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Abstract The multiple timescales method is applied
to the exact partial differential equations of the pla-
nar motion of a hinged–simply supported beam with
a linear axial spring of arbitrary stiffness. The forced-
damped and free oscillations of the system around fre-
quencies corresponding to nth natural bending mode
are examined thoroughly and compared with numer-
ical simulations as well as with already published
results obtained by Lindstedt–Poincaré method. A spe-
cial numerical technique using explicit finite element
method to draw the frequency–response curves is appo-
sitely developed. The well-known jump phenomena
between resonant and non-resonant branches, aswell as
superharmonic resonances, have been detected numer-
ically.
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1 Introduction

Modern technologies require more performance
mechanical systems, lighter and more slender than
the previous one, that are subjected to large displace-
ments and thus behave in the nonlinear regime. Thus,
recent studies pay more and more attention to nonlin-
ear dynamics of real systems. This interest is caused
mainly by the need of detecting multiple solutions, for
their avoidance when they represent dangerous condi-
tions for structures, for example in bridges, towers and
aeroplanes. On the other hand, nonlinear phenomena
can be exploited in order to harvest energy or to create
micro-electro-mechanical systems with specific prop-
erties working as sensors or actuators.

Beams are commonly used as structural elements
in macro-, micro- or even nanoscales. Independently
of the scale, for moderate and large vibrations nonlin-
ear beam models have to be taken into account, and
their nonlinear dynamical response must be investi-
gated. In this respect, the frequency–response curve
(FRC), which reports the response amplitude as a func-
tion of the excitation frequency, is an essential tool
that summarizes the main dynamical properties of the
nonlinear oscillations of the investigated system. This
curve is built by harmonically forcing the vibrations
of the structure, a beam in this case, up to obtaining
steady-state response, and then by recording the max-
imum amplitude versus the frequency of the excita-
tion.
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For nonlinear systems, multiple solutions may
appear at a single frequency, and their actual occur-
rence is related to initial conditions being in the basin of
attraction of one or another solution. The FRC, which
are “vertical” in the linear case (i.e. the amplitude is
independent of the frequency in free oscillations), may
bend towards the left (softening behaviour) or right
(hardening behaviour), depending on system parame-
ters such as the order of the natural frequency, material
and geometrical nonlinearities and different boundary
conditions.

The main goal of this work is to study how the FRC
of the nonlinear transversal oscillations of a planar
beam is affected by the boundary condition in the axial
direction.With this in mind, we consider a beamwhich
is hinged on the left end and which has a spring in the
axial direction on the right end, where the transversal
displacements are restrained. Varying the spring stiff-
ness from 0 to ∞, we can continuously pass from the
simply supported to the hinged case.

The problem of determining the nonlinear dynam-
ics of beams, in particular their hardening/softening
behaviour, has been previously addressed in the lit-
erature. For example, Atluri [1] reported the nonlin-
ear equation of motion describing large vibrations of a
hinged beam taking into account longitudinal and rota-
tory inertia. Using the Galerkin method, he reduced
the problem to coupled ordinary differential equations
and then applied the multiple timescale (MTS) method
to obtain an approximate analytical solution. Silva
and Glynn considered a nonplanar, flexural–torsional–
inextensional beam, keeping geometrical and inertia
nonlinearities up to third order [2] and, similarly to
the previous author, by using a perturbation technique
investigated its forced motion [3]. Later, the finite ele-
ment method (FEM) has been applied to in-plane beam
analysed by Reddy and Singh [4]. They tested large-
amplitude free vibrations andobtained the related back-
bone curves of beams with various boundary condi-
tions. The planar large-amplitude forced vibrations of
clamped–clamped, clamped–hinged, hinged–hinged,
hinged–simply supported and cantilever beams were
evaluated by Luongo et al. [5]. They reported that
beams with immovable ends (two edges are blocked
in the longitudinal direction) are hardening, while sys-
tems with one end free to move in the axial direction
are softening phenomenon.

Further analyses were devoted to nonlinear reso-
nances of other systems where the beam was coupled

with other elements like cables or springs. 3DOF cable-
stayed beam [6], hinged–hinged beam with one end
rotational spring [7], hinged–hinged and simply sup-
ported unshearable beams with one end axial spring [8]
may serve as examples. Shibata et al. [9] analytically
and experimentally determined a parametric resonance
of hinged–simply supported beam with an axial spring
with the aim of applying a passive control of FRCs by
varying spring stiffnesses.AlsoArumi andYabuno [10]
developed a model of a beam like system including a
large mass fastened to the movable end. These authors
demonstrated the important effect of the higher-order
geometrical nonlinearities.

In recent years, a series of papers have been pub-
lished on nonlinear beam modelling [11–14]. A shear-
able homogeneous beam model, with coupled axial,
rotational and transverse dynamics as well as nonlin-
ear geometrical terms resulting from large deforma-
tions, has been considered. The exact beammodel with
no approximations or reductions has been obtained.
However, the quoted works consider only the nonlinear
free oscillations. This paper is a continuation of those
analyses, and here, forced nonlinear oscillations have
been studied (i) by using a different analytical method
and (ii) by also using numerical simulations, aimed at
checking the analytical results and at highlighting other
aspects of the nonlinear dynamics. Also experimental
validation is planned, but it is left for future works. The
presented analytical and numerical results are obtained
for a very general case of thick, planar, homogeneous
beams in which shear deformation and axial and rota-
tional inertia are considered.

The paper is organized as follows. In Sect. 2, the
coupled partial differential equations of motion of the
Timoshenko beam are derived. The model takes into
account all geometrical nonlinearities; axial, transver-
sal and rotational inertial forces; viscous damping and
transversal periodic excitation. Analytical FRCs are
obtained in Sect. 3 by the MTS method, while their
numerical counterparts are determined in Sect. 4 by the
FEM, and they are compared in Sect. 5. Some interest-
ing dynamical phenomena observed in the numerical
simulations are reported in Sect. 6. The paper ends with
conclusions and future developments (Sect. 7).

