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Abstract The aim of this paper was to construct a
mathematicalmodel of a drive systemwith ironless per-
manent magnet synchronous linear motor and to ani-
malize the influence of the magnetic field distribution
functionon themodel’s accuracy and ease of simulation
computation. The studied motor employs an U-shaped
stationary guideway with permanent magnets placed
perpendicularly to the motor’s direction of motion and
a forcer with three sets of rectangular coils subjected
to alternating external electrical voltage. The system’s
parameters are both mechanical (number of magnets
and coils, size of magnets, distances between magnets,
size of coils) and electromagnetic (auxiliary magnetic
field, permeability, coil’s resistance). Lorentz force
allows for the transition from electromagnetic parame-
ters tomechanical force, andFaraday’s lawof induction
creates a feedback between the forcer’s speed and coils
voltage. An Ampere’s model of permanent magnet is
used to determine the function of auxiliary magnetic
field distribution throughout the stator. Two simplified
distribution functions are introduced and studied. Dur-
ing validation, external current function is applied to
each coil (serving as excitation), while the displace-
ment of forcer in time is the output function. Model
parameters are found via genetic algorithms such that
the numerical solution of themodel best fits experimen-
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tal data. Several cases of motor operation are compared
against simulation results showing good coincidence
between computation and experiment.
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1 Introduction

It is well known and documented that linear machines,
including motors, generators, and actuators, generate
motion/translation directly without rotation and trans-
mission conversion devices, and due to their compact,
simple and relatively cheep structure with a simulta-
neous high dynamic efficiency and performance, they
are extensively applied in various branches of industry.
They are employed in manufacturing [1], transporta-
tion [2], aerospace industry [3], automation, and robotic
industries [4,5], bioengineering, and other.

However, the proper design of the linear machines
producing large forces and operating at high speeds
requires advanced mathematical modelling in order to
achieve precise control to carry out required perfor-
mance. On the other hand, a proper mathematical mod-
elling and derivation of the reliable governing dynamic
equations requires a comprehensive and self-contained
knowledge that span from mechanics, applied mathe-
matics, electrical, engineering, and mechatronics with
a particular emphasis on nonlinear effects.
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In what follows, we briefly describe the state of the
art of the problem by exhibition of the derived and
employed simple mathematical models based on fun-
damental physical/mechanical lows and supported by
experimental validation.

Karnopp [6] studied linear electromagnetic motors
composed of coils of a copper wire interacting with
permanent magnets serving as mechanical dampers.
In particular, novel coreless design for use with high
energy magnets was proposed.

Compter andFrissen [7] presented an innovative pla-
nar motor levitating and propelling platform. It was
composed of a simple structure with four three-phase
amplifiers. Full 6-DoF single-input-single-output con-
trol was developed, and a stable controlled electrody-
namical planarmotionwith a long strokewas obtained.

Holmes et al. [8] designed, fabricated, and tested an
axial-flux permanent magnet electromagnetic genera-
tor. The latter consisted of a polymer rotor with embed-
ded permanent magnets sandwiched between two sil-
icon stators. The effects on performance of design
parameters (number of layers in the stator coils, the
rotor stator gap, soft magnetic pole pieces on the sta-
tors) were investigated using the finite element simula-
tions. The employedmicrofabricated axial-flowmicro-
turbine was used to produce a compact power conver-
sion device for power generation andflow sensing oper-
ations.

Lemarquand and Lemarquand [9] considered the
structures of permanent magnet pickups for an electric
guitar with an emphasis put on the nonlinear dynamics
generated by the induced electromotive force yielded
by the string, magnet, and coil interactions. The study
was supported by the analytical computations using the
Coulombian model of magnets.

Yatchev and Ritchie [10] compared two approaches
for simulation of dynamics of a permanent magnet
linear actuator, i.e. the so-called full coupled model
(standard) and the decoupled model (proposed by the
authors). It was illustrated that the decoupled model
of a linear actuator with moving permanent magnet
employing bicubic spline approximations yielded only
the required accuracy but demonstratedmore flexibility
in comparison with the standard approach.

