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Abstract Many physical situations involve chaotic
systems implemented in hardware. Among them one-
dimensional piecewise linear maps are popular candi-
dates for such applications because of their property of
generating robust chaos. In physical implementations,
the control parameter of these maps may deviate from
its ideal value due to hardware imprecision. Since the
dynamics of a chaotic map is completely defined by
its control parameter, one needs to know the value of
the parameter in a hardware realisation. In this paper,
we show that it is possible to determine the parameter,
through the realisation of the unstable fixed point of
the map, by utilising noise that is always present in the
system.We present this in the form of an algorithm and
demonstrate its efficacy through simulated results. We
also determine the bounds on the signal-to-noise ratio
required for successful parameter estimation. The pro-
posed approach is expected to be beneficial to the exist-
ing noise reduction techniques and time series recovery
algorithms that require a reasonably accurate knowl-
edge of the map.
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1 Introduction

Chaotic maps have found use in applications like data
encryption, cipher key generation in communication,
dynamical systems synchronisation and control, and
signal processing, to name a few. One-dimensional
(1D) piecewise linear (PWL) maps, a sub-class of
chaotic functions, are especially popular in practi-
cal applications owing to their simplicity and ease of
implementation in the physical domain. In particular,
certain maps belonging to this class are extensively
studied and applied for their uniformly dense chaotic
behaviour over a wide range of parametric values,
referred to as ‘robust chaos’ [1]. Such maps have there-
fore received considerable attention for use in applica-
tions involving physical implementations [2–6].

The control parameter is one of the central elements
of the chaotic functions, whose estimation is necessary
for the specific knowledge of the resultant dynamical
behaviour. There are some robust techniques available
that use either time series trajectories [7,8] or the equiv-
alent symbolic sequences [9] to decipher the dynamic
behaviour of the map, thereby determining the control
parameter that result in such behaviour. However, such
techniques often do not consider the inevitability of the
noise introduced in certain implemented scenarios that
results into complete digression of system trajectories
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from the expected one [10]. In fact, in some cases, the
severity of the noise can lead to outcomes bearing lit-
tle or no resemblance to the actual system behaviour
[11,12].

Distinguishing meaningful information from the
distorted dynamics is crucial and can be computation-
ally intensive. The contributions in [13–15] offer signif-
icant reductionof the noisewith efficient reconstruction
of the dynamical phase space manifolds, consistently
highlighting the importance of either determining the
noise level in the system or approximating the source
function as a priori information so that either of the
two information can be utilised to distinguish the other.
In this paper, we study the dynamics of noise-affected
1D PWL maps and propose an innovative technique
utilising Cartesian coordinate geometry to identify the
control parameter of themap, consequently this knowl-
edge of the control parameter can significantly reduce
the computational steps involved in approximation of
the source function.

Many studies have been conducted to broadly under-
stand the effect of noise on the chaotic dynamics [16–
18]. Noise and chaotic trajectories are both wideband
signals; therefore, linear filtering techniques (e.g. low-
pass, bandpass filters) or classical Fourier approaches
cannot be applied to reduce noise, as meaningful tra-
jectories might also be barred by the filtration [19,20].
Thus, eliminating noise in order to discern the actual
system trajectories is a non-trivial problem and is
approached algorithmically.

Works by Kostelich [21], Schreiber [13] and Grass-
berger et al. [15] formed the basis of the subse-
quent developments in the noise treatment approaches
and have been well summarised by Kostelich and
Schreiber in [22] through a qualitative comparison
assessing the suitability of the most prevalent tech-
niques for various application scenarios.One such tech-
nique is source function approximation which uses
least squares approach for local linear approximations
(Eckmann–Ruelle linearisation) [23] of the dynamics
at each point of the attractor. The accuracy of such
approaches depends on how appropriately the dynam-
ics can be described by the chosen linear function. Sim-
ilar approximation techniques like global function fits
also depend on the appropriate choice of the basis func-
tions [22,24].

Adaptive thresholding is also a commonly used
approach that uses threshold functions to determine
wavelet coefficients of the noisy signal, depending on

the energy distributions in each set of samples, since
energies of chaotic segments are comparable to noise.
Such a method has been described in [25] that applies
different threshold coefficients adaptively according
to the detailing of the decomposed signal-scale coef-
ficients. Adaptive thresholds can also be estimated
with optimisation techniques like genetic algorithm as
shown by Han and Chang [26].

