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Abstract A nonlinear model of a special cable in
space robotic arms is developed in space environment.
The mechanic effects of control cables in powerful
robots can often be neglected. However, in complex
space multi-physics environments, involving ultra-low
temperature, radiation, and other extreme conditions
of outer space, the externally mounted cables (pro-
tected by shielding layers) can induce strong nonlinear
interference to robot arms; and this can induce further
small-range slow rotations or oscillations of the flexible
joint of robots at a specific posture, which consequently
affect the precision and operation performance of end
effectors. Effective mathematical models on nonlinear
mechanics of strong cables under multi-physics envi-
ronments and their effects onweak robots have not been
well developed yet. Complex key factors, such as low
gravity, nonlinear friction, and unexpected curved sur-
face constraints, have not been extensively investigated
either. In this study, considering all these key factors,
a Kirchhoff nonlinear mechanical model of cables in
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complex space environments is developed, and a rela-
tively improved algorithm based on a trust-region strat-
egy is proposed for solving this nonlinear model, based
on which the geometry and terminal force of the mod-
eled robot cable can be obtained. The validity and accu-
racy of the proposed algorithm and theoretical calcula-
tion results are verified via experiments. The theoretical
findings revealed in this study are significant to future
research on the slow rotations and oscillations of weak
robot joints in space exploration with robotic arms.

Keywords Strong nonlinear interference · Slow
rotation of joints · Kirchhoff nonlinear mechanics ·
Curved surface contact

1 Introduction

The complex nonlinear mechanical characteristics of
control cables could be critical to the stability and
accuracy of the joint operation of robot arms. Flexi-
ble cables, which are employed for various functions
including power supply and information transmission,
are indispensable parts of robotic systems. In gen-
eral, the internal and external flexible cables employed
in robot arms are relatively very weak compared to
expected robotic payload and output torques. Their
nonlinear mechanical properties can usually be negli-
gible consequently. However, considering space envi-
ronments, including ultra-low temperature, radiation,
and other extreme environment of outer space, coin-
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cided with resource constraints, the precision manip-
ulator joint is often relatively weak with limited out-
put torque. Moreover, in order to preserve communi-
cation security and provide a reliable supply of power,
flexible cables are often wrapped with thick nonmetal-
lic shielding layers which can become exceptionally
rigid under the conditions of long-term radiation or a
cold environment. Consequently, externally mounted
cables protected by shielding layers can induce strong
nonlinear interference effects on robot arms. Owing
to this interference, the flexible joints of robot arms
could slowly rotate or oscillate within a small range
when the robot arm is in a certain posture; this signifi-
cantly affects the precision and operation performance
of the end effectors of robots. It is thus very relevant
to study the nonlinear mechanics of flexible cables in
space robots under the conditions ofmulti-physics cou-
pling dynamics. Robots employed for planetary explo-
rations are often exposed to special gravity fields and
placed in extremely limited space.Gravity, friction, and
surface geometric constraints are often the key factors
that need to be studied to determine the mechanical
properties of cables.

In recent years, flexible bodies including cables have
been extensively investigated in various fields. Payan-
deh et al. [1] revealed the geometric shape of a surgi-
cal suture by using particle-spring model, which accu-
rately represents the tensile deformation of a flexi-
ble body that is prone to elastic deformations. Servin
et al. [2] proposed a connecting rod chain model,
i.e., a series of connecting rods, to characterize the
cable shape and study the pulling deformation of the
cable without considering twisting effects. Lazarus et
al. [3] employed quaternions to develop a flexible cable
model. In addition, an asymptotic numerical method
has been employed to obtain the cable shape; how-
ever, this method only considered cable twisting. The
above-mentioned methods focused on the shape of the
cable. In contrast, a nonlinear mechanical model of
an elastic rod can accurately reveal the cable shape
and mechanical properties at discrete points along the
cable. The Cosserat [4,5] and Kirchhoff [6–14] theo-
ries are mainly employed in this type of model. Owing
to its simplicity, the Kirchhoff cable mechanics model
is currently widely used [15–21]. By implementing
the Kirchhoff theory and elastic thin rod static model
[22], Liu et al. [23–25] developed a cable mechanical
model with smooth plane contact to improve the vir-
tual reality assembly technology for cables. Although

their model is useful, they ignored the effects of grav-
ity on the cable; moreover, the contact between the
cable and curved surface was not considered. Conse-
quently, their model is still insufficient for practical
application. A model to describe the contact of DNA
molecules with curved surfaces has been proposed in
[26]. However, this method does not consider various
effects such as gravity, friction, and length, and the flex-
ible bodywas required to remain in full contact with the
curved surface; thus, the method cannot be employed
when the flexible body and curved surface are partially
restrained. In addition, it can only be employed to solve
the initial value problem and cannot be employed to
estimate the actual working conditions. Based on pre-
viously reported theoretical results [22–26], the effects
of gravity and friction on the cable are considered to
propose a nonlinear mechanical model of a cable under
localized constraints of a curved surface in this paper.
When implementing multi-physics coupling methods,
the gravity force distribution on the heavy cable, which
is determined by the safety shield, is an important fac-
tor that should not be neglected. Owing to the limited
space resources, it is necessary to consider the fric-
tion and geometric constraints between the cable and
curved surface. Taking into account the above issues, it
is clear that the mechanical constraints on the cable are
very complex, the dimensions of the equations increase
in size, and the solution of the cable nonlinear mechan-
ics model is even more challenging. In order to ensure
global convergence of the iterative calculations, a more
reliable solution algorithm is yet to be developed.