Hamzehbahmani [11] derived amathematicalmodel
for a single- side short-stator linear induction motor
with the end effects. MATLAB/SIMULINK-based
simulations were compared with the experimental
results. The latter included measurement of the equiv-

alent circuit parameters, both free acceleration and
locked primary experiments.

The voice coil motor consisted of a wounded coil
in the centre covered with Halbach magnet array with
iron yoke was mathematically modelled with Lorentz
force principle by Jeong et al. [12]. Relation between
coil-passing area and suppressing parasitic motion was
derived and the motor equation was expressed by geo-
metric dimensions of coil and magnets, which opened
a possibility for its design.

Yao et al. [13] designed based on the mathemati-
cal modelling a novel tubular linear machine with 3D
hybrid permanent magnet arrays and multiple movers.
The governing equations were derived using the source
free property and Maxwell equations. The magnetic
field distribution was analytically formulated using
Bessel functions and harmonic approximation to the
magnetization vector. The obtained analytical solutions
were validated by numerical simulations. In addition,
it was demonstrated that the variation of magnetic flux
density in the linear machine was consistent with the
magnet patterns.

Mathematical modelling and dynamic analysis of
a novel moving magnet linear actuator were carried
out by Hassan et al. [14]. The stator was composed
of two reversely wound coils being electrically excited
with single-phase AC power. The time-dependent cur-
rent model of the stator winding was proposed, and the
stroke, velocity, and acceleration of the armature were
derived. The spring, damping, inertial and magnetic
forces were estimated. The system dynamics were ana-
lytically approximated and experimentally validated.

As it has been already pointed out, the linear motors
are taking on bigger and bigger shares of the mar-
ket for precise positioning systems. They provide a
costly but dynamically superior alternative to standard
drives such as feed screw conveyors. In order to cor-
rectly project a desired motion profile, every position-
ing system has to equip a specific closed-loop con-
troller between the motor and mains. The quality of
such system, and therefore the quality of motion pro-
jection, depends on, amongst other things, the precision
of the system elements’ mathematical models used on
the programing stage of building the controller. Most
industrial controllers today use simplifiedmodels. This
paper focuses on construction of a novel model for an
exemplary positioning system which is different from
standard available in the existing literature and has
higher level of complexity.
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This paper is organized in the following way. Sec-
tion 3 deals with basic electromagnetic interactions
between elements of themotor. It presents a basemodel
of a single winding in a vicinity of a C-shaped magnet
and reports the values of Lorentz force acting on it as
well as the value of electromagnetic induction. It then
describes the magnetic distribution function of a single
magnet with use of Ampere’s model and Biot–Savart
law. In Sect. 4, a model of a three-phase motor, high-
lighting the impact of choosing a proper magnetic field
distribution function for a guideway with numerous
magnets, is proposed. Two functions and therefore two
models are presented. The first on simplifies the dis-
tribution to a sine function, while the second attempts
for a more true to life distribution. Flaws of both are
named, and for the simplified function, a scope of use is
listed and explained. Section 5 presents the method of
models’ validation introducing final changes to mod-
els’ equations. A resistive force of mechanical guide-
ways is defined, and friction model is chosen to best
suit the free-wheeling operations. Then, both models’
parameters are identified using genetic algorithm and
verified against experiment. Section 6 contains con-
cluding remarks.

2 Validation platform

A base for model construction was a laboratory stand,
with HIWIN’s coreless linear motor and Copley Con-
trols’ servo drive. The same platform is also used for
model validation. The stand’s forcer (inductor), shown
as “1” in Fig. 1, allows the load to move at speeds of
up to 5 meters per second and generate a continuous
and peak force of 45N and 180N, respectively. The
length of three magnetic U-shaped guideway (“2” of
Fig. 1) allows for a theoretical maximum stroke of 830
mm. For safetymeasures, the actualmaximum stroke is
limited to 780 mm. Two high-quality linear guideways
(denoted by “5” in Fig. 1) provide for a reliable and
quiet motion. The position and velocity measurement
is done by a Renishaws analogue optical linear encoder
(see “3” in Fig. 1). It is able to read its position with a
resolution of 0.1 µm, and the entire system’s position-
ing error is not trailing far behind. The stand program
allows it to work both automatically based on a signal
from external devices and via manual input. This stand
has been designed and originally built [15].