Another popular approach is to determinemaximum
likelihood, where the noisy trajectories are compared
with a noise free reference orbit, as demonstrated by
Marteau and Abarbanel in [27]. Similarly works by
Schweizer and Schimming [28] shows how least square
estimates between the expectation and the observa-
tion can be used as likelihood cost function. How-
ever, to determine the expectation, the knowledge of
either the actual trajectory or the noise level in the sys-
tem is necessary. Also, most of the noise reduction
and phase space reconstruction problems are simul-
taneously addressed through multidimensional delay
embedding techniques that are fundamentally based on
Takens’ embedding theorem [19], which is only appli-
cable to the systems with higher (greater than two)
Euclidean dimensions [11,29].

From thementioned techniques, it is understood that
a number of the approaches depend either on good
approximation of the source function, or determination
of the thresholds between noisy and deterministic data
that involve several layers of pre-processing stages,
thus may add to the cost of computation as a trade-off.
On the other hand, the likelihood estimation approaches
demand prior information of the noise level or complete
knowledge of the source function where by “complete
knowledge” it is expected of one to know the chaotic
system in full detail including the control parameter.
Hence, if the information of the control parameter can
be extracted from the noisy trajectories, then a con-
siderable amount of information regarding the actual
dynamics and the initial conditions can be successfully
retrieved and it can be of additional support to the exist-
ing noise reduction techniques to improve accuracy.

In this paper, we investigate the behaviour of the
noisy dynamics of 1D PWLmaps under different para-
metric conditions. From the collective observations of
highly distributed trajectories over the state space, as
is the case with the noise-affected dynamics, we notice
a unique dynamical property demonstrated by the iter-
ates originating within a wide neighbourhood of the
fixed point of the map. Knowing the magnitude and
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time coordinates of the iterative samples, we propose
a geometric view of the iterates on a two-dimensional
Cartesian coordinate system.We apply linear construc-
tions between consecutive iterates within the set of col-
lected samples whose solutions correspond to a unique
point that we mathematically establish as having direct
correspondencewith the fixed point and control param-
eter of the map. Hence, the property can be utilised to
determine the system parameter from the collection of
noisy dynamics of the system.

In Sect. 2, we present the contextual overview of
1D PWL maps and suitable sampling techniques that
will be required for the observations regarding the noisy
dynamics. In Sect. 3, we show in detail how the dynam-
ical noise within the system affects the trajectories and
makes them spread all over the state space through the
dynamics of tent map considering it as a typical exam-
ple of 1D PWL maps. We establish the observed prop-
erties in Sect. 4, which we further utilise in Sect. 5 to
formulate a method to estimate the parameter of the
maps considered. We verify the efficacy of the pro-
posed technique for the candidates of 1D PWL maps
through simulation results. In Sect. 6,we add somefinal
comments and concluding remarks about the proposed
technique.

2 Context

1D PWL maps given by f are composed of a set
of linear functions defined over segments of a one-
dimensional state space. Each of the linear segments
is limited by contiguous restrictions that together con-
stitute the invariant interval or the state space I . The
dynamics of f (xn) = xn+1 ∈ I ⊂ R is an
iterative self-map such that f : I → I , whose
resulting discrete time series is given by X =
{xn | n = 0, 1, . . . , N − 1} for N iterations and can
be treated as the trajectory of the map over time.

Among the 1D PWL maps, the tent map (both sym-
metric and skew), the zigzag map and Bernoulli shift
map are the are the common examples, as these maps
are widely used in various areas of application. First,
we consider symmetric tent map T (xn) [3] to observe
the behaviour of noise-affected chaotic dynamics and
investigate the properties of the noisy iterates reflecting
upon the maps fixed points and the parameter. Later we
adapt the estimation technique for the other 1D PWL
maps. The tent map is defined by (1) over I = [0, 1]

and the dynamics of T depends on the height or the
control parameter of the map, given by μ ∈ [0, 1],
and critical point of T is xc = 0.5 ∈ I .

xn+1 = T (xn) =
{
2μxn 0 ≤ xn ≤ xc
2μ (1 − xn) xc < xn ≤ 1

(1)

T (xn) exhibits chaotic behaviour forμ ∈ (0.5, 1]. The
discrete time trajectory of an input or initial condition
x0 ∈ I has the following properties.

1. x0 = T 0(x0)
2. xn+1 = T n+1(x0) = T (T n(x0)) = T (xn)
3. T (0) = T (1) = 0
4. Tmax = T (xc) = 2μxc = μ ≤ 1, where Tmax is

the maximum height of the map, for 0.5 < μ ≤ 1
5. xf = T (xf ) = 2μ

(
1 − xf

)
, where xf is the

nonzero fixed point

There are two fixed points in the state space I such
that xn+1 = xn . One such fixed point is evidently
T (0) = 0. The other is the nonzero fixed point is
given by

xf = 2μ/(1 + 2μ) (2)

The folding nature of the tent map ensures that every
point in the invariant interval I maps arbitrarily close
to every other point in I [30]. When chaotic maps are
implemented physically, the feedback process of the
original dynamics of X trajectories becomes signifi-
cantly affected by the noise induced through the sys-
tem hardware. Noise-affected chaotic trajectories con-
sist of a deterministic part and a random part, intrinsic
to the physical system that affects the entire dynam-
ics at every iterative state. Such types of noise can be
described as dynamical noise [10], whose evolution is
given by ïn+1 = T (ïn) + ón , where ón is the uncor-
related random perturbations at every step of iteration.
The trajectory of such noisy dynamics is defined as
η = ï0, ï1, ï2, . . . , ïN−1.