Therefore, by considering the gravity, friction, and
curved surface constraints, and using a planetary explo-
ration robot as themain object of themodel, we employ
the Kirchhoff theory to study the joint stability and
develop a nonlinear mechanical model of a flexible
cable that has one end fixed and other end free. Using
the finite difference method, the differential equations
are discretized into a set of nonlinear equations, and
then transformed into a global optimization problem.
In order to ensure global convergence of the iterative
calculations, an improved algorithm is proposed based
on the trust-region strategy. The large-scale nonlin-
ear optimization problem is solved, and the mechan-
ical parameters of each discrete point of the cable are
obtained. For the calculation results, Euler parameters
are employed to obtain the coordinates of each discrete
point. In addition, a cubic spline curve is used to fit the
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Fig. 1 a Planetary
exploration robot. b 2-DOF
space observation robotic
arm

(a) (b)

discrete points in order to obtain the geometric shape
of the cable in the world coordinate system.

The contributions of this study lie in the following
points:

1. First, we introduce and analyze a planetary explo-
ration robot subjected to multi-physics coupling
dynamics and consider the space robot joint stabil-
ity in the presence of strong nonlinear cable inter-
ference;

2. Then, we develop amathematicalmodel of the flex-
ible cable in space robotic arms;

3. Using the developedmethods, themechanical prop-
erties and shape of a cable in space robotic arms
constrained to a curved surface are revealed.

2 Analysis of planetary exploration robot
designed for multi-physics coupling dynamics

2.1 Planetary exploration robot and its cables

Figure 1a shows an image of the Chinese planetary
exploration robot. Once the planetary exploration robot
lands on an outer planet, a two-degree-of-freedom (2-
DOF) robotic arm, as is shown in Fig. 1b, drives two
cameras to observe the surface of the planet. In order
to ensure normal long-term operation of the cameras
at both high and low temperatures in a space radiation
environment, the camera cables are wrapped with thick
nonmetallic shielding layers. One end of the cables is
fixed to the free end of the 2-DOF space observation
robotic arm, while the other end is fixed to the base of

the 2-DOF observation robotic arm. The camera cables
swing according to the movement of the 2-DOF obser-
vation robotic arm.At very low temperatures on the sur-
face of the planet under investigation, the nonmetallic
shielding layers of the cables become unusually stiff.
Furthermore, the nonmetallic shielding layers age and
harden with the increase in the space radiation time.

2.2 2-DOF observation robot joint: slow rotation
phenomenon

As is shown in Fig. 2a, for a single joint, the cable is
fixed to the upper and lower links of the joint in the
2-DOF space observation robotic arm, with one end of
the joint being installed on the fixed link, whereas the
other end is connected to the free link. When the robot
moves within a certain range, the cable follows the free
end of the joint.

In addition, there are many research results on the
error elimination control of flexible structures. A neural
network controller is developed to suppress the vibra-
tion of a flexible robot system with input deadzone in
[34], and the proposed controller has good performance
in suppressing vibration.Also, through aboundary con-
troller, a control problem about input backlash in a flex-
ible robotic manipulator is well solved in [35]. A coop-
erative controlwith good control effect is proposed for a
nonuniform gantry crane (consisting of a flexible cable
andother components)with constrained tension in [29].
And an optimal feedback linearization approach is used

123



652 Y. Liu et al.

(a) (b)

(c)

Cables
Joint

Stepping motor

Planetary reducer

Output shaft

Motor shaft

cF

12

cT

2jθ
1jθ

cl

Fig. 2 Slow rotation of the joint of a 2-DOF space observation
robotic arm. a Overall shape of the joint. b Analysis of the force
on the joint. c Stepper motor and planetary reducer connection
diagram

tofind the optimal path between the initial and the target
points in the case of a cable robot under the maximum
dynamic load. These are very good research results in
controlling cable robots in [28,30,31]. Different from
the above error elimination algorithms, high-precision
position sensors cannot be used at present (due to the
strict size constraints and limitations of high and low
temperature space environments), the joint rotation can
only be open-loop controlled by a steppermotor. There-
fore, the problemproposed can only be solved by devel-
oping a theoretical cable model instead of using a con-
trol algorithm to eliminate the error.

As shown in Figures 2b, c, the joint is driven by a
single stepper motor through a planetary reducer. The
inherent gap θ j1 (less than 1 degree) of this joint is
mainly caused by the planetary reducer. The axis of
rotation of the robotic joint is parallel to the direction
of the microgravity field.

Defining Tm as the load torque of the joint:

Tm = Fclc − Tc (1)

where lc is the arm of Fc with respect to the joint axis.
The internal damping torque Tc of the joint includes the
bearing friction torque, internal cable resistance torque
of the joint, and damping torque induced by the plan-
etary reducer. There is an inherent gap θ j1 at the joint,
and when the joint rotates, the cable force Fc changes
nonlinearly. Slow rotation of a robotic joint may occur
when the load torque Tm is close to 0, as is illustrated
in Fig. 2b. Because the presence of the gap is evident at
a particular position when the load torque Tm is close
to 0. In Fig. 2b, Position 1 is the target stop position
of the robotic joint for end-effector operation. Owing
to the cable force Fc, the joint slowly rotates until it
reaches θ j2, which corresponds to Position 2. Owing
to the internal damping of the joint, the joint gap θ j2 is
smaller than the inherent gap θ j1. Position 2 is the final
position after the slow rotation of the joint. Moreover,
at Position 2, the torque of the cable force Fc, offsets
the internal damping torque Tc of the joint with respect
to the joint axis; this places the robotic system in equi-
librium (Tm = 0). When the load torque Tm is much
greater than 0, under the effect of the load torque Tm,
the joint will reach Position 2 in a flash, and the slow
rotation of a robotic joint will not occur.When Fc tends
0, the joint will remain motionless under the effect of
the internal damping torque Tc, the joint will stay at
Position 1, and this phenomenon will also not occur.