The servo drive allows for a multitude of options to
fine tune the motor’s control loops. Amongst them is
the “scope” function, which gives the option to subject
the motor and the entire system to several functions
of current, velocity, and position including sinusoidal
function, square function and microstepping. It also
measures the actual time graphs of said quantities and
allows exporting them to a csv file. In this paper, the
“scope” function is used to obtain data employed for
model validation.

3 Motor’s physical interactions

3.1 Base model

In the most basic model of a linear motor, the induc-
tor can be represented as a single, perfectly rectangular
conductor loop. This loop allows for a certain voltage
function Ug to be applied to it and cause a current of
value I to flow through it. The exactmeans of this appli-
cation is unimportant for theworkings of themodel and
therefore will be omitted.

The magnetic guideway provides a source of mag-
netic field. A typical U-shaped guideway is composed
of several pairs of strongmagnets. Each pair’smagnetic
field distribution can be modelled as that of a single C-
shaped magnet in a way depicted in Fig. 2

Assuming that the loop cannot deform or rotate and
can only move along the direction of y-axis, it shall
always remain a rectangle with a centre placed on y-
axis and with shorter sides parallel to the direction of
motion.

The describedmodel is a basemodel for the paper. It
should be noted that the actual linear motor bears many
similarities to the base model and the only differences
are number and displacement of magnets, number of
conductor loops wound together within a single wind-
ing and number and displacement of windings.

This section focuses on the interactions within the
base model, noting the differences and appropriate
changes in the equationswhere the entiremotorsmodel
is considered.

3.2 Lorentz force

Every charged particlemoving through amagnetic field
with a given speed is subjected to aLorentz force,which
works perpendicular to both the velocity vector of the
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Fig. 1 The laboratory stand
used for model verification
(1—motor’s inductor,
2—magnetic guideway,
3—linear encoder, 4—
cable chain, 5—mechanical
guideways)

Fig. 2 Model of a single
winding

particle and magnetic distribution vector. Same force
works on a conductor placed within a magnetic field.
In such a case, the force is perpendicular to the vector
of the current flowing through the conductor [16].

For the base model, only the y-component of the
Lorentz force is relevant (where y is the axis ofmotion).
It can be obtained by calculating a closed-loop integral
along the conductor path. For a specific case of a rect-
angular shape, the closed-loop integral can be rewritten
as a sum of two definite integrals in the following form

F = I

⎛
⎜⎜⎝

lx
2∫

− lx
2

B

(
x, y0 − ly

2

)
dx −

lx
2∫

− lx
2

B

(
x, y0 + ly

2

)
dx

⎞
⎟⎟⎠ ,

(1)

where B(x, y) is the function of the magnetic field’s z-
component distribution, lx , ly are the dimensions of the
rectangular conductor loop in x an y axes, respectively,

and y0 is the position of the loop relative to centre of
the magnet [17].

A singlemotorwinding consists ofn of such conduc-
tor loops placed a top each other along z-axis. Assum-
ing that B ′ distribution has the same values for each of
the loop, the force for an entire single winding can be
calculated as

FM = nI

⎛
⎜⎜⎝

lx
2∫

− lx
2

B

(
x, y0 − ly

2

)
−

lx
2∫

− lx
2

B

(
x, y0 + ly

2

)
⎞
⎟⎟⎠ .

(2)

For a motor model, each coil’s magnetic field also acts
on adjacent windings; however, the sum of this forces
for the entire motor is equal to zero. The stiffness of
the inductor disallows movement of windings relative
to each other, and therefore, these forces are omitted in
the model.