2 The beam model

We consider the Timoshenko beam shown in Fig. 1.
Its configuration is described by “axial” W (Z , T ) and
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Nonlinear dynamics of a planar beam–spring system 1723

Fig. 1 Configuration of the
initially straight beam with
one end linear spring

Fig. 2 Kinematics (a) and
coplanar forces (b) of the
deformed beam

(a) (b)

“transversal” U (Z , T ) displacements and by the rota-
tion of the beam cross-section θ(Z , T ) (Fig. 2a). Z is
the spatial coordinate, which in the rest configuration
denotes the distance from the left end, T , is time. The
beam has initial length L , so that 0 ≤ Z ≤ L , constant
cross-section A and constant second moment of iner-
tia of the beam cross-section J . The beam is homoge-
neous with constant Young modulus E , shear modulus
G, density ρ. The right-end spring stiffness is ks .

The constitutive, kinematics and balance equations
reported in [11] are extended by adding linear viscous
damping and external excitations.

The balance of forced-damped beam element
(Fig. 2b) is given by the following equations in hor-
izontal (1), vertical (2) and rotational (3) directions,
respectively:

(N cosϕ + V sin ϕ)′

= ρAẄ + CW Ẇ + PW (Z , T ), (1)

(N sin ϕ − V cosϕ)′

= ρAÜ + CUU̇ + PU (Z , T ), (2)

M ′ − V S′ = ρ J θ̈ + Cθ θ̇ + Pθ (Z , T ), (3)

where the dot corresponds to the derivativewith respect
to time T , the prime denotes the spatial derivative with
respect to axial coordinate Z , ϕ is the slope angle of the
beam axis, γ is the Timoshenko angle of distortion due
to shear and S′ is the length of deformed beam element.
CW , CU and Cθ are linear viscous damping factors in

Z , X and rotational directions, respectively. M , N and
V are bending moment, axial and shear forces, respec-
tively, and their directions are shown in Fig. 2b. The
external distributed loads are denoted by PW (Z , T ),
PU (Z , T ) and Pθ (Z , T ) (see Fig. 2b).

Assuming a linear elastic behaviour the axial, shear
and bending stiffnesses are given by:

N = E Ae, V = GAγ, M = E Jk, (4)

where, e, the elongation of the beam axis, γ , the shear
strain, and k, the curvature, are the strain measures. By
simple geometrical considerations (Fig. 2a), we find:

S′ =
√

(1 + W ′)2 +U ′2,

cosϕ = 1 + W ′

S′ ,

sin ϕ = U ′

S′ , tan ϕ = U ′

1 + W ′ , (5)

e = S′ − 1, γ = θ − ϕ,

k = dθ

dS
= θ ′

S′ . (6)

Note that the geometrical curvature k = θ ′
S′ instead of

the mechanical curvature k = θ ′ is used [12].
SubstitutingEqs. (4)–(6) intoEqs. (1)–(3),weobtain

the exact forced-damped PDEs of motion of the beam:
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{
E A

[√
(1 + W ′)2 +U ′2 − 1

]
1 + W ′

√
(1 + W ′)2 +U ′2

+GA

[
θ − arctan

(
U ′

1 + W ′

)]

U ′
√

(1 + W ′)2 +U ′2

}′

= ρAẄ + CW Ẇ + PW (Z , T ), (7){
E A

[√
(1 + W ′)2 +U ′2 − 1

]

U ′
√

(1 + W ′)2 +U ′2 +

−GA

[
θ − arctan

(
U ′

1 + W ′

)]

1 + W ′
√

(1 + W ′)2 +U ′2

}′

= ρAÜ + CUU̇ + PU (Z , T ), (8)[
E J

θ ′
√

(1 + W ′)2 +U ′2

]′
+

−GA

[
θ − arctan

(
U ′

1 + W ′

)]√
(1 + W ′)2 +U ′2

= ρ J θ̈ + Cθ θ̇ + Pθ (Z , T ). (9)

The associated boundary conditions are:

W (0, T ) = 0, U (0, T ) = 0, U (L , T ) = 0,

M(0, T ) = 0, M(L , T ) = 0, (10)

while the axial spring on the right-end side provides:

N (L , T ) cosϕ + V (L , T ) sin ϕ

+ ksW (L , T ) = 0. (11)

Note that for ks = 0 the beam becomes simply sup-
ported, while ks → ∞ implies W (L , T ) = 0 and
the beam is hinged–hinged. Other cases of ks describe
hinged–simply supported–spring systems. In the fol-
lowing analysis, the dimensionless coefficient κ = ks L

E A
will be used to denote the spring stiffness.

Although the presented formulation is valid for any
kind of load, in the following analysis we consider only
the case of a concentrated force acting in the middle
point of the beam in the X direction, harmonic in time
and with amplitude Pv:

PW (Z , T ) = 0, PU (Z , T )= Pvδ

(
Z− L

2

)
cos (ΩT ),

Pθ (Z , T ) = 0, (12)

where δ(.) is the Dirac delta function and Ω is the
frequencyof excitation.Note that this load is symmetric
with respect to the middle point Z = L/2.

Different types of load, still harmonic in time, can be
easily considered by the same analytical and numerical
techniques used in the following sections.

3 Analytical approach: multiple timescales method

In this section,we study analytically the nonlinear reso-
nance phenomenon, which occurs when the frequency
of excitation is near the nth linear (transversal) fre-
quency of the beam, corresponding to a bending mode.
Also sub- and superharmonic resonances (that occur
when the frequency of the excitation is a integer mul-
tiple or a integer fraction of the natural frequencies)
can be considered analytically in the same way, but we
leave these analyses, that require a lot of computations,
for further development to limit the length of the paper.