In [27], although constraints were imposed at both
ends, only the influence of the disturbance torque of a
single cable on a stabilized platformwas studied. How-
ever, there aremore complex constraints on cables used
in the manufacture of robots purposed for outer space
missions; furthermore, the robotic joint is influenced by
the mechanical characteristics of multiple cables. The
strong interference effects induced by the cables are
most significant when the joint is in a particular posi-
tion. The free end of the robot joint is equipped with
camera sensors, and the slow rotation of the joint can
significantly reduce the quality of the images recorded
by the cameras. It is worth noting that there is currently
no extensive research being carried out in this area. The
mechanical properties of cables implemented in robots
are the main reasons for these phenomena. In order to
study the above phenomena, we develop and solve a
nonlinear mechanical model of a robot-purposed cable
under the conditions of a complex outer space environ-
ment.
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3 Mechanical modeling of a flexible cable

3.1 Basic assumptions

We made the following assumptions for the develop-
ment of a simple cable mechanical model in the 2-DOF
space observation robotic arm [22–25]:

1. The cross section of the cable is a rigid circular
section, and the cable centerline is always perpen-
dicular to the cable cross section.

2. The centerline of the cable is a smooth curve
exceeding 2nd order; the length of the cable is sig-
nificantly larger than the diameter of its cross sec-
tion.

3. The cable is isotropic; there is a linear relationship
between stress and strain.

4. The deformations of the cable attributed to stretch-
ing and shearing are ignored.

3.2 Coordinate system transformation

Three different coordinate systems are employed for
the developed cable mechanical model (Fig. 3):

1. Coordinate system O–XY Z

The coordinate system O–XY Z is employed as the
world coordinate system. The starting point of the cable
centerline corresponds to the origin O of the coordinate
system. In this coordinate system, an arc coordinate s
is introduced along the cable centerline; any point P
at the cable centerline can be determined via the arc
coordinate s. The vector of the point P , which is set
with respect to the origin O , is denoted as r; the vector
that corresponds to the point P0 is r0.

2. Coordinate system P–N BT

The frame {P |N , B, T }, which can be regarded as a
rigid body, follows the movement of the point P . The
parameters affecting the point P are as follows: tangent
vector T(s) = dr/ds, curvature κ = |dT/ds|, main
normal vector N(s) = dT/(κds) (κ �= 0), vice normal
vector B(s) = T(s) ×N(s), and torsion τ = |dB/ds| .
The cable centerline can be obtained via Eq. (2); ε is
the integration variable.

r(s) =
∫ s

0
T(ε) dε (2)

P

0P

−M

x

y
N

B

O

X

Z

Y

+ΔF F

r

z (T)

α α

−F

+ΔM M

f

0r

s

Fig. 3 Coordinate system transformation for the cable model

3. Coordinate system P–xyz

The coordinate system P–xyz is the spindle coordinate
system for the cable section (cable section and coordi-
nate system P–xyz are fixed). The z-axis coincides
with the T -axis, while the plane N PB coincides with
the plane x Py. The angle between the N - and x-axes is
equal to that between the B- and y-axes, and is denoted
as α, which represents the twist angle. The twist angle
α reveals the torsional characteristics of the cable. The
use of the transformation matrix D can overcome the
pose problem between the P–N BT and P–xyz coor-
dinate systems:
⎡
⎣ x
y
z

⎤
⎦ = D

⎡
⎣ N
B
T

⎤
⎦ (3)

D =
⎡
⎣ cosα sin α 0

− sin α cosα 0
0 0 1

⎤
⎦ (4)

Using the curvature κ , and torsion τ and twist angle
α occurring at the point P , we define the curvature–
twisting vector ω of the point P as

ωx = κ sin α

ωy = κ cosα

ωz = τ + dα/ds

(5)
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where (ωx , ωy, ωz) is the curvature–twisting vector ω

projected onto the coordinate system P–xyz.

3.3 Static equilibrium equations for the cable

Taking into account that the motion speed of the robot
is relatively small and stable, and that θ j1 < 1◦, we
can statically analyze the cable; this means that we can
ignore the dynamical processes.

As is shown in Fig. 3, in the world coordinate sys-
tem O–XY Z , the microarc P0P of the cable is con-
sidered in the static analysis. A gravitational force per
unit length f acts on the microarc P0P , which is ori-
ented opposite to the Z -axis. Assuming that the arc
coordinate of the point P0 is s0, the arc coordinate of
the point P is s, with s = s0 + �s and �s > 0.
When the microarc P0P is in equilibrium, the torque
generated by the gravitational force per unit length f is
the second-order small value of �s, which is negligi-
ble because the shape of the cross section of the cable
is round. Thus, based on Yanzhu Liu’s study [22], we
obtain the following:

�F + f�s = 0 (6)

�M + �r × F = 0 (7)

Then, we divide Eqs. (6) and (7) by �s (�s → 0).
Therefore,

dF
ds

+ f = 0 (8)

dM
ds

+ T × F = 0 (9)

By changing the reference coordinate system for
Eqs. (8) and (9) to the coordinate system P–xyz, we
obtain

d̃F
ds

+ ω × F + f = 0 (10)

d̃M
ds

+ ω × M + T × F = 0 (11)

Equations (10) and (11) are projected onto the coordi-
nate system P–xyz. Thus, we obtain

dFx
ds

+ ωy Fz − ωz Fy + fx = 0

dFy

ds
+ ωz Fx − ωx Fz + fy = 0

dFz
ds

+ ωx Fy − ωy Fx + fz = 0 (12)

dMx

ds
+ ωyMz − ωzMy − Fy = 0

dMy

ds
+ ωzMx − ωx Mz + Fx = 0

dMz

ds
+ ωx My − ωyMx = 0 (13)

Thewavy lines in Eqs. (10) and (11) indicate that the
reference coordinate system is P–xyz, which is differ-
ent from that employed for Eqs. (8) and (9). Assuming
that the cable has no initial curvature or twist, and that
the constitutive relationship of the cable is known, we
obtain

Mx = Aωx

My = Bωy

Mz = Cωz

(14)

where A and B represent the flexural stiffnesses about
the x- and y-axes of the cable cross section, respec-
tively, and C is the torsional stiffness of the cable cross
section about the z-axis.