The distribution of the random variables ón from
an unknown source can be best emulated by Gaussian
distribution, commonly referred to as additive white
Gaussian noise (AWGN)due to its intrinsically additive
nature. TheAWGNwith a zeromean is characterised by
signal-to-noise ratio (SNR) of 10 log10 (σ 2

x /σ 2
ó ) mea-

sured in dB, with σx and σó as the standard devia-
tions of the signal and the noise, respectively. To inves-
tigate the behaviour of the noisy dynamics, we col-
lect M samples of η trajectories. Therefore, each of
the sampled trajectories (as shown in Fig. 1) can be
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Fig. 1 Dynamics of T
getting affected by noise in
every stage of iteration and
are sampled for each n
successively; the noisy
trajectory thus generated are
sampled M times

represented as ηm = ïm0 , ïm1 , ïm2 , . . . , ïmN−1 where
m = 0, 1, . . . , M − 1. For any m, we record each
nth iterate through all the N iterations and then for
the next (m + 1)th sample, we start from ïm+1

0 again
through to ïm+1

N−1.
As summarised in [22], a noise reduction method

must estimate the dynamical quantities of the func-
tion under operation. Even when the chaotic function
is known, the true dynamics of the system can only be
ascertained when some knowledge about the control
parameter is also available.

3 Behaviour of the chaotic trajectories when
affected by noise

For any perturbed point xn + �n iterative transforma-
tion xn+1 + �n+1 = f(xn + �n) leads to diverging
paths, that is further deviated from the actual xn+1 =
f(xn), at the rate given by the Lyapunov exponent
λ = ln(

∣∣�n+1

∣∣ / ∣∣�n∣∣). For the tent map, as long as
the control parameter belongs within its ergodic range,
i.e. μ ∈ (0.5, 1] and ∣∣�n+1

∣∣ >
∣∣�n∣∣ i.e. λ is positive,

the trajectories will be divergent in nature, similar to
what is also experienced when random perturbations
ón is introduced in every iteration. Figure 2 shows this
divergence within a short length (N = 5) trajectory
of an arbitrary initial condition for M = 10 samples.

The ηm sample trajectories diverge away from each
other and the ïmn points become eventually distributed
over the state space I = [0, 1]. As can be seen from
Fig. 3, when larger set of M trajectories are observed
collectively for a higher N , the ηm are found to be
densely distributed over I . We notice that when con-
secutive iterates ïmn−1 and ïmn are connected by straight
lines, dense clusters of intersections appear in a con-

Fig. 2 Collective viewof divergent noisy trajectories of an initial
condition x0 = 0.3234 iterated through T up to N =5 with an
arbitrary choice ofμ = 0.825. Also, noise level of SNR=30 dB
was added to every iterate and ηm trajectories were collected for
M = 10 observations

centrated neighbourhood between the majority of the
nth and (n + 1)th iterates.

We find that such clusters of intersections (or
crossovers) majorly appear at about the same level on
theY -axis, conveniently around the nonzero fixed point
xf . We also verified that any variation in μ is reflected
on the positions of the clusters. Figure 4 shows that
the positions of the intersection clusters have appeared
at different levels for the two cases of μ, simulated
for the same x0 perturbed with same level of noise
(SNR=25 dB). Based on these observations, we study
the intersections of the straight lines that are formed
between the iterates and investigate their appearance
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Fig. 3 The ηm trajectories
for, x0 = 0.3234,
μ = 0.825, N = 20,
SNR=30 dB and M = 50
are shown

Fig. 4 For two different
values of μ with same level
of noise 25 dB in the system
for the same x0 = 0.3234,
the clusters have appeared
around the corresponding
fixed point xf , marked with
dashed lines, a for
μ = 0.825 around
xf = 0.6226 and b for
μ = 0.625 around
xf = 0.5745, respectively

around the neighbourhood of the nonzero fixed point
xf .