The governing PDEs of motion (7)–(9) with bound-
ary conditions (10) and (11) are attacked directly, with-
out introducing any reduced-order model or condensa-
tion. However, since we apply the perturbation method
(PM) up to the third order, higher-order terms are not
considered in this work. Thus, the PDEs of motion (7)–
(9) are consistently expanded in Taylor series up to the
third order:

E A

(
W ′ + 1

2
U ′2 −U ′2W ′

)′

+GA
(
U ′θ −U ′2 + 2U ′2W ′ −U ′W ′θ

)′

= ρAẄ + CW Ẇ , (13)

E A

(
U ′W ′ + 1

2
U ′3 −U ′W ′2

)′

+GA

(
U ′ − θ −U ′W ′ + 1

2
U ′2θ

− 5

6
U ′3 +U ′W ′2

)′

= ρAÜ + CUU̇ + Pvδ

(
Z − L

2

)
cos (ΩT ),

(14)
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E J

(
θ ′ − W ′θ ′ − 1

2
U ′2θ ′

)′

+GA

(
U ′ − θ − W ′θ − 1

2
U ′2θ + 1

6
U ′3

)

= ρ J θ̈ + Cθ θ̇ . (15)

It must be remarked that this expansion is not an extra
approximation, but it is only needed to represent in
a simpler way the PM, which inherently contains the
third-order approximation.

System (13)–(15) is solved analytically by the mul-
tiple timescales method [15]. The fast scale t0 and two
slow scales t1 and t2 of time are introduced:

t0 = T, t1 = εT, t2 = ε2T, (16)

where ε is a formal small book-keeping parameter.
Damping coefficients are assumed to be proportional
to ε2, while the external excitation to ε3:

CW = ε2cW , CU = ε2cU ,

Cθ = ε2cθ , Pv = ε3 pv. (17)

The excitation frequency is assumed to be close to
a given natural frequency ωn , i.e. Ω = ωn + ε2σ ,
where σ is the detuning parameter (we should consider
Ω = ωn/m + ε2σ for superharmonic resonance and
Ω = mωn + ε2σ for subharmonic resonances). Thus,
we may write:

ΩT =
(
ωn + ε2σ

)
T =

(
Tωn + T ε2σ

)

= t0ωn + t2σ. (18)

The solutions up to third order are sought in the
following forms:

W (Z , T ) = εW1(Z , t0, t1, t2) + ε2W2(Z , t0, t1, t2)

+ ε3W3(Z , t0, t1, t2), (19)

U (Z , T ) = εU1(Z , t0, t1, t2) + ε2U2(Z , t0, t1, t2)

+ ε3U3(Z , t0, t1, t2), (20)

θ(Z , T ) = εθ1(Z , t0, t1, t2) + ε2θ2(Z , t0, t1, t2)

+ ε3θ3(Z , t0, t1, t2). (21)

Using the chain rule, time derivatives with respect to
time T are transformed as follows:

Ẇ =
(
D0 + εD1 + ε2D2

)
W, (22)

Ẅ =
[
D2
0 + 2εD0D1 + ε2

(
2D0D2 + D2

1

)]
W,

(23)

where Dj corresponds to ∂
∂t j

. Similar expressions are
obtained for the other unknowns U and θ .

Substituting expressions (19)–(23) in the govern-
ing equations and boundary conditions, and collecting
terms for different powers of ε, we get sets of equations
in successive perturbation orders.
First order

E AW ′′
1 − ρAD2

0W1 = 0, (24)

GA(U ′
1 − θ1)

′ − ρAD2
0U1 = 0, (25)

E Jθ ′′
1 − GA(θ1 −U ′

1) − ρ J D2
0θ1 = 0. (26)

Boundary conditions:

U1(0, T ) = 0, U1(L , T ) = 0, θ ′
1(0, T ) = 0

θ ′
1(L , T ) = 0, W1(0, T ) = 0, (27)

E AW ′
1(L , T ) + ksW1(L , T ) = 0. (28)

Second order

E AW ′′
2 − ρAD2

0W2

= 2ρA D0D1W1−GA
(
θ1U

′
1−U ′2

1

)′ −1

2
E A

(
U ′2
1

)′
,

(29)

GA(U ′
2 − θ2)

′ − ρAD2
0U2

= 2ρAD0D1U1 − E A(U ′
1W

′
1)

′ + GA(U ′
1W

′
1)

′, (30)

E Jθ ′′
2 − GA(θ2 −U ′

2) − ρ J D2
0θ2

= 2ρ J D0D1θ1 + GA(W ′
1θ1) + E J (W ′

1θ
′
1)

′. (31)

Boundary conditions:

U2(0, T ) = 0, U2(L , T ) = 0, θ ′
2(0, T ) = 0

θ ′
2(L , T ) = 0, W2(0, T ) = 0, (32)

E AW ′
2(L , T ) + ksW2(L , T ) + 1

2
E AU ′2

1 (L , T )

−GA
[
U ′2
1 (L , T ) + θ1(L , T )U ′

1(L , T )
]

= 0.

(33)

Third order

E AW ′′
3 − ρAD2

0W3 = cW D0W1

+ ρA(D2
1 + 2D0D2)W1

+ 2ρAD0D1W2 − E A(U ′
1U

′
2 −U ′2

1 W ′
1)

′ +
−GA

(
2W ′

1U
′2
1 + θ2U

′
1 − 2U ′

2U
′
1

− θ1W
′
1U

′
1 + θ1U

′
2

)′
, (34)

GA(U ′
3 − θ3)

′ − ρAD2
0U3 = cU D0U1

+ pvδ

(
Z − L

2

)
cos (t0ω0 + t2σ)

+ ρA(2D0D2 + D2
1)U1 + 2ρAD0D1U2

+ E A

(
U ′
1W

′2
1 −U ′

1W
′
2 − 1

2
U ′3
1 −U ′

2W
′
1

)′
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+GA

(
−1

2
θ1U

′2
1 −U1W

′2
1 +U ′

1W
′
2

+ 5

6
U ′3
1 +U ′

2W
′
1

)′
, (35)