A = E Ix

B = E Iy

C = GIz

(15)

Assuming that the cable is uniform and isotropic, E
and G represent the Young’s modulus and shear modu-
lus of the cable, respectively. Ix and Iy are themoments
of inertia for the cable cross section with respect to the
x- and y-axes, and Iz is the polar moment of inertia for
the cable cross section with respect to the z-axis.

For a cable with a diameter dc,

Ix = Iy = πd4c
64

Iz = πd4c
32

(16)

As is shown in Fig. 4, qk(k = 1, 2, 3, 4) are the
Euler parameters for the cable cross section (the cable
cross section is perpendicular to the z-axis.). The Euler
parameters can be determined by Eq. (17). The coor-
dinate system P–xyz is rotated about the axis e by an
angle φ with respect to the coordinate system O–XY Z .
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X

Z

Y

e

φ

y

x

z

O (P)

Fig. 4 Geometric interpretation of the Euler parameters

q1 = cos
φ

2

qk+1 = ek sin
φ

2
(k = 1, 2, 3)

(17)

where ek(k = 1, 2, 3) correspond to the direction
cosines of the limited axis of rotation e with respect
to the world coordinate system O–XY Z ; φ is the lim-
ited rotation angle.

The derivatives of qk(k = 1, 2, 3, 4) with respect to
the arc coordinate s are employed as new variables, as
follows:

Qk = dqk
ds

(k = 1, 2, 3, 4) (18)

Next, we define a vector c = [
c1 c2 c3 c4 c5 c6 c7

]T
.

c1 = q21 + q22 + q23 + q24 − 1 (19a)

According to the infinitesimally small rotation theory
of a rigid body [22,32], [33, (Page 16)],

ωx = 2 (− q2Q1 + q1Q2 + q4Q3 − q3Q4)

ωy = 2 (− q3Q1 − q4Q2 + q1Q3 + q2Q4)

ωz = 2 (− q4Q1 + q3Q2 − q2Q3 + q1Q4)

(20)

If Eq. (20) is substituted into Eqs. (12) and (13), we
obtain [22]:

c2 = dFx
ds

+ 2
(
V2Fz − V3Fy

) + fx (19b)

c3 = dFy

ds
+ 2 (V3Fx − V1Fz) + fy (19c)

c4 = dFz
ds

+ 2
(
V1Fy − V2Fx

) + fz (19d)

c5 = −q2
dQ1

ds
+q1

dQ2

ds
+q4

dQ3

ds
−q3

dQ4

ds
− Fy

2A
+ 2(C−B)

A
V2V3

(19e)

c6 = −q3
dQ1

ds
−q4

dQ2

ds
+q1

dQ3

ds
+q2

dQ4

ds
+ Fx
2B

+ 2(A−C)

B
V3V1

(19f)

c7 = − q4
dQ1

ds
+ q3

dQ2

ds
− q2

dQ3

ds
+ q1

dQ4

ds

+ 2(B − A)

C
V1V2 (19g)

where

V1 = − q2Q1 + q1Q2 + q4Q3 − q3Q4

V2 = − q3Q1 − q4Q2 + q1Q3 + q2Q4

V3 = − q4Q1 + q3Q2 − q2Q3 + q1Q4

(21)

When the cable is in equilibrium, we have the follow-
ing:

c = [
c1 c2 c3 c4 c5 c6 c7

]T = 0 (22)

4 Deriving the solution

4.1 Discretization of the equations

Equation (22) can be solved by using the finite differ-
ence method. We assume that the length of the cable
before and after deformation is the same (L0) (Fig. 5).
The cable is uniformly divided into n parts with lengths
of l̃i = l̃0 = L0/n. Therefore, the cable has (n + 1)
discrete points and n calculation units. The calculation
unit between the discrete points Pi and Pi+1 is denoted
as Part i(1 ≤ i ≤ n).

When n → ∞,

ds = �s = l̃i (23)

All of the calculations performed in this study are
derived as based on the assumption that Eq. (23) is
valid. The Euler parameters for the discrete points Pi
and Pi+1 areqk,i andqk,i+1(k = 1, 2, 3, 4), the internal
forces are (Fx,i , Fy,i , Fz,i ) and
(Fx,i+1, Fy,i+1, Fz,i+1), the change rates of the Euler

123



656 Y. Liu et al.

sΔ

1nP +
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1iP+

3P
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1nP−

nP

1P

Part i

2iP+

Fig. 5 Discretization of the cable

parameters are Qk,i and Qk,i+1(k = 1, 2, 3, 4), and

the change rates of the internal forces are (
dFx,i
ds ,

dFy,i
ds ,

dFz,i
ds ) and (

dFx,i+1

ds ,
dFy,i+1

ds ,
dF

z,i+1
ds ), respec-

tively.
For Part i (i th calculation unit),

Qk,i+1

=
{ −3qk,1+4qk,2−qk,3

2l̃0
i = 0

qk,i+1−qk,i
l̃0

1 ≤ i ≤ n
(k = 1, 2, 3, 4) (24)

Jk,i = dQk,i+1

ds
= Qk,i+1 − Qk,i

l̃0
(25)

dFx,i+1

ds
= Fx,i+1 − Fx,i

l̃0
dFy,i+1

ds
= Fy,i+1 − Fy,i

l̃0
dFz,i+1

ds
= Fz,i+1 − Fz,i

l̃0
(26)

Using Eq. (22), we determine that, for each calcula-

tionunit (Part i),wi =
[
ui1 l̃0ui2 l̃0ui3 l̃0ui4 l̃0ui5 l̃0ui6

l̃0ui7
]T
. Therefore,

ui1 = q21,i+1 + q22,i+1 + q23,i+1 + q24,i+1 − 1 (27a)

ui2 = Fx,i+1 − Fx,i

l̃0
+ 2

(
V2,i Fz,i+1 − V3,i Fy,i+1

) + fx,i+1

(27b)

ui3 = Fy,i+1 − Fy,i

l̃0
+ 2

(
V3,i Fx,i+1 − V1,i Fz,i+1

) + fy,i+1

(27c)

ui4 = Fz,i+1 − Fz,i

l̃0
+ 2

(
V1,i Fy,i+1 − V2,i Fx,i+1

) + fz,i+1

(27d)
ui5 = − q2,i+1 J1,i + q1,i+1 J2,i + q4,i+1 J3,i

− q3,i+1 J4,i + 2(C − B)