4 Dynamics in the neighbourhood of the nonzero
fixed point

In order to realise the properties of the intersection
clusters (crossovers), we explore the dynamics of the
map around xf . For any parameter μ ∈ (0.5, 1],
there exists a preimage of xf (apart from T(xf ) =
xf ), given by xp = xf /2μ. We identify four inter-
vals [0, xp), [xp, xc), [xc, xf ) and [xf , 1], with distinc-
tive mapping characteristics centred around xf . For
any xn ∈ [0, xp) ⊂ I , the corresponding xn+1

will not exceed xf , thus resulting into the mapping
T : [0, xp) �→ [0, xf ). On the contrary, for any
xn ∈ [xp, 1] ⊂ I , the corresponding xn+1 will map
past xf on either sides, as given by the mappings
T : [xp, xc) �→ [xf , μ), T : [xc, xf ) �→ [xf , μ)

and T : [xf , 1] �→ [0, xf ].

If we have access to any (xn, xn+1) pair, we can also
represent the points through a two-dimensional carte-
sian coordinate systemXY, where the X -axis represents
n and n + 1, and the Y -axis represents xn and xn+1,
and one can construct a straight line through coordi-
nates (n, xn) and (n + 1, xn+1). We therefore observe,
how the straight lines formed by each corresponding
pair of xn and xn+1 interact, for all the xn points orig-
inating within I . We show the line plots for a few
points xn ∈ [0, 1] and their corresponding xn+1 iter-
ates in Fig. 5a. Evidently, the mapping T : [0, xp) �→
[0, xf ) has no contribution in the crossovers that form
around xf . Based on T : [xc, xf ) �→ [xf , μ) and
T : [xf , 1] �→ [0, xf ], and from the observation in
Fig. 5a, it can be stated that the straight lines connecting
xn ∈ [xc, 1] ∈ I and their corresponding xn+1 inter-
sect at a single point (that is the xf of the map), on the
Y -axis. For the remaining xn ∈ [xp, xc) points, even
though the corresponding xn+1 maps beyond xf , any
intersections with them are spread over a wide range on
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Fig. 5 a Straight lines formed by the originating points xn ∈
[0, xp), xn ∈ [xp, xc), xn ∈ [xc, xf ), xn ∈ [xf , 1] and their
corresponding xn+1 points. The lines formed by xn ∈ [xc, 1]
intersect at a single point, whereas the remaining intersections

formed by other xn are spread over. b Similarly, straight lines
formed by joining the coordinates of two arbitrary points xn =
(xc + d) ∈ [xc, 1] and x ′

n = (1 − d ′) ∈ [xc, 1]

the XY-plane instead of being concentrated on a single
one.

To validate our statement, we consider a further
generic situation. Let there be two arbitrary points
xn ∈ [xc, 1] ∈ I and x ′

n ∈ [xc, 1] ∈ I , with their
corresponding next iterates given by xn+1 = T (xn) and
x ′
n+1 = T

(
x ′
n

)
. If we construct two straight lines by

connecting the coordinates (n, xn) with (n + 1, xn+1)

and (n,x ′
n) with (n + 1, x ′

n+1) on the XY-plane, then
we can propose the following:

Theorem 1 For any two points xn ∈ [xc, 1] and x ′
n ∈

[xc, 1] such that xn �= x ′
n, and their respective iterates

xn+1 and x ′
n+1, suppose n and n + 1 are plotted on the

X-axis and xn, xn+1, x ′
n, and x

′
n+1 are plotted on the Y -

axis. Then the lines joining the coordinates (n, xn)with
(n + 1, xn+1), and (n, x ′

n) with (n + 1, x ′
n+1) always

intersect each other at a point whose Y -coordinate will
be equal to the value of x f , the nonzero fixed point.

Proof Let there be two points xn = (xc+ d) and x ′
n =

(1−d ′); arbitrary distancesd andd ′ away from xc and1,
respectively, such that xn ∈ [xc, 1], x ′

n ∈ [xc, 1] and
xn �= x ′

n . Therefore, the iterates of the chosen points
will be, xn+1 = T (xc + d) = μ − 2μd, and x ′

n+1 =
T (1− d ′) = 2μd ′ from the properties of the tent map
described in Sect. 2.

We represent the pairs of the points on a two-
dimensional cartesian coordinate system (X,Y ) as,
((n, xc + d), (n+1, μ−2μd)), and ((n, 1−d ′), (n+
1, 2μd ′)). Joining the pairs of nth and the correspond-
ing (n + 1)th points as shown in Fig. 5b, the equations
representing the two straight lines are given by (3) and
(4).