E Jθ ′′
3 − GA

(
θ3 −U ′

3

) − ρ J D2
0θ3

= cθ D0θ1 + ρ J
(
2D0D2 + D2

1

)
θ1

+ ρ J2D0D1θ2

+GA

(
1

2
θ1U

′2
1 − 1

6
U ′3
1 + θ2W

′
1 + θ1W

′
2

)

+ E J

(
1

2
θ ′
1U

′2
1 − θ ′

1W
′2
1 + θ ′

2W
′
1 + θ ′

1W
′
2

)′
. (36)

Boundary conditions:

U3(0, T ) = 0, U3(L , T ) = 0, θ ′
3(0, T ) = 0

θ ′
3(L , T ) = 0, W3(0, T ) = 0, (37)

E AW ′
3(L , T ) + ksW3(L , T )

+GA[−θ1(L , T )W ′
1(L , T )U ′

1(L , T )

+ θ2(L , T )U ′
1(L , T ) +U ′

2(L , T )θ1(L , T )]
+ (E A − 2GA)[
U ′
2(L , T )U ′

1(L , T )

−W ′
1(L , T )U ′2

1 (L , T )
]

= 0. (38)

3.1 First-order solution

The first-order solution is constituted by two uncou-
pled eigenvalue problems, one in the axial direction,
involving W1, and the other in the transversal direc-
tion, involving U1 and θ1. As in [12], and differently
from [13], in this paper we consider only transversal
behaviour to the first order; thus,

W1(Z , T ) = 0. (39)

The remaining part of the solution is given by:

U1(Z , t0, t1, t2) =
[
Are(t1, t2)e

iωn t0 + Armim(t1, t2)

e−iωn t0
]
Û1,n(Z), (40)

θ1(Z , t0, t1, t2)

=
[
Are(t1, t2)e

iωn t0

+ Aim(t1, t2)e
−iωn t0

]
θ̂1,n(Z), (41)

where Û1,n(Z) and θ̂1,n(Z) are the nth modal shapes:

Û1,n(Z) = sin

(
nπ Z

L

)
,

θ̂1,n(Z) =
(
nπ

L
− Lρω2

n

πGn

)
cos

(
nπ Z

L

)
. (42)

The nth natural frequency of the beam is given by

ω2
n = AG

2Jρ
+ π2n2(E + G)

2L2ρ

−
√[

AGL2 + π2 Jn2(E + G)
]2 − 4π4EGJ 2n4

2J L2ρ
.

(43)

The above solution means that we are considering
only a single primary resonances. If we want to investi-
gate also internal resonances, in (40) and (41) we have
to consider two terms with two natural frequencies ωn

and ωm where ωn/ωm or ωm/ωn is close to a natural
number.

3.2 Second-order solution

The solution of second-order Eq. (29) has the form

W2(Z , t0, t1, t2) = W2a(Z , t1, t2)

+W2b(Z , t1, t2)e
2iωn t0

+W2c(Z , t1, t2)e
−2iωn t0 , (44)

where
W2a(Z , t1, t2) = −Aim (t1, t2) Are (t1, t2)

(
En2π2 − 2L2ρω2

n

)

× 2nπ Z + L (κ + 1) sin
( 2nπ Z

L

)

4EL2nπ (κ + 1)
, (45)

W2b(Z , t1, t2)

= − Are (t1, t2)2
(
π2En2 − 2L2ρω2

n

)
√
Eκ sin

(
2L

√
ρωn√
E

)
+ 2L

√
ρωn cos

(
2L

√
ρωn√
E

)

× 1

16
√
EL

(
En2π2 − L2ρω2

n

)

×
[
4π2En2 sin

(
2
√

ρZωn√
E

)

+ 2πEκn sin

(
2πnZ

L

)
sin

(
2L

√
ρωn√
E

)

− 8ρω2
n L

2 sin

(
2
√

ρZωn√
E

)

+ 4π
√
ELn

√
ρωn sin

(
2πnZ

L

)
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cos

(
2L

√
ρωn√
E

)]
, (46)

W2c(Z , t1, t2)

= Aim (t1, t2)2

Are (t1, t2)2
W2b(Z , t1, t2). (47)

Second-order Eqs. (30) and (31) and the associ-
ated boundary conditions (32) and (33), considering
assumption (39), can be solved if and only if the fol-
lowing solvability condition is satisfied:
∫ L

0
(2ρAD0D1U1)U1dZ

+
∫ L

0
(2ρ J D0D1θ1) θ1dZ = 0. (48)

It provides

∂Are

∂t1
= 0,

∂Aim

∂t1
= 0; (49)

namely, the real and imaginary amplitudes are indepen-
dent of the slow time t1, Are(t2) and Aim(t2).

With (49) and (39), system (30) and (31) simplifies
to

GA(θ2 −U ′
2)

′ + ρAD2
0U2 = 0, (50)

E Jθ ′′
2 − GA(θ2 −U ′

2) − ρ J D2
0θ2 = 0, (51)

and its solution is given by

U2(Z , t0, t2) = 0, (52)

θ2(Z , t0, t2) = 0. (53)

3.3 Third-order solution

In the third-order approximation, we do not need the
approximate solution, but just the solvability condition
∫ L

0

[
ρA2D0D2U1

+GA

(
−1

2
θ1U

′2
1 +U ′

1W
′
2 + 5

6
U ′3
1

)′

+ E A

(
−U ′

1W
′
2 − 1

2
U ′3
1

)′
+ cU D0U1

+ pvδ

(
Z − L

2

)
cos (t0ωn + t2σ)

]
U1dZ

+
∫ L

0

[
ρ J2D0D2θ1 + GA

(
1

2
θ1U

′2
1 − 1

6
U ′3
1 + θ1W

′
2

)

+ E J

(
1

2
θ ′
1U

′2
1 + θ ′

1W
′
2

)′
+ cθ D0θ1

]
θ1dZ = 0

(54)

of Eqs. (35) and (36) and boundary conditions (37) and
(38) is enough for our purposes.