A
V2,i V3,i − Fy,i+1

2A
(27e)

ui6 = − q3,i+1 J1,i − q4,i+1 J2,i + q1,i+1 J3,i

+ q2,i+1 J4,i + 2(A − C)

B
V3,i V1,i + Fx,i+1

2B
(27f)

ui7 = − q4,i+1 J1,i + q3,i+1 J2,i − q2,i+1 J3,i

+ q1,i+1 J4,i + 2(B − A)

C
V1,i V2,i (27g)

where

V1,i = − q2,i+1Q1,i+1 + q1,i+1Q2,i+1

+ q4,i+1Q3,i+1 − q3,i+1Q4,i+1

V2,i = − q3,i+1Q1,i+1 − q4,i+1Q2,i+1

+ q1,i+1Q3,i+1 + q2,i+1Q4,i+1

V3,i = − q4,i+1Q1,i+1 + q3,i+1Q2,i+1

− q2,i+1Q3,i+1 + q1,i+1Q4,i+1

(28)

Next, we define a vector u =[
wT

1
wT
2 · · · wT

i · · · wT
n−1 wT

n

]T
. When the cable is in

equilibrium, we obtain

u = [
wT

1
wT
2 · · · wT

i · · · wT
n−1 wT

n

]T = 0 (29)

123



Nonlinear mechanics of flexible cables 657

The rotation matrix of the coordinate system Pi+1

–xyz at the discrete point Pi+1, with respect to the
world coordinate system O–XY Z , is

Pi+1
O R =

⎡
⎣
q21,i+1 + q22,i+1 − q23,i+1 − q24,i+1 2

(
q2,i+1q3,i+1 − q1,i+1q4,i+1

)
2

(
q2,i+1q4,i+1 + q1,i+1q3,i+1

)
2

(
q2,i+1q3,i+1 + q1,i+1q4,i+1

)
q21,i+1 − q22,i+1 + q23,i+1 − q24,i+1 2

(
q3,i+1q4,i+1 − q1,i+1q2,i+1

)
2

(
q2,i+1q4,i+1 − q1,i+1q3,i+1

)
2

(
q3,i+1q4,i+1 + q1,i+1q2,i+1

)
q21,i+1 − q22,i+1 − q23,i+1 + q24,i+1

⎤
⎦ (30)

The rotation matrix Pi+1
O R is an orthogonal matrix,

i.e., its inverse matrix is equal to its transposed matrix.

Pi+1
O R−1 = Pi+1

O RT (31)

The distribution forces on the calculation unit Part i
are concentrated at the discrete point Pi+1. The gravi-
tational force per unit length f at the discrete point Pi+1

is projected as (0, 0, f0) in the world coordinate sys-
tem O–XY Z . The projection of f onto the coordinate
system Pi+1–xyz is:⎡
⎣ fx,i+1

fy,i+1

fz,i+1

⎤
⎦ = Pi+1

O R−1

⎡
⎣0
0
f0

⎤
⎦ (32)

If we substitute Eq. (30) into Eqs. (32), (33) is obtained.

⎡
⎣ fx,i+1

fy,i+1

fz,i+1

⎤
⎦ = f0

⎡
⎣ 2

(
q2,i+1q4,i+1 − q1,i+1q3,i+1

)
2

(
q3,i+1q4,i+1 + q1,i+1q2,i+1

)
q21,i+1 − q22,i+1 − q23,i+1 + q24,i+1

⎤
⎦

(33)

The point P1 coincides with the origin O of the
world coordinate system. In the O–XY Z coordinate
system, P1Pi+1 = ri+1 = (

rX,i+1, rY,i+1, rZ ,i+1
)
,

and the value of P1Pn+1 = (rX , rY , rZ ) should be
known. Using Eqs. (2) and (30), we obtain the follow-
ing [22,23,25]:

rX,i+1 =1

3

i+1∑
j=2

l̃0
[(
2q2, j−1 + q2, j

)
q4, j−1

+ (
2q2, j + q2, j−1

)
q4, j

+ (
2q1, j−1 + q1, j

)
q3, j−1

+ (
2q1, j + q1, j−1

)
q3, j

]

rY,i+1 =1

3

i+1∑
j=2

l̃0
[(
2q3, j−1 + q3, j

)
q4, j−1

+ (
2q3, j + q3, j−1

)
q4, j (34)

− (
2q1, j−1 + q1, j

)
q2, j−1

− (
2q1, j + q1, j−1

)
q2, j

]

rZ ,i+1 =1

3

i+1∑
j=2

l̃0
[
2

(
q2
1, j−1

+ q1, j−1q1, j + q2
1, j

+q2
4, j−1

+ q4, j−1q4, j + q2
4, j

)
− 3

]
(35)

rX,n+1 =rX

rY,n+1 =rY

rZ ,n+1 =rZ (36)

By implementing the cable length condition [23–25],
we obtain

c0 =
n∑

i=1

√
(rX,i+1−rX,i )2+(rY,i+1−rY,i )2+(rZ ,i+1−rZ ,i )2−L0 =0

(37)

The boundary conditions of the cable (Euler param-
eters of the discrete points P1 and Pn+1) are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q1,1 = a1
q2,1 = a2
q3,1 = a3
q4,1 = a4
a21 + a22 + a23 + a24 = 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q1,n+1 = b1
q2,n+1 = b2
q3,n+1 = b3
q4,n+1 = b4
b21 + b22 + b23 + b24 = 1

(38)

un1 corresponds to the calculation unit Part n, and the
squared sum of the Euler parameters at the discrete
point Pn+1 is repeatedly defined; hence, un1 is replaced
by c0 in Eq. (39). If the cable is in equilibrium, Eq. (39)
is valid.