123



Mathematical models and nonlinear dynamics 381

Fig. 3 Distribution of
C-shaped permanent
magnet’s magnetic field
(z-axis coefficient) on a line
ran parallel to y-axis in
between the magnet’s poles
(highlighted part marks the
position of magnet’s poles)

Fig. 4 Magnetic guideway
model

Fig. 5 3D plot of motor’s
guideway magnetic field
distribution in yk-plane
(where k = σy

χ
)
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Fig. 6 Contour plot of
Δ(k, n) (approximated
absolute error function
differenced over k) with red
line highlighting its zero
values. (Color figure online)

Fig. 7 Elliptic theta
function distribution for real
values of z and q

3.3 Electromagnetic induction

When a closed conductor loop moves through dense
magnetic field, themagnetic flux inside it changes. This
causes anEMF (electromagnetic force) to induce inside
the loop. The value of EMF for the base model can be
calculated as follows

εi = − d

dt

ly
2∫

− ly
2

lx
2∫

− lx
2

B(x, y)dxdy. (3)

where εi is the EMF and lx , ly are the dimensions of the
rectangular conductor loop in x an y axes, respectively.
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Fig. 8 Shape of the
KBΘ(y) function with a
constant magnets
displacement χ and varying
k

Fig. 9 Laboratory stand’s
velocity profile during
free-wheeling operations
with three different pusher
weights

Similarly for a rectangular winding with n loops it can
be recast to the following form

εi = −n
d

dt

ly
2∫

− ly
2

lx
2∫

− lx
2

B(x, y)dxdy. (4)

The electric current I flowing through the rectan-
gular coil with n conductor loops is the result of the
external voltage function UG(t), the electromagnetic
force εi induced in the loop due to external magnetic
flux change and the electromagnetic force caused by
self inductance. It can be calculated by solving the fol-
lowing ODE

İ = 1

L
UG(t) − n

L

d

dt

ly
2∫

− ly
2

lx
2∫

− lx
2

B(x, y)dxdy − RE

L
I, (5)

where Re is the electric resistance of the coil and L
is its leakage inductance. For a model with a set of
coils in close proximity additional EMF resulting from
windings’ mutual inductance must be taken into con-
sideration.

3.4 Magnetic field distribution

In accordance with reference [18], the value of mag-
netic field of a permanent magnet can be approximated
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Fig. 10 Laboratory stand’s
displacement profile during
free-wheeling operations
with three different pusher
weights

Table 1 Parameters obtained during resistive force model iden-
tification

Parameter Symbol Value

Coulomb force value FC 1.720 [N]

Static friction value FS 3.198 [N]

Average bristles stiffens σ0 11.69 [N/m]

Damping coefficient of the bristles σ1 92.14 [Ns/mm]

Viscous coefficient σ2 2.517 [Ns/mm]

Stribeck velocity vs 2.993 [mm/s]

Forcer mass m 0.588 [kg]

by using Amperes model, that is, by assuming that a
magnets magnetic field is the same as that of a per-
fect, tightly wound solenoid, with current IS flowing
through it. Then, Biot–Savart law can be applied to cal-
culate the exact value of magnetic field at any point P
in the vicinity of the magnet via the following formula

B(r) = μ

4π

∫

L

IS
dl × r′
∣∣r′∣∣3 , (6)

where

r′ = r − l, (7)

and r is the distance between point P and the centre
of the magnet, l is the distance between the magnets
centre and the infinitely small length of the solenoid
dl, whileμ is themagnetic permeability of themagnets
environment.

In case of a C-shaped magnet, the field can be cal-
culated as a resultant fields of two bar magnets placed

perpendicular to each other with opposing poles facing
each other. For a single barmagnet, the field can be then
calculated by solving the following integral equation

B
(
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Fig. 11 Six resistive force model solutions (black line), compared with down-sampled experimental data (blue points). (Color figure
online)

and
(
xp, yp, z p

)
are the coordinates of point P,

(
σx , σy,

σz
)
are the bar magnet dimensions in their respective

axes, x̂, ŷ, ẑ are the unit vectors of axes x, y and z, and
i is the current density over the sides of the coil.