Y − (xc + d)

(μ − 2μd) − (xc + d)
= X − n

n + 1 − n
(3)

Y − (
1 − d ′)

2μd ′ − (1 − d ′)
= X − n

n + 1 − n
(4)

Since the ordinate value of the point, where the straight
lines intersect, gives us the view of the phenomenon,
solving only forY solutionswill suffice for our purpose.
Equating (3) and (4), we can write

Y − (xc + d)

(μ − 2μd) − (xc + d)
= Y − (

1 − d ′)
2μd ′ − (1 − d ′)

(5)

Putting xc = 1/2 in (5) and solving for Y

⇒ Y − ( 1
2 + d

)
(μ − 2μd) − ( 1

2 + d
) = Y − (

1 − d ′)
2μd ′ − (1 − d ′)

⇒ Y = 2μ

1 + 2μ
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Fig. 6 Distribution of Y k

solutions between n and
corresponding n + 1 time
steps for ηm trajectories
have been shown a for
n = 16 whose mean
Ȳ16 = 0.588973039 and
standard deviations
D16 = 0.090581987, b for
n = 20 with
Ȳ20 = 0.588029146 and
D20 = 0.079790657 are
the close approximations of
the xf = 0.5884770
corresponding to the chosen
case of μ = 0.715

from (2) we can write

Y = 2μ

1 + 2μ
= xf

Hence, the proof is complete.
It is thus confirmed that for xn ∈ [xc, 1] ∈ I , i.e.

50% of the possible points within the state space I , will
have the straight lines formed with their corresponding
xn+1 intersecting at the same point xf .

5 Parameter estimation from the noisy trajectories

From Theorem 1 and previous observations, it is now
evident that location of the nonzero fixed point of the
map can be identified from the intersections (Y solu-
tions of (5)) exhibited by straight lines formed between
ïmn and ïmn+1 samples of the noisy distribution of tra-
jectories. We apply the proposed idea to determine the
parameter from the noisy dynamics of the tent map and
eventually adapt it for the other maps.

For the tent map, we intend to determine a point
within the concentrated neighbourhood of crossovers,
as the closest estimate of xf , which in turn, is indicative
of the map parameter as given by (2). To determine the
intersections of the straight lines formed between the
nth and (n + 1)th iterates, we select the set of points,
Hn = {ïmn ∈ [xc, 1]}. For any Hn , let the total number
of selected points out of M samples be M ′ ≤ M imply-
ing thatM ′ number of straight lines can be formedwith
each element in Hn with their corresponding (n + 1)th
iterates. We can therefore solve for the intersections
between straight lines formed by the unique pairs of
points ïin, ïin+1 and ï j

n, ï j
n+1 for the M

′ selected cases.

Thus, for all i and j such that i �= j , there will be
M ′(M ′ − 1)/2 number of intersections whose solu-
tions of the ordinate value Y k is given by rewriting (5)
in terms of ïin, ïin+1 and ï j

n, ï j
n+1

Y k − ïin
ïin+1 − ïin

= Y k − ï j
n

ï j
n+1 − ï j

n

(6)

where k = 1, 2, . . ., M ′(M ′ − 1)/2.
TheY k solutions form a cluster of the points of inter-

section between the lines joining the n and (n + 1) time
steps. To determine a central point within such a unidi-
mensional cluster, we calculate the arithmetic mean Ȳn
of all the Y k solutions between each n and (n + 1) time
steps. Despite the selection criterion ïmn ∈ [xc, 1], in
order to have at least one Y k solution for an intersec-
tion, there must be at least two elements in Hn ; hence,
we exclude any such |Hn| < 2.

To illustrate the concentration of crossovers,we con-
sider the case: x0 = 0.383, iterated for N = 50 with
μ = 0.715 and the iterates were perturbed by AWGN
with a noise level of SNR = 20 dB, and M = 200
samples of ηm trajectories were collected.We show the
distribution of Y k through histograms for n = 16 and
n = 20, respectively, in Fig. 6a, b, with calculated
mean Ȳn and standard deviation Dn .

For our chosen case of μ = 0.715, the correspond-
ing xf = 2μ/(1 + 2μ) = 0.5884770. It has been
noticed that all the Ȳn values are the close approxima-
tions of the said xf . Hence, we can determine a single
point ξ by calculating the arithmetic mean of the col-
lection of Ȳn values, to derive the closest estimate of xf .
Using ξ, we therefore estimate the control parameter of
the tent map. The estimated parameter μ′ is given by
rewriting (2) in terms of ξ and μ′
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Fig. 7 Skew tent map with
a ν = 0.3 and b ν = 0.7
showing the nonzero fixed
point xf

Fig. 8 Crossovers in the
time series of S (xn) with
x0 = 0.8633 for ν = 0.3
and SNR = 20 dB

μ′ = ξ/2(1 − ξ) (7)

For the above-mentioned case, we determined the ξ =
0.5888251 and standard deviation SD = 0.0086253
for the collection of Ȳn values, andwefind the estimated
μ′ = 0.7160277 which is significantly close to the
actual μ = 0.715.

Next, we explore the effectiveness of the technique
further by applying it to the asymmetric (skew) tent
map, zigzag map and Bernoulli shift map which are
more practical and widely implemented cases of 1D
PWL maps.