123



658 Y. Liu et al.

Start
0

qβ σ
μ x

T 1
0 0 0 0μ −=− +d x J x J x I g x

T
0 0 0=g x J x v x

1 0=x x

Iteration Termina
Criter

tion 
ion

0 1=x x

T
0 0 0 0 0

mmF Fβ σβ+ < +x d x x g x d x

0m=

1m m= +

1 0 0
mβ= +x x d x

0 0 75r >

qμ μ= qμ μ=

1 0
0

T T T
0 0 0 0 0 0

1
2

m m m

F F
r

βββ

−
=

+

x x

g x d x d x J x J x d x

0 0 40r <
End

1 1Fx

Fig. 6 Flowchart for the numerical iterative algorithm

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rX − rX,n+1

rY − rY,n+1

rZ − rZ ,n+1

q1,1 − a1
q2,1 − a2
q3,1 − a3
q4,1 − a4

q1,n+1 − b1
q2,n+1 − b2
q3,n+1 − b3
q4,n+1 − b4

u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (39)

Equation (39) determines the parameters for all dis-
crete points in Eq. (40).

xk,i = qk,i (k = 1, 2, 3, 4, 1 ≤ i ≤ n + 1)

(x5,i , x6,i , x7,i ) = (Fx,i , Fy,i , Fz,i ) (40)

4.2 Numerical iteration calculations

Equation (39) can be regarded as a nonlinear least-
squares problem that equates to the global optimization
problem [minF(x)].

minF(x) = 1

2
min

7n+11∑
j=1

v2j (41)

In an ideal case, the optimal solution of the problem is
determined by minF(x) = 0, where x is a 7 (n + 1)-
dimensional vector, x0 represents the iteration initial

value [Eq. (41)], and xk represents the kth iteration
point. The output value of F(x) is compared to the
numerical iteration termination criterion for each iter-
ation.

In [24], the Levenberg–Marquardt algorithm is pro-
posed to solve the cable model under the condition of
constraints imposed at both ends; however, this algo-
rithm may cannot guarantee numerical convergence of
the cable model under complex conditions. Thus, in
this study, the algorithm is improved by using the trust-
region method to ensure that the theoretical model of
the cable in contact with a curved surface has good
numerical stability. A flowchart for the numerical iter-
ative algorithm is presented in Fig. 6.

The convergence of the calculation results is influ-
enced by the iterative initial value, and the iterative
initial value x0 is selected as a column vector whose
most components are 1. Define g(xk) as the gradient of
the function F(x) at xk , J(xk) is the Jacobian matrix
for v at xk , I is the unit matrix, dk is the iterative step of
xk , and μk is the adjustment parameter for the iteration
step dk . Therefore,

g(xk) = ∇F(xk) = J(xk)T v(xk) (42)

dk = −[J(xk)T J(xk) + μkI]−1g(xk) (43)

According to Eqs. (44) and (45), the parameter μk

is adjusted by using the trust-region method; rk is the
radius of the trust region of the parameter μk , q is the
scaling factor of the parameter μk , where q = 2 ∼ 10.
The critical values for rk and scaling factor q can be,
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Fig. 7 Theoretical model
of the 2-DOF space
observation robotic arm
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respectively, adjusted according to the actual situation.
Thus, we obtain

rk = F(xk+1) − F(xk)

g(xk)T (βmd(xk)) + 1
2 (βmd(xk))T (J(xk)T J(xk))(βmd(xk))

(44)

μk =
⎧⎨
⎩
qμk rk < 0.4
μk 0.4 ≤ rk ≤ 0.75
μk/q rk > 0.75

(45)

The step size factor for the iterative calculations is
obtained by using the Armijo criterion, where β ∈
(0, 1) and σ ∈ (0, 0.5).

F(xk + βmd(xk)) ≤ F(xk) + σβmg(xk)T d(xk) (46)

4.3 Calculation results

The Denavit–Hartenberg coordinate systems for the 2-
DOF observation robot are shown in Fig. 7 (unit of

length: mm). The robot has two DOFs; it has an ori-
entation joint and a pitch joint, which can realize the
movement of the cameras carrying cables within a cer-
tain range. The origin of the world coordinate system
O–XY Z is set to correspond to the starting point O of
the cable, and O1 and O2 are located at the geometric
centers of the orientation and pitch joints, respectively.
The experiment shows that the phenomenon of slow
rotation may occur at the orientation joint, whereas it
does not occur at the pitch joint. Therefore, in this study,
a single joint, i.e., the orientation joint, is considered,
while the pitch angle of the pitch joint is set to zero.
For simplicity, only the right cable of the robot was
employed for the analysis, and the experiments are cur-
rently being conducted using ordinary cables instead of
real cables covered by the nonmetallic shielding layers.
The z-axis direction of the coordinate system P–xyz
of the discrete point P1 is opposite to the Y -axis direc-

Table 1 Material parameters of the cable

Diameter dc Length L0 Gravitational force
per unit length f

Young’s modulus E Shear modulus G

7.54mm 380mm 10−3 N/mm 6.70MPa 2.28MPa
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tion, and the z-axis direction at the discrete point Pn+1

is the same as the Z -axis. The X - and Z -coordinates of
the end point Pn+1 of the right cable are, respectively,
20 and 25mm smaller than those of the point O2 when
γ = 0. The coordinates of the point Pn+1 in the world
coordinate system O–XY Z are⎧⎨
⎩
rX,n+1 = 160 − 145 sin γ + 80 cos γ

rY,n+1 = 80 sin γ + 145 cos γ

rZ ,n+1 = 75

(
γ ∈

[
−π

2
,
π

2

])