Figure 3 shows the C-shaped magnets magnetic
fields z-component distribution in a in y-axis (for
z = 0) calculated with Eqs. (8)–(12) for a sample
magnet.

For the ease of use and because of the good coinci-
dence with actual values, the C-shaped magnet’s mag-
netic fields distribution on a xy-plane (coordinate sys-
tem set as in Fig. 2) will be approximated with 2D
Gaussian function in the following form

BS = B0e
−

(
x2

σx 2
+ y2

σy2

)

, (13)

where B0 is the magnet’s given constant.
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Fig. 12 Measured current values during experiment

Fig. 13 Interpolated current functions used as model excitation
during identification

Table 2 Parameters obtained during sine model identification

Parameter Symbol Value

Force constant K f −133.8 [N]

Guideway density factor ω 0.222 [1/mm]

Windings displacement factor αp 0.5368 [-]

Shift parameter αS 1.936 [-]

Coulomb force value FC 1.874 [N]

Static friction value FS 2.341 [N]

Average bristles stiffens σ0 11.36 [N/m]

Damping coefficient of the bristles σ1 26.30 [Ns/mm]

Viscous coefficient σ2 2.872 [Ns/mm]

Stribeck velocity vs 11.66 [mm/s]

4 Stand’s model

The laboratory stand described in Sect. 2 can be mod-
elled as an 4-DOF oscillator in which the pusher’s dis-
placement and phase currents are the output functions
and three external voltages serve as excitation. A three-
phase coreless linear motor translates the voltages into

pushing force and the guideways and air friction create
a countering resistive force. The oscillator is governed
by the following ODE

mÿ =
3∑
j=1

FMj
(
UGj , ẏ, y + ( j − 2)yp

)

−R (ẏ, y) . (14)

where y, ẏ, ÿ are, respectively, the position, velocity,
and acceleration of the pusher, R is the resistive force
of the guideways, FMj are the force functions of each
of themotor’s winding governed by Eqs. (2) and (3), y j
is the distance between two adjacent phases, and UGj

are the voltages on each winding.
As mentioned, the stands magnetic guideway con-

sists of several dozen C-shaped neodymium magnets.
They are placed in such a way that each two neighbour-
ing magnets have their poles placed oppositely and that
the distance between magnets is the same for each pair
and equal to χ (see Fig. 4).

For such a guideway, the magnetic field distribution
function B(x, y) in Eq. (2) is a superposition of each
individual magnet’s field and can be calculated as a
sum of magnetic distribution functions of every mag-
net. It should be note that the physical pusher, due to
mechanical limitations, can only move in such a way
that all the windings are enclosed inside the guideway.
Therefore, the model will not loose any of its accuracy
if an infinitely long guideway model is used, bearing
in mind that the actual stands stroke is still limited and
every responses with a pushers displacement greater
than the stroke of the stand is physically unachievable
in real life.

The infinitely long magnetic guideway field distri-
bution can be calculated as a sum of distribution from
infinitely many magnets, that is
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B(x, y) =
∞∑

i=−∞
(−1)i BS (x, (y + iχ))

=
∞∑

i=−∞
(−1)i B0e

−
(

x2

σx 2
+ (y+iχ)2

σy2

)

. (15)

However Eq. (15) is cumbersome and provides sig-
nificant complications for use in the stands ODE, mak-
ing it highly nonlinear and difficult for numerical sim-
ulations. It can, however, be casted and simplified to
a more computation friendly form. This paper will
present two twinmotormodels, built based on Eq. (15).