5.1 Skew tent map

Skew tent map S (xn) can be defined [4] as

xn+1 = S (xn) =

⎧⎪⎨
⎪⎩

xn
ν

xn ≤ ν

(1 − xn)

(1 − ν)
ν < xn

(8)

where ν ∈ (0, 1) defines the map partition that con-
trols the position of the peak—and thereby the slope on
either side of the partition—causing the map to appear
as skewed or asymmetric when ν �= 0.5 as given in
Fig. 7.

InFig. 8,we show the crossovers for thefirst 20 itera-
tions within the noisy time series (having SNR=20 dB)
of the skew tent map for parameter ν = 0.3 and
arbitrarily chosen initial condition x0 = 0.8633. The
parameter estimation method was applied on M = 50
samples of N = 50 iterations. As an illustration,
in Fig. 9 we show the concentration of Y k solutions
(crossovers) between iterations 17 and 18 in a scat-
terplot matrix, where the histogram for the set of Y k

solutions can be seen. The concentration appeared
in the close neighbourhood of the actual fixed point
xf = 0.5882353 (for ν = 0.3) as ensured by the
average Ȳ17 = 0.5779640 having standard deviation
D17 = 0.1368260.

The map fixed point was estimated as ξ =
0.5878647 from the average of all Ȳn points for all

123



Parameter estimation for 1D PWL chaotic maps 2987

Fig. 9 Concentration of Y k solutions around xf shown through
scatterplot histograms, between iterations 17 and 18, with higher
concentration of Y k solutions at Ȳ17 = 0.5779640 with D17 =
0.1368260

n. For skew tent map, the relationship between the
nonzero fixed point and the map parameter is given

by xf = (1−xf )
(1−ν)

, in which the xf was substituted by
estimated fixed point ξ and solved to determine the
map parameter as ν′ = 2ξ−1

ξ
= 0.2989283. It can be

noticed that the estimated parameter value is in close
agreement with the chosen parameter value ν = 0.3
for the experiment, with error approximately 0.1%.
Hence, it ensures that the proposed technique can be
successfully adapted for the skew tent map.

5.2 Zigzag map

The zigzag map Z (xn) is defined [5] as

xn+1 = Z (xn)

=

⎧⎪⎪⎨
⎪⎪⎩

−ω
(
xn + 2

|ω|
)

−1 ≤ xn ≤ − 1
|ω|

ωxn − 1
|ω| < xn ≤ 1

|ω|
−ω

(
xn − 2

|ω|
)

1
|ω| < xn ≤ 1

(9)

where ω is the parameter of the map ranging from
ω ∈ [−3, 3], and the dynamical state space of xn being
[−1, 1].

In the zigzag map, the map parameter ω can vary
within the range of positive and negative values. In
case of a positive parameter, along with the fixed
point xf Z = 0, the map has a pair of nonzero fixed

points: xfN = − 2
(1+ω)

for the negative domain and

xf P = 2
(1+ω)

for the positive domain as shown in
Fig. 10a. When ω is negative, the map intersects the
diagonal only at xf Z (shown in Fig. 10b). As a result,
for +ω, the crossovers between the iterates appear at
both negative [−1, 0) and positive [0, 1] ranges of the
map (Fig. 11a), while that in case of −ω appear only
around zero, as can be seen in Fig. 11b. Such crossovers
around zero, however, are rendered ineffective for our
purpose because, when the parameter is changed, the
resulting function simply readjusts the slope of themap
about zero, and hence, no change in parameter values
is reflected by the position of xf Z .

This problem can be resolved by addressing the
fact that the negative parameter reverses the sign
in every odd count of the map iteration [5]. As a
result, −ω causes ∓xn+1 = Z(± xn) and ∓xn+3 =
Z(Z(Z(± xn))) for odd counts, while generating
± xn+2 = Z(Z (± xn)) for the even count. Therefore,
the trajectory generated with −ω can be transformed
into its positive equivalent by force-reversing the signs
of the odd count of iterates. This can be verified through
Fig. 12, where the time series of an arbitrary initial con-
dition iterated with ω = −2 has been shown; every
alternating iterate was multiplied by−1 for the forced-
reversal, effectively converting the recorded time series
to be congruent to the dynamics by Z (xn) for ω = 2.
As a result, in case of noisy dynamics, the meaningful
crossovers around xf P and xfN can re-emergewhen the
signs of the alternate iterate in the time series gener-
ated by negative parameter is reversed. Since, whether
the actual parameter is positive or negative will not
be known—to be able to suitably adapt the proposed
parameter estimation approach for the zigzag map—
we record the original samples of the noisy dynamics
and also produce an alternately inverted copy of the
recorded data. In either of the two datasets, the desired
crossovers will emerge about the nonzero fixed points
depending on the sign of the parameter. If the nonzero
crossover solutions are found in the inverted data set,
then it can be assured that the parameter was negative,
and the magnitude of ω can be determined.