(47)

where γ is the rotation angle of the orientation joint in
the 2-DOF space observation robotic arm.
The material parameters of the cable are shown in
Table 1. According to Eq. (39), the cable mechanical
model considers the cable shape and mechanical prop-
erties. With the change in the rotation angle γ of the
orientation joint, the morphological curves of the robot
cable are projected onto the XOZ , Y OZ , and XOY
planes. Figure 8 shows the projection of the calculated
trajectory of the robot cable onto each coordinate plane,
and Fig. 9 shows the comparison between the theoret-
ical shape of the robot cable and the actual trajectory.
The trends of the cable theoretical shape and the actual
trajectory are consistent. In addition, when the actual
trajectory of the robot cable in the XOY plane is col-
lected (by a camera sensor), the cable is blocked by the
robotic arm. To obtain a more complete actual trajec-
tory of the robot cable, the optical axis of a camera sen-
sor used is not perpendicular to the XOY plane (there is
a small angle of inclination), resulting in a slightly large
error in the comparison of the cable shape in the XOY
plane. Figure 10 shows the projection of the internal
force onto the end of the cable in the P–xyz coordi-
nate system.

5 Curved surface contact

Taking into account the complexity of the contact
between the cable and curved surface, in order to sim-
plify the analysis, the diameter of the cable is ignored,
and the surface is considered to be spherical. Therefore,
a nonlinear model of the cable with spherical contact is
developed. As is shown in Fig. 11, the coordinates of
the center of the sphere O0 are (X0,Y0, Z0), the radius
is R0, and the equation for the spherical surface G is

Fsp(r) =
√

(X − X0)2 + (Y − Y0)2 + (Z − Z0)2

−R0 = 0 (48)
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Fig. 8 Theoretical shape of the robot cable. Projections onto the
a XOZ, b YOZ, and c XOY planes

For the actual solution, we first assume that the
curved surface does not exist; by using Eq. (39), we can
identify the coordinates of all discrete points. Then, we
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Fig. 9 Comparison of
theoretical shape and actual
trajectory of robot cable
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Fig. 10 End-point force on the robot cable

find all of the discrete points that satisfy Eq. (49) and
use them as elements to generate the point set U .

√
(rX,i+1 − X0)2 + (rY,i+1 − Y0)2 + (rZ ,i+1 − Z0)2

−R0 < 0 (49)

Next, let us assume that the number of elements in the
point setU is nc(nc ≥ 1). The subscript size (i + 1) of
Pi+1 ∈ U is used as the standard for sorting. Then, we
select the intermediate point Pd in the point set U . If
the number of cases is even, we choose a larger discrete
subscript to ensure that there is a complete calculation
unit in U . When the serial numbers of the cable dis-
crete points in the curved surface are sorted from small
to large, t1 is the subscript size of the first discrete point.
d is the subscript size of the middle point of the cable
discrete points in the curved surface. When nc is an
even number, d = t1 + nc/2, and when nc is an odd
number, d = t1 + (nc − 1)/2.

Only the elements that belong to the point setU are
likely to be in contact with the curved surface. When
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Fig. 11 Constraint of the cable which is in contact with a curved
surface

the cable is in contact with the curved surface, the tan-
gent unit vector p1 at the cable contact point is perpen-
dicular to the unit vector of the sphere radius p2, i.e.,
p1 · p2 = 0 [26]. In order to ensure convergence of the
solution of the nonlinear mechanical model, the dis-
crete point Pd is regarded as an element at the curved
surface G. For the discrete point Pd , Eq. (55) can be
employed; otherwise, Eq. (56) can be employed for
Pi+1 ∈ U . When Pi+1 ∈ U , the curved surface may
exert a contact distribution force f sp,i+1 on the cable
along the same direction p2 as that of the sphere radius
at the point Pi+1. fsp,i+1 �= 0 when the discrete point
Pi+1 is on the curved surface G, whereas fsp,i+1 = 0
when it is not on the curved surfaceG [25]. By combin-
ing Eqs. (55) and (56), we obtain nc equations, where
fsp,i+1(t1 ≤ i+1 ≤ t1+nc−1) are nc Eq.(39) requires
the addition of nc unknown varibles and nc equations
(But in this paper, we have added n unknown variables
and n equations in order to easily modify the calcula-
tion code under different calculation conditions. When
Pi+1 /∈ U , the additional constraint added at the dis-
crete point Pi+1 is: fsp,i+1 − 0 = 0.). If Pi+1 ∈ U ,
the force distribution in Eq. (33) needs to be modified
according to Eq. (57).

In addition, the distribution forces at the calculation
unit Part i are concentrated at the discrete point Pi+1.
As is shown in Fig. 12, vt0 is the direction of movement
of the end point Pn+1 of the cable (vt0 is also perpendic-
ular to the Z -axis in the coordinate system O–XY Z),
and the cable segment at discrete point P1 is fixed.
When the rotation angle of the orientation joint is rel-
atively small, the movement of the cable at the P1H
segment is also relatively small, so the movement at
the discrete point Pi+1 can be simplified as the rotation
of the point Pi+1 around the point H . Therefore, the
relativemotion trend vt at the discrete point Pi+1 is per-

0O

, +1sp if

tv
1p

1i +f̂
2p

+1iP

End point +1nP 's 
direction of motion

+1nP

1P

Fixed end

H

0t
v

Fig. 12 Frictional constraint of the cable on a curved surface

pendicular to p1 and p2, which means that the direction
of vt can be determined; f̂ i+1 is the friction force distri-
bution at the discrete point Pi+1 (Part i) that is oriented
in the direction opposite that of vt . By neglecting the
cable axial friction, we obtain μc = 0.35, which is the
friction coefficient between the cable and surface.

p1 = 1

l̃0

[
rX,i+1 − rX,i rY,i+1 − rY,i rZ ,i+1 − rZ ,i

]T
(50)

p2 = 1

R0

[
rX,i+1 − X0 rY,i+1 − Y0 rZ ,i+1 − Z0

]T
(51)

f sp,i+1 = fsp,i+1 · p2 (52)

f̂ i+1 = μc(p1 × f sp,i+1) (53)

