail distribu-
tions for the Duffing and the Bouc–Wen models in a
logarithmic scale. In the case of extreme-value analy-
sis, by comparing the Figs. 15 and 16, we can conclude
that theESROMclearly outperformsMCmethod,man-
aging to produce reliable results for just a small frac-

123



242 A. Radu

(a) (b)

(c)
(d)

Fig. 16 Extreme tail distribution P[maxt≥0 |Y (t)| > y] using
MC with n = 106 (black, solid line), SROM with m = 103 (red,
dotted line), and ESROM with d = 100,m = 10 (blue, dashed

line), for the a Duffing, b Bouc–Wen, and c first and d second
DOFs of the NES system. (Color figure online)

tion of the deterministic analyses required by the MC
method to reach convergence. The two SROM-based
methods proposed are good alternatives to MC and
provide accurate results efficiently, which allows for
simulation-based results to be estimated accurately for
nonlinear systems subjected to stochastic input. Finally,
given the superior performance of the ESROM solu-
tion compared with MC throughout the distribution
of the response, even in the case of extreme values,
any statistics can be calculated with limited effort.
To support this idea, a more practical example of the
joint distributions of the maxima of the input X (t)
and the response Y (t) for the NES system is shown
in Fig. 17. Since both processes X (t) and Y (t) are

non-stationary, their joint distribution is impractical to
show and thus the conditional probabilities of the max-
ima P[maxt≥0 |Y j (t)| > y|maxt≥0 |X (t)| > x] for
each of the 2DOFs j = 1, 2 of the NES system are
calculated and shown in Fig. 17a–d, calculated using
the MC and the ESROM responses, respectively. The
SROM results for this statistic are not shown since this
method fails to perform accurately in case of large val-
ues of the response Y (t), and it does so for the joint
distribution of the maxima of X (t) since it would be
restricted to evaluate themaximaonly through the small
m number of input samples used, insufficient for such
a result.
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Fig. 17 Conditional probability of exceedance for: the first DOF
of the NES system P[maxt≥0 |Y1(t)| > y|maxt≥0 |X (t)| > x]
calculated using aMCand bESROM; and the secondDOFof the

NES system P[maxt≥0 |Y2(t)| > y|maxt≥0 |X (t)| > x] calcu-
lated using cMC and d ESROM, with n = 106, d = 100, m =
10

5 Conclusions

Two general, efficient and reliable methods are pro-
posed for solving stochastic stable nonlinear dynamic
equations. Stochastic reduced-order models (SROM),
that is, random processes with finite number of sam-
ples, have been used to represent the stochastic inputs
to nonlinear dynamic systems and construct approxi-
mations for the states of these systems. Two types of
SROM-based solutions were presented, and numeri-
cal results were compared with the Monte Carlo (MC)
estimates. The first method, that is, the SROM-based
solution involves the construction of a SROM for the
input process, whose samples are used to calculate the
responses of the nonlinear systems. The extended ver-
sion of this method, that is, the ESROM-based solu-

tion, involves the construction of a piece-wise surrogate
model for the states of the nonlinear systems, based
on the SROM of the input. The accuracy and the effi-
ciency of the two methods are discussed in terms of
the number of dynamic analyses required for obtain-
ing the reliable response statistics. Results show that
the SROM method is very efficient producing reliable
results within an acceptable error with respect to MC,
with a small number of dynamic analyses, but it fails
to represent statistics at the extremes. The ESROM is
superior to the SROM method, and it outperforms in
terms of computational time the MC method for some
statistics, such as extreme-value distributions, or joint
distributions of the input-response maxima.
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