4.1 Motor with sinusoidal field distribution

For different values of σy and χ , the shape of the curve
described by Eq. (15) changes significantly along the
y-axis. The x-axis distribution is only dependent on the
σx and B0 parameters. Let the distribution function be
fixed in x = 0. In such case, the one argument function
of distribution is given as follows

B(y) = B(0, y) =
∞∑

i=−∞
(−1)i B0e

−
(

(y+iχ)2

σy2

)

. (16)

Let there be a correlation between σy and χ given
in a form of a dimensionless parameter k such that

k = σy

χ
. (17)

In such case, the shape of themagnetic field distribu-
tion depends solely on the value of k. Figure 5 presents
the magnetic field distribution in y-axis for varying k.
The obtained plot affirms that B is periodic for every
studied value of k (where k = 0.5 means that there
is no free space between adjacent magnets and k = 0
means that magnets are infinitely apart.) For lower k
values, magnetic distribution from individual magnets
is more prominent and typical Gaussian distribution
peaks can be observed with large ranges of y for which
B ≈ 0 in between. Larger k produces a distribution
where individual magnetic fields are distorted by adja-
cent magnets producing a net distribution similar to a
sine wave.

It can easily be seen that for a certain value of k the
distribution of B can be approximated with satisfactory
precision by a cosine function in the form of

BC (y) = B0 cos

(
π

χ
y

)
. (18)

The inaccuracy of such an approximation, at a given
point along the guideway, is the square of difference
between values of magnetic distributions given by Eqs.
(16) and (18) and is therefore a function of y and k. As
both functions rely on the magnitude factor B0 in a
similar fashion, the relative error in the form of

εR(y, k) =
⎛
⎝

∞∑
i=−∞

(−1)i e
−

(
(y+iχ)2

k2χ2

)

− cos

(
π

χ
y

)
,

⎞
⎠
2

(19)

can be used to measure the quality of cosine approx-
imation in any given point. The absolute error of the
cosine approximation is a function dependent solely
on k coefficient. It can be obtained by calculating the
sum of errors from each point along the guideway. For
continuous function εR and a theoretical infinitely long
guideway, this sumbecomes an improper integral in the
form of

εA(k) =
∞∫

−∞
εR(y, k)dy. (20)

In this paper, we assume that the scope of use for
cosine approximation is reserved only to the motor
model instances where εA achieves a minimum value.
The absolute error is theoretically a function of both k
and χ ; however, in case of the latter it can only achieve
minimum when χ approaches infinity, i.e. for a single
infinitely longmagnet. Because of that, only the impact
of k on the error function is analysed.

The εA function takes minimal values for k = k0,
where k0 is a value for which the first derivative of εA
is equal to 0 and the second derivative is greater then
0. Using the Leibniz integral rule [19, Chapter 8], the
sum rule for integration and the value for the square of
sum, the value of the first derivative can be obtained in
the form of

ΔI (k) = 2χ
∞∑

i=−∞
εA2(k)

+χ

∞∑
i=−∞

∞∑
j=−∞

εA3(k, i, j), (21)

where
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Fig. 14 Comparison
between simulation and
experimental data during
model identification

εA2(k) = 1

2
e− 1

4 kπ
2
(
k2π2 − 2

)√
π, (22)

εA3(k, i, j) = (−1)i+ j e
− (i+ j)2

2k2
[
(i − j)2 + k2

]√
π

2
.

(23)

It can be noted that for nonzero χ , as is the case with
physical linear motors, the roots of ΔI do not depend

on its value. The sums in Eq. (21) do not converge
to a finite value; however, the result of Eq. (21) can be
approximated numerically after substituting the infinite
summations to a finite ones with boundaries of−N and
N , where N is a natural number. The larger the N, the
longer the computation timeneeded to approximate and
themore accurate the approximation. For every N there
exists a k = kN meeting the following criteria

123



Mathematical models and nonlinear dynamics 389

Δ(kN , N ) = 2
N∑

i=−N

εA2(k)

+
N∑

i=−N

N∑
j=−N

εA3(k, i, j) = 0. (24)

With the results of several numerically computed
kN for different N , an interpolation functions kI (n),
having all positive real values in its domain, can be
constructed. The interpolated function has to have the
property that