The simultaneous presence of xf P and xfN may
instigate further modifications to enhance the perfor-
mance of the proposed method. From the map defini-
tion in Eq. (9), it is seen that

∣∣xf P ∣∣ = ∣∣xfN ∣∣ (Fig. 10a)
which results into symmetrically mirrored crossovers
around xf P and xfN in the noisy dynamics. Therefore,
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Fig. 10 Zigzag map with a
ω = 2.5 showing the fixed
points x f N , x f Z , x f P and b
ω = −2.5 with only x f Z

Fig. 11 The crossovers
appearing in the noisy
(SNR=20 dB) time series
of Z (xn) around the fixed
points in case of a ω = 2.5
at x f P and x f N at
± 0.5714285, respectively,
and for b ω = −2.5 at
x f Z = 0

the negative Y k solutions generated around xfN can
be inverted and remapped to the positive half in order
to reinforce the concentration of Y k solutions on the
positive side.

As an example, we apply the parameter estimation
technique on the noisy time series (SNR = 20 dB)

generated with initial condition x0 = −1 and param-
eter ω = 2.5, for N = 50 and sampled for M = 50;
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Fig. 12 Inverting the sign of the alternate iterates of the original
trajectory generated with ω = −2 produces the same trajectory
as generated by ω = 2

Fig. 13 Crossover points of the Z (xn) between iterations 15
and 16 with the histogram showing the Y k count around the
fixed point

∣∣xfN ∣∣

the initial 20 iterations are shown in Fig. 11a. In
Fig. 13, we show the concentration of Y k solutions
(crossovers) between iterations 15 and 16, The con-
centration appeared in the neighbourhood of the actual
fixed point xf P = 0.5714285, as determined by the
average Ȳ15 = 0.5677584 with standard deviation
D15 = 0.1830033.

Since the Y k solutions are generated on both pos-
itive and negative domain, the negative solutions are

inverted before calculating the respective Ȳn average.
Once the Ȳn points for all n have been computed, the
positive fixed point of the map was estimated as ξ =
0.5694459. Replacing x f P with ξ in x f P = 2

(1+ω)
, the

parameter is estimated to beω′ = 2−ξ
ξ

= 2.5121858,
which is in close agreement with the chosen ω = 2.5
with −1.2% estimation error.

When the parameter is negative, the nonzero Y k

solutions are found in the force-reversed dataset. For
a case chosen with ω = −2.5, the fixed point
was estimated from the alternately reversed dataset as
ξ = 0.5684757. As a result, the sign of the parame-
ter that has been determined must be reversed back,
and therefore, the estimated parameter is given by
ω′ = − 2−ξ

ξ
= − 2.5181797.

5.3 Bernoulli shift map

The Bernoulli shift map B(xn) is defined [6] by (10).

xn+1 = B(xn) =
{
2βxn + 0.5 xn ≤ 0
2βxn − 0.5 xn > 0

(10)

where β is the parameter of the map, which has a
chaotic range of β ∈ [0.7, 1]while xn ∈ [− 0.5, 0.5].

In case of Bernoulli shift map, it does not intersect
the diagonal anywhere except at 0 and 1; therefore, the
desired cluster of crossovers within the noisy trajecto-
ries do not appear in the neighbourhood of any dynam-
ical fixed point, as given by the map definition which
can also be verified from Fig. 14a. However, invert-
ing the sign of the alternate iterates results in the map
behaving as −B(xn), where it intersects the diagonal
at the points xf P = 0.5

1+2β and xfN = −0.5
1+2β , shown in

Fig. 14b.
As a result, prominent crossovers appear at xf P and

xfN in the noisy sampleswhen odd iterates are inverted,
which can be treated in a similar fashion as the zigzag
map.

Todemonstrate,M = 50 samples of noisy (SNR =
20 dB) time series for the Bernoulli map is generated
with initial condition x0 = − 0.23684 and parameter
β = 0.85, for N = 50 iterates, and the initial 20
iterations (after inverting the odd iterates) are shown in
Fig. 15. The ±Y k solutions are found, from which the
−Y k solutions are inverted to reinforce the+Y k values.
The concentration of Y k between iterations 12 and 13
is shown in Fig. 16 and the average Ȳ12 = 0.1652176
with standard deviation D12 = 0.0865524. The esti-
mated fixed point ξ = 0.1844331, determined from

123



2990 D. Dutta et al.

Fig. 14 Bernoulli map with
a β =1 and b intersection
with diagonal appearing for
−B (xn) with β = 1

Fig. 15 Noisy trajectory of
B (xn) for SNR = 20 dB
with x0 = − 0.23684 and
β = 0.85

the reversed dataset, is then used to evaluate the param-
eter β ′ = − 0.5−ξ

2ξ = −0.8555043, where the sign
must be inverted back (to 0.8555043) to suit the origi-
nal map.