After cumbersome computations, separating the
terms containing eiωn t0 from those containing e−iωn t0 ,
Eq. (54) gives the following two ordinary differential
equations in the unknowns Are and Aim:

ic1
∂Are

∂t2
+ ic2Are + 4c3A

2
reAim

+ 1

2
pve

iσ t2 sin
(nπ

2

)
= 0, (55)

− ic1
∂Aim

∂t2
− ic2Aim + 4c3A

2
imAre

+ 1

2
pve

−iσ t2 sin
(nπ

2

)
= 0, (56)

where

c1 = ρωn
J

(
Gn2π2 − L2ρω2

n

)2 + AL

G2Ln2π2 ,

c2 = ωn

[
cθ

(
Gn2π2 − L2ρω2

n

)2
2G2Ln2π2 + cU

L

2

]
, (57)

and where the real value coefficient c3, has a very long
expression that cannot be reported directly but can be
handled by a symbolic manipulator software.

The coefficient c1 takes into account inertia, while
c2 damping coefficients, and they both have positive
values. The key coefficient c3, on the other hand, sum-
marizes all the nonlinear effects and depends on A, J ,
E ,G, L , n, κ , ρ. For illustrative purposes, it is reported
in Fig. 3, where we show its dependence on κ since, as
said in Introduction, in the present work we are mainly
interested in determining the effect of the spring stiff-
ness on the nonlinear dynamical behaviour.

For increasing spring stiffness, the c3 coefficient
monotonically (for n = 1 and n = 3) tends to the value
corresponding to the hinged–hinged beam. It quickly
approaches the asymptote, and at κ ∼= 15, the differ-
ence with the asymptotic limit is negligible.

At about κ ∼= 1.43, and for the secondmode (n = 2),
c3 has a singularity and tends to±∞, as a consequence
of a denominator that vanishes. This singularity will be
also shown in forthcoming Fig. 5c.

It is worth to remark that for even values of n the
excitation terms disappear in (55) and (56) according
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1728 L. Kloda et al.

Fig. 3 The coefficient
c3(κ) for A = 25 cm2,
J = 52.08 cm4,
E = 21,000 kN/cm2,
L = 50 cm,
G = 8000 kN/cm2,
ρ = 0.00785 kg/cm3 and
for modes n = 1, n = 2,
n = 3

Fig. 4 The coefficient
c3(κ) for A = 25 cm2,
J = 52.08 cm4,
E = 21,000 kN/cm2,
L = 100 cm,
G = 8000 kN/cm2,
ρ = 0.00785 kg/cm3 and
for modes n = 1, n = 2,
n = 3

to the fact that the given load is symmetric, while the
even linear modes are antisymmetric with respect to
the beam middle point.

In order to illustrate also the effect of the slenderness
of the beam, in Fig. 4, we draw the function c3(κ) for
a different length, while the other parameters are the
same of Fig. 3.

In the considered range of κ , the beam length caused
the shift of the singularity from the second to third
mode, and the critical spring stiffness is now about κ =
3.21. The asymptotic values for κ → ∞ are slightly
smaller than those for L = 50 cm, showing how the
slenderness tends to reduce the nonlinear effects for the
hinged–hinged beam. The coefficient c3 gets negative
values for κ < 0.04 (n = 1) and κ < 0.2 (n = 3),
while for higher spring stiffnesses it is positive.

3.4 Analytical frequency–response curves

To determine the frequency–response curves, we have
to solve Eqs. (55) and (56). In this respect, it is useful
to express the complex amplitude in the polar form

Are(t2) = 1

2
a(t2)e

iβ(t2), Aim(t2) = 1

2
a(t2)e

−iβ(t2).(58)

From (55) and (56), we obtain
∂a

∂t2
= −c2

c1
a − pv

c1
sin

(nπ

2

)
sin (σ t2 − β), (59)

and

a
∂β

∂t2
= c3

c1
a3 + pv

c1
sin

(nπ

2

)
cos (σ t2 − β). (60)

Introducing the new variable

γ (t2) = σ t2 − β(t2) ⇒ ∂γ (t)

∂t2
= σ − ∂β

∂t2
, (61)

system (59) and (60) becomes

∂a

∂t2
= −c2

c1
a − pv

c1
sin

(nπ

2

)
sin (γ ), (62)

a
∂γ

∂t2
= σa + c3

c1
a3 + pv

c1
sin

(nπ

2

)
cos (γ ). (63)

Looking for the steady-state solution, we assume
∂γ (t)
∂t2

= 0 and ∂a(t)
∂t2

= 0. From Eqs. (62) and (63), we
then obtain

sin (γ ) = − c2a

pv sin
( nπ

2

) ,

cos (γ ) = −a
(
c3a2 − c1σ

)

pv sin
( nπ

2

) . (64)

Considering that sin2 (γ ) + cos2 (γ ) = 1, we get the
frequency–response equation (FRE) of the nth bending
mode:

p2v sin
2
(nπ

2

)
= c22a

2 + a2
(
c3a

2 − c1σ
)2

. (65)

The solution of Eq. (65) provides the searched FRC,
which actually is the function a(σ ). Only the inverse
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Nonlinear dynamics of a planar beam–spring system 1729

Fig. 5 Function c(κ) for
first (a, b), second (c) and
third (d) modes. Beam
parameters as in Fig. 3

function σ(a) can be expressed in a relatively simple
way:

σ = c3a2 ±
√

p2v
a2

sin2
( nπ

2

) − c22
c1

. (66)

On the basis of the analytical solutions, some exam-
ples will be drawn and the results will be compared
with their numerical counterparts.