The projection of f̂ i+1 onto the world coordinate sys-
tem O–XY Z is given as
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f̂ i+1 =
[
f̂ X,i+1 f̂Y,i+1 f̂ Z ,i+1

]T

= μc · fsp,i+1

l̃0R0

⎡
⎢⎢⎣

(rY,i+1 − rY,i )(rZ ,i+1 − Z0) − (rZ ,i+1 − rZ ,i )(rY,i+1 − Y0)

(rZ ,i+1 − rZ ,i )(rX,i+1 − X0) − (rX,i+1 − rX,i )(rZ ,i+1 − Z0)

(rX,i+1 − rX,i )(rY,i+1 − Y0) − (rY,i+1 − rY,i )(rX,i+1 − X0)

⎤
⎥⎥⎦ (54)

gd =
∣∣∣∣
√

(rX,d − X0)2 + (rY,d − Y0)2 + (rZ ,d − Z0)2 − R0

∣∣∣∣

+
∣∣∣∣ (rX,d − X0)(rX,d − rX,d−1) + (rY,d − Y0)(rY,d − rY,d−1) + (rZ ,d − Z0)(rZ ,d − rZ ,d−1)

l̃0R0

∣∣∣∣ = 0 (55)

gi+1 = fsp,i+1

∣∣∣∣
√

(rX,i+1 − X0)2 + (rY,i+1 − Y0)2 + (rZ ,i+1 − Z0)2 − R0

∣∣∣∣

+ fsp,i+1

∣∣∣∣ (rX,i+1 − X0)(rX,i+1 − rX,i ) + (rY,i+1 − Y0)(rY,i+1 − rY,i ) + (rZ ,i+1 − Z0)(rZ ,i+1 − rZ ,i )

l̃0R0

∣∣∣∣ = 0, (56)

where (i + 1 ∈ [t1, d)U (d, t1 + nc − 1])
⎡
⎣ fx,i+1

fy,i+1

fz,i+1

⎤
⎦ = Pi+1

O R−1

⎡
⎢⎢⎢⎣

f̂ X,i+1 + fsp,i+1(rX,i+1 − X0)/R0

f̂Y,i+1 + fsp,i+1(rY,i+1 − Y0)/R0

f̂ Z ,i+1 + f0 + fsp,i+1(rZ ,i+1 − Z0)/R0

⎤
⎥⎥⎥⎦ (57)

It is worth noting that v provides (7n + 11 +
nc)-dimensional nonlinear overdetermined equations,
which can be employed to obtain 7 (n + 1)+nc param-
eters (But in the calculation code of this paper, ν is
(7n + 11 + n)-dimensional and we get 7(n + 1) + n
parameters.). According to the algorithm illustrated in
Fig. 6, the nonlinear mechanical model of a cable with
curved surface contact can be solved. When a spline
curve is used to fit the discrete points, the simulated
cable may slightly overlap the curved surface. Thus,
the interpolation points at the curved surface have to
be modified by using Eq. (58); Z ′ is the corrected coor-
dinate value.

Z ′ = Z − Z0

|Z − Z0|
√
R2
0 − (X − X0)2 − (Y − Y0)2

+Z0 (58)

With the change in the rotation angle γ of the orien-
tation joint, the shape of the cable in contact with the
curved surface can be obtained. Figure 13 shows the
projections of the calculated trajectory of the cable,

which is in contact with a curved surface, onto each
coordinate plane. Figure 14 shows the comparison
between the theoretical shape of the robot cable and
the actual trajectory in contact with a curved surface.
When γ = π/4,π/3 and 5π/12, the robot cable comes
into contact with the curved surface (spherical obsta-
cle). The trends of the cable theoretical shape and the
actual trajectory are consistent. Figure 15 shows the
projection of the internal force on the end of the cable,
which is in contact with the curved surface, in the coor-
dinate system P–xyz. When γ = π/3, due to the con-
tact force of the curved surface, the end-point force
(in Fig. 15) under the constraint of a curved surface
is smaller than the end-point force under the restraint
of both ends (in Fig. 10). This is consistent with the
actual situation, and to a certain extent, it also verifies
the correctness of the theoretical results.
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Fig. 13 Simulated shape of the cable in contact with a curved
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6 Conclusion

Under the complex conditions of multi-physics outer
space environment, cables are the main sources of
unexpected nonlinear disturbance effects on space
robot joints. This induces slow rotation or oscillation of
the joint at a certain position. In this study, by consid-
ering the gravitational force distribution, friction force
distribution, and contact with the curved surface of a
robot cable, we employ the mechanical parameters for
each discrete point of the cable as variables and develop
a discrete nonlinear mechanical model of a robot
cable.

The following conclusions can be drawn:

1. In this paper, the nonlinear mechanical model of a
cable in the space robotic arm is transformed into a
large-scale nonlinear optimization problem, and the
mechanical characteristics of each discrete point of
the cable are systematically revealed including the
end-point force and geometry of the cable. This
model could be employed to facilitate stable opera-
tion of robotic arms designed for future outer space
missions;

2. A solution algorithm, which ensures global conver-
gence of the algorithmand is based on a trust-region
adjustment strategy, is proposed to solve the non-
linear mechanical model of a cable. The rationality
and accuracy of the proposed nonlinear mechanical
cable model are verified by performing a morpho-
logical comparison;

3. At present, we use ordinary cables for our exper-
iments. The next step is to use real space cables
for experimental research. At the same time, we
will further improve the experimental environment
and make it as consistent as possible with the outer
space environment. In addition, it is also important
for future studies to theoretically determine the spe-
cific positions at which a robotic joint may exhibit
slow rotation or oscillation, and to perform parallel
light pipe experiments to estimate these positions
on a micro-scale.
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Fig. 14 Comparison of
theoretical shape and actual
trajectory of the cable of a
robot in contact with a
curved surface XOZ
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Fig. 15 Force at the end-point of the cable of a robot in contact
with a curved surface
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