5.4 Confidence interval

In many cases, the harsher conditions of dynamical
noise can cause the system to depart fromnormal distri-
bution [10], as it may introduce some systematic error
in the statistical estimates. Therefore, to further ensure
the efficacy of the approach, the estimation experi-
ment has been repeated for the individual maps over
a range of SNR values in order to determine the error
bar for each case of SNR. For each case of the maps,
we notice that the estimated parameter values at SNR
values 10 dB or less, are quite apart from the chosen
test parameters. However, better results are achieved
for slightly improved SNR values as relatively lower

Fig. 16 Crossover solutions in the noisy trajectory of B (xn)
between iterations 12 and 13 with the histogram showing the
concentration of Y k solutions around the fixed point
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Fig. 17 The proposed estimation method is attempted for 25
independent trials for each case of noise within the range of
SNR= [15, 30] dB for a tent map, b skew tent map, c zigzag map
and d Bernoulli shift map, with an arbitrarily chosen parameters

for each map μ = 0.85, ν = 0.25, ω = 3, and β = 0.9,
respectively. It shows the mean value of the estimated μ′ for all
25 attempts with 95% confidence intervals for each SNR condi-
tion

noise may still preserve the qualitative properties of
the trajectories [31]. We show in Fig. 17a–d the error
bar estimates for tent map (μ = 0.85), skew tent
(ν = 0.25), zigzag (ω = 3) and Bernoulli maps
(β = 0.9), respectively, with the corresponding mean
of parameter estimates.

Let us say for tent map, μ′
mean = 1

Q

∑Q
q=1 μ′

q of
Q = 25 independent estimation attempts; μ′

q for
q = 1, 2, . . . , Q is computed for each case of noise
over a range of SNR values 15–30 dB. To estimate the
standard error bar, we calculate the upper and lower
bound with 95% confidence interval given by μ′

mean ±
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1.96
(

μ′
SD√
Q

)
, respectively, where μ′

SD is the standard

deviation of Q estimation attempts. Similarly,we deter-

mine the standard error bars ν′
mean ± 1.96

(
ν′
SD√
Q

)
,

ω′
mean ± 1.96

(
ω′
SD√
Q

)
and β ′

mean ± 1.96
(

β ′
SD√
Q

)
for the

skew tent, zigzag and Bernoulli shift maps, respec-
tively. It can be seen that the estimated outcomes in the
chosen cases of the maps start to improve from SNR
15 dB onwards.

6 Conclusion

In this paper, we proposed a method to estimate the
control parameter of the 1D PWL maps from noisy
dynamics of the system. Due to the inherent noise in
physically implemented chaotic systems the dynami-
cal behaviour of the function becomes greatly affected.
Even a small amount of noise distorts the map trajec-
tories to a great extent. For the effective retrieval of the
meaningful trajectories, existing noise reduction tech-
niques require additional information about either the
dynamical system definition or the noise level within
the system. Given the computational complexity that
it might add while approximating the system model
or determining the noise level, we chose to estimate
the control parameter of the system, whose value fully
defines the behaviour of the map.

We have shown that the iterates of the dynami-
cal time series can be treated as points on a two-
dimensional Cartesian coordinate system. As the tra-
jectories become highly distributed over the state space
due to the presence of dynamical noise in the sys-
tem, we show that the straight lines connecting the
(X,Y ) coordinates of the consecutive iterates of all
the sampled time series form a cluster of intersections
between the nth and (n+ 1)th iterates. We have shown
that such clusters appear in the close neighbourhood
of the unstable nonzero fixed point of the maps (tent
map, skew tent map, zigzag map and Bernoulli shift
map) considered. We have established the fact that the
straight lines connecting the points (for tent map origi-
nating from [0.5, 1]) with their consecutive iterateswill
always intersect each other at the nonzero fixed point.
Utilising this property, we have shown how the value of
the fixed point can be estimated from the clusters and
the parameter of the 1D PWLmaps can be determined.

The effectiveness of the proposed method has been
studied through numerical simulations where the esti-

mations have been tried with various cases of parame-
ters and noise levels for each case of 1DPWLmaps.We
have conducted a statistical analysis for the behaviour
of the algorithm by showing the consistency of the
estimated outcomes through numerous attempts, for
a range of SNR values for each map described. We
have shown for a range of SNR values (e.g. 15–30), the
parameter estimates are satisfactorily close and that can
further improve the system approximations through the
mentioned noise reduction techniques.
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