In the absence of load (pv = 0) and damping (cU =
0, cθ = 0, i.e. c2 = 0), expression (66) becomes

σ = ca2, c = c3
c1

, (67)

which is known as the backbone curve and summa-
rizes the main feature of the free nonlinear oscillations
of the considered system. In particular, if the nonlinear
correction coefficient c is positive, we have the hard-
ening behaviour, and the nonlinear natural frequency
increases with the amplitude of the oscillation a. On
the contrary, when c is negative, the system demon-
strates the softening phenomenon, and the nonlinear
frequency decreases while increasing a. In the singu-

lar case c = 0, the beam behaves as linear (up to the
third-order approximation).

Assuming the dimensions of the beamused inFig. 3,
the coefficient c as a function of the spring stiffness κ

is depicted in Fig. 5.
We note that the first mode is softening up to κ ∼=

0.18 and hardening above this threshold (see Fig. 5b).
Thus, in particular, we note that the hinged–simply sup-
ported beam (κ = 0) has softening behaviour, while the
hinged–hinged beam (κ → ∞) is hardening, confirm-
ing the results of the literature (see, for example, [12]).

The second mode is mainly the hardening (c > 0),
apart from a small interval around κ 	 1.8, where
further analyses are required to better understand this
particular behaviour. However, this is out of the scope
of the present work and is left for further develop-
ments.

The third mode has always hardening nature. It is
worth to note that the asymptotic value of c for κ → ∞
increases by increasing n, which means that the back-
bone curve of higher- order modes is more and more
bent towards high frequencies.
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Table 1 First four linear natural frequencies and corresponding free vibration mode shapes

1st mode 2nd mode 3rd mode 4th mode κ

Mode shape 1st bending 2nd bending 1st longitudinal 3rd bending

Frequency [Hz] 461.47 1764.5 2586.1 3720.4 0

Mode shape 1st bending 2nd bending 1st longitudinal 3rd bending

Frequency [Hz] 461.47 1764.5 2618.4 3720.4 1
32

Mode shape 1st bending 2nd bending 1st longitudinal 3rd bending

Frequency [Hz] 461.47 1764.5 2710.8 3720.4 1
8

Mode shape 1st bending 2nd bending 1st longitudinal 3rd bending

Frequency [Hz] 461.47 1764.5 2825.3 3720.4 1
4

Mode shape 1st bending 2nd bending 1st longitudinal 3rd bending

Frequency [Hz] 461.47 1764.5 3340.0 3720.4 1

Mode shape 1st bending 2nd bending 3rd bending 1st longitudinal

Frequency [Hz] 461.47 1764.5 3720.4 4231.8 4

Mode shape 1st bending 2nd bending 3rd bending 1st longitudinal

Frequency [Hz] 461.47 1764.5 3720.4 5172.0 ∞

It is interesting to underline how, for a fixed value
of κ , different modes can have different mechanical
behaviour. For example, for κ < 0.18 the first mode is
softening and the second and third modes are harden-
ing.

4 Numerical approach: Finite element method

A finite element model is created for a Timoshenko
beam with initial length L = 500 mm, cross-section
A = 50 × 50 mm (length to width ratio equal 10),
Youngmodulus E = 210GPa, Poisson’s ratio ν = 0.3,
density ρ = 7850 kg/m3, beam shear factor χ = 0.85
and viscous damping factor ζ = 0.06. Use is made of
the commercial software Abaqus_CAE©.

The B31-type beam elements, having three transla-
tional degrees of freedom at each node, are used. The
beam’s length is divided into 100 equal elements,which
have linear shape between nodes, and allows trans-
verse shear deformation [16]. Due to large amplitudes
of vibrations, the “NLgeom” framework is applied
to calculate true stress and strain instead of nominal
stress and strain. It is worth to highlight that it gives
valuable numerical results despite that the simplest
beamelement is used.Out-of-plane displacement of the
nodes has been constrained to guarantee planarmotion.
Boundary conditions are defined as in (10) and (11).
An axial linear spring of stiffness ks is inserted to link

the movable end and the ground. In the case of mod-
elling the hinged–simply supported beam, the spring
has been removed, while for the hinged–hinged beam
the displacement of the right beam end has been axially
restrained, W (L , T ) = 0.

Initially, the numerical modal analysis of the struc-
ture has been performed using Lanczos method. The
natural frequencies and corresponding mode shapes of
free vibrations of the beam with various spring stiff-
nesses have been determined. As deduced from the
analytical developments, for small amplitudes, linear
bendingmodes in the transversal direction are indepen-
dent of axial spring stiffness. Furthermore, longitudinal
vibrations have no effects on linear bending modes and
natural frequencies.

The outcome of the linear modal analysis is reported
in Table 1 and in Fig. 6. For all inspected stiffnesses
(0 ≤ ks ≤ ∞), the first linear frequency is equal ω1 =
461.47 Hz (2899.50 rad

s ) with period T = 0.002167 s
and corresponds to a bending mode. These numeri-
cal results perfectly match their analytical counterparts
obtained in Sect. 3.1.

To study nonlinear forced vibrations, the numerical
computations are performed in a dynamic explicitmod-
ule. A special technique, similar to the continuation
method, is adoptedwith the excitation frequency varied
gradually. At each excitation frequency, transient com-
putations are run for a required number of periods to
reach the steady-state solution as presented inFig. 7c, d.
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Fig. 6 First linear bending
mode shape: a displacement
and b rotation. Second
linear bending mode shape:
c displacement and d
rotation. Third linear
bending mode shape: e
displacement and f rotation

(a)

(b)

(c)

(d)

(e)

(f)

U, Resultant

+0.000e+00
+1.429e−01
+2.857e−01
+4.286e−01
+5.714e−01
+7.143e−01
+8.571e−01
+1.000e+00

X
Y Z

UR, Resultant

+0.000e+00
+8.757e−04
+1.751e−03
+2.627e−03
+3.503e−03
+4.379e−03
+5.254e−03
+6.130e−03

X
Y

Z

U, Resultant

+0.000e+00
+1.429e−01
+2.857e−01
+4.286e−01
+5.714e−01
+7.143e−01
+8.571e−01
+1.000e+00

X
Y Z

UR, Resultant

+0.000e+00
+1.635e−03
+3.271e−03
+4.906e−03
+6.542e−03
+8.177e−03
+9.812e−03
+1.145e−02

X
Y

Z

U, Resultant

+0.000e+00
+1.429e−01
+2.857e−01
+4.286e−01
+5.714e−01
+7.143e−01
+8.571e−01
+1.000e+00

X
Y Z

UR, Resultant

+0.000e+00
+2.219e−03
+4.438e−03
+6.657e−03
+8.876e−03
+1.110e−02
+1.331e−02
+1.553e−02

X
Y

Z

The achieved amplitude is recorded (Fig. 7e, f), and
then, the frequency slightly changed. New numeri-
cal simulations start from the initial conditions of the
steady state of the previous case, so that it is expected
that the transient is short, reducing computational time
and allowing to follow a given path of the solutionwith-
out an unwanted jump due to the multistability and bad
choice of the initial conditions. This procedure enables
building the frequency–response curve “easily” and

almost automatically—although the whole computa-
tions needed for obtaining a single curve are still time-
consuming.

The amplitude of the concentrated time periodic
force applied in the beam midpoint [see Eq. (12)] is
Pv = 40799.2 N, corresponding to 1 mm static deflec-
tion (2% of the beam thickness) in Z = L

2 of the
hinged–simply supported beam.
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Fig. 7 Transversal (a, c, e) and longitudinal (b, d, f) vibrations
of the hinged–simply supported-spring beam (κ = 4). Global
sweep Ω

ω1
increased 0 → 2, reset and decreased 2 → 0 (a,

b), attractors for Ω
ω1

1.25, 1.275, 1.3, 1.325, 1.35 (c, d), and the

steady-state solution for Ω
ω1

= 1.125 (e, f)

The complete frequency–response curve is con-
structed in the range from 0Hz up to the double of
the natural frequency (2 × 461.47 = 922.94 Hz for
the first mode) by sweeping excitation frequency for-

ward and backward, starting from static deflection (see
Fig. 4a, b). The time step has been fixed as constant
for each frequency and equal to 1/40 of the excitation
period.
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Fig. 8 MTS method (solid
lines) versus
Lindstedt–Poincaré (LP)
method (dashed) backbone
curves for beam material
characteristics: L = 5 m,
H = 0.5 m, B = 0.2 m,
ρ = 7850 kg

m3 , ν = 0.3,

E = 2.11 1011 N
m2 , shear

correction factor χ = 1.2
[14]

Examples of numerical frequency–response curves
for the considered case, similar to those obtained in
[17], are reported in forthcoming Fig. 9, where they
are compared with their analytical counterparts.

It is worth to remark that only the principal res-
onance zone with resonant and non-resonant paths
has been considered in this work. Other solutions, or
detached resonance curves [18–20], can be obtained by
varying initial conditions (initial mode shape) for each
frequency of excitation or by using hints from analyti-
cal investigations or experiments.

5 Comparisons

5.1 Free nonlinear oscillations

In this section, we compare results obtained by themul-
tiple time scales method with those obtained in [12,14]
by the Lindstedt–Poincaré method. The comparison is
made for planar Timoshenko beams with no damping
and no forcing, and thus, only backbones curves for var-
ious spring stiffnesses are computed. The comparison
between the two different perturbation methods shows
an excellent agreement (Fig. 8), and the differences are
negligible and occur only for very large values of the
amplitude.

5.2 Forced nonlinear oscillations

The frequency–response curves obtained in Sect. 5 are
illustrated in Fig. 9, where they are compared with their
analytical counterparts obtained in Sect. 4.

The hinged–simply supported beam demonstrates
softening FRC, as the upper branches of the curve
bends towards the left, i.e. the frequency of oscillation
decreases,while amplitude of beam response increases.

By increasing the stiffness of the end spring, the
qualitative behaviour changes. In particular, we note
that even for relatively small values of κ the beam
becomes hardening, and the curve bends towards the
right. This effect increases while increasing κ , up to
the limit case κ = ∞ corresponding to the hinged–
hinged boundary conditions.

As it can be observed in Fig. 9, a good agreement
is obtained between analytical and numerical simu-
lations. It is worth to remark that, for small values
of κ , this agreement is also quantitatively excellent,
even for large amplitudes. For moderate and large
values of κ , we still have a very good quantitative
agreement up to moderate amplitudes, about 0.02 m.
Above this threshold, there are some discrepancies
between numerical and analytical results. For exam-
ple, for σ = ωn (2899.5 rad

s ) the amplitudes obtained
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Fig. 9 The primary
resonance
frequency–response curves
of hinged–simply
supported–spring systems
obtained by FEM (dots) and
MTS method (continuous
lines) for selected spring
stiffnesses. Characteristic
changes from softening to
hardening, from the left to
right, respectively

by FEM are 27.74% (κ = ∞), 26.87% (κ = 4) and
28.55% (κ = 1) higher than those obtained analyti-
cally by the MTS method. This difference is likely due
to the fact that for large amplitude the MTS method
is not expected to be very precise, as in this paper it
is developed up to the third order. Going up to higher
perturbation order likely, the accuracy of the analytical
solution will be improved. Actually, the discrepancies
for large values of κ and large values of the amplitudes
are not surprising, but rather it is positively surprising
there is a numerical/analytical agreement that for low
values of κ and very large amplitudes (0.07 m, i.e. 14%
of the length of the beam), much above than expected.
The above results represent a cross-check of the relia-
bility of both numerical and analytical results.

For hinged–simply supported beams with axial
spring stiffnesses κ = 1

4 and κ = 1
8 , premature jumps

from upper to lower brunches occur for Ω
ω1

= 1.275

and Ω
ω1

= 1.175, respectively. Despite small frequency
growth the initial conditions (upshot from previous fre-
quency steady-state solution), go outside the basin of
attraction and achieve the solution in the lower path.
This phenomenon can be a result of very small and

eroded basins of attraction, which even for the minor
perturbation of frequency produces escape from the
basins. A detailed analysis of this interesting aspect
requires the use of dynamical integrity ideas and tools
[21,22], but this is out of the scope of the present work.

6 Superharmonic and internal resonances

As previously said, analytical approach is limited to
individual nth primary resonances, without consider-
ing superharmonic/subharmonic resonances and with
no interaction between nth and mth modes or longi-
tudinal and transversal harmonic components. How-
ever, these phenomena appear naturally in numerical
simulations, and thus, in this section numerical results
based on FEM simulations are inspected to preliminary
check the existence of possible superharmonic reso-
nances and the multimode engagement. The detailed
analytical study of these phenomena is left for future
works.

Superharmonic resonances appear for spring stiff-
nesses κ = 1 and κ = 4 (see Fig. 9), in the neighbour-
hood of the frequencies Ω

ω1
= 1.75 and Ω

ω1
= 1.4,
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Fig. 10 Fast Fourier transform of steady-state vibrations of beam with spring stiffness κ = 4 for Ω
ω1

= 1.4. Transformation of time
history at Z = 0.75L in the U -direction

respectively. They increase the amplitude of about
8.897% (κ = 4) and 2.84% (κ = 1) with respect to
the trend of backbone curves. This phenomenon may
generate a new solution path. A deep investigation of
existence of possible new solutions is out of the scopes
of the present paper and is left for future work.

The fast Fourier transform (FFT) of Fig. 10 demon-
strates that for κ = 4, in addition to the main peak
at ω

ω1
= 1.4, i.e. ω = Ω , there is a second peak at

ω
ω1

= 4.2, i.e. ω = 3Ω . The FFT of the other case, not
reported here to limit the length of the paper, shows
that for κ = 1 there is a main peak at ω

ω1
= 1.725

and a second peak at ω
ω1

= 5.175. The ratio in both
cases is equal 3 showing the occurrence of a superhar-
monic resonance. Those peaks correspond to the first
and second bending modes, despite that the excitation
is applied to middle point of the beam in transversal
direction, so that it directly excites the first bending
mode, while it does not trigger (directly) the second
bending mode, which is antisymmetric and has a nodal
point for Z = L

2 . Thus, this effect clearly occurs due
to the nonlinear coupling between the first and the sec-
ond modes and represents a nonlinear internal reso-
nance.

Another interesting phenomenon is an
axial–transversal internal resonanceobtained for spring
stiffness κ = 1 and corresponding to frequencies
1.2 ≤ Ω

ω1
≤ 1.25 of the increasing sweep. In this

case, to highlight the involved dynamical phenomenon,
we used a time step equal 1

160 of the excitation period
instead of the current 1

40 (Fig. 11a, b). To better under-
stand the result of Fig. 11, we remind that, due to the
symmetry of the system with respect to the rest posi-
tion, the period of longitudinal vibrations is half of the
period of transverse vibrations, and the frequency is
double.

The FFT of the axial vibrations of a centre point of
the beam shows that vibrations are composed of three
harmonics ω11 = 2Ω1.2, ω12 = 4Ω1.2, ω13 = 6Ω1.2

(Fig. 11c) and ω21 = 2Ω1.225, ω22 = 4Ω1.225, ω23 =
6Ω1.225 (Fig. 11d). Frequencies ω11, ω12, ω13 and ω21,
ω21 correspond to longitudinal vibrations accompany-
ing the first bending mode. In this case, the internal
resonance between axial and transversal vibrations is
highlighted by the “large” amplitude corresponding to
ω23 = 3394.5Hz, which happens because the first lon-
gitudinal mode is excited, since its natural frequency
3340Hz is very close to ω23.

7 Conclusions and further developments

The completemodel of a shearable homogeneous beam
taking into account coupled axial, rotational and trans-
verse vibrations has been presented in the paper. The
nonlinear geometrical terms resulting from large defor-

123



1736 L. Kloda et al.

Fig. 11 a Time histories of middle point of the beam in longi-
tudinal direction for κ = 1, excitation frequencies Ω

ω1
= 1.2,

Ω
ω1

= 1.225, Ω
ω1

= 1.25 from the left to right, respectively. b

Double period of steady oscillations Ω
ω1

= 1.225. Fast Fourier

transform of steady-state vibrations for c Ω
ω1

= 1.2 and d
Ω
ω1

= 1.225
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mations and a nonlinear curvature have been consid-
ered in the model. The exact equations of motion of
a planar, initially straight, beam including forcing and
damping terms have been derived and then expanded
up to third order. The hardening/softening behaviour
of the hinged–simply supported–spring beam and
the influence of end spring stiffnesses on frequency
response curves have been determined by two meth-
ods: analytical multiple timescales and explicit numer-
ical by finite elements.

The resonances analysis has been performed by
applying the MTS method to the nth bending mode.
Using the solvability conditions, the modulation equa-
tions have been obtained, and then, the frequency
response curves and backbone curves have been deter-
mined.

Numerical analysis has disclosed the level of com-
plexity of frequency–response curves and confirmed
the correctness of the results of the analytical compu-
tations. It has been detected that for some cases, time
histories of steady-state solutions are strongly com-
posed of more than one harmonic. Superharmonic res-
onance involving the coupling between first and second
bending modes significantly affected the main path of
transverse vibrations. The internal resonance between
transversal and longitudinal modes has been reported,
too.

Many further developments are possible and worthy
of future investigations. Among them, we quote:

– performing experimental tests;
– analytical solutions of subharmonic, superharmonic
and internal resonances;

– study of different configurations, including different
boundary conditions;

– investigation in detail the singular behaviour of the
nonlinear correction coefficient domains, where it
tends to infinity;

– study of the softening versus hardening dichotomy
which is observed by increasing stiffness of the axial
spring;

– exploitation of axial/transversal couplings;
– considering multifrequency excitations;
– investigating a nonplanar beam with the twisting
effect.
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