∧
N∈N kI (N ) ≈ kN and limn→∞ kI (n) =

kI0 ≈ k0. Figure 6 presents a contour plot for aΔ(n, k)
function (with the values for n /∈ N interpolated from
two adjacent point for the sake of graph clarity). The
red line on the graph joins points whereΔ reaches zero,
i.e. points with coordinates (kN , N ). As best fitting the
results, the kI (n) function should take an exponential
form of

kI (n) = a0 − a1e
a2na3 , (25)

where the values of parameters a0, a1, a2, a3 can be
obtained with the least squares method. They are equal
to: a0 = 0.4594, a1 = 0.1547, a2 = 0.4118, a3 =
0.4077. The limit of the exponential interpolation func-
tion is equal to limn→∞ kI (n) = a0; therefore, the
scope of use for sine model is motors with the correla-
tion factor k equal to 0.4594.

The same can be proven true for a 2D function of
magnetic distribution given by Eq. (15) and a 2D cosine
approximation function in the form of

BC (x, y) = B0e
−

(
x2

σx 2

)
cos

(
π

χ
y

)
. (26)

The absolute error of the 2D approximation, equal
to

ε2A(k) =
∞∫

−∞

∞∫

−∞
B0

2e
−

(
x2

σx 2

)

×
⎛
⎝

∞∑
i=−∞

(−1)i e
−

(
(y+iχ)2

σy2

)

− cos

(
π

χ
y

)⎞
⎠

2

dydx,

(27)

after integrating over x and dividing over the constants,
reduces to the form given by Eq. (20). Therefore, the
approximation is valid for the same values of k.

For motors matching that criteria, the integrals in
Eqs. (2) and (3), i.e. values of the Lorentz force and

EMF, can be analytically calculated as

FM = K f sin

(
π
y

χ

)
I, (28)

εi = K f sin

(
π
y

χ

)
ẏ, (29)

where K f is the winding’s force constant, equal to

K f = 2nB0σx
√

π erf

(
lx
2σx

)
sin

(
lyπ

2χ

)
. (30)

By introducing Eq. (28) to the stand’s model’s
motion’s equation (Eq. (14)) and calculating the val-
ues of currents on each coil with Eqs. (5) and (29), the
following system of equations for the laboratory stand
is obtained

mÿ =
3∑
j=1

K f sin (ωg y + αpj )I j − R (ẏ, y) ,

İ j = KUUGj (t) − KV sin (ωg y + αpj )ẏ

− 1

Ke
I j for j ∈ {1, 2, 3} .

(31)

In Eq. (31),UG j is the external voltage function and
KV , Ke, KU , ωg and αpj are the motor’s back EMF,
electrical time and voltage constants and guideway
density, windings displacement factors, respectively,
defined as

KV = K f

L
, Ke = L

RE
, KU = 1

L
,

ωg = π

χ
,

αpj = πyp
χ

( j − 2) = αp( j − 2) for j ∈ {1, 2, 3, },

(32)

where L and RE are the leakage inductance and elec-
trical resistance of each winding.

4.2 Motor with elliptic theta function field distribution

Another method of using Eq. (15) in laboratory stands
ODE is to insert it directly, but after enclosing the infi-
nite sum of Gaussian distributions inside a single, more
computational friendly function. This can be done by
first ridding Eq. (15) of the (−1)i and instead split-
ting the sum into the difference of two other sums,
each of them representing the resultant field distribu-
tion of same faced magnets in the guideway. The resul-
tant sums can be recast to a form in which a single
Jacobi theta functions of the third kind is used for each
of them.
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Fig. 15 Validation of identified model against experimental data
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Fig. 16 Comparison
between simulation and
experimental data during
model identification

This paper follows the Whittaker and Watson [20,
Chapter 22] notation of elliptic functions; therefore, the
ϑ3 symbol will be defined as

ϑ3(z, q) =
∞∑

n=−∞
qn

2
e2n i z . (33)

Although the elliptic theta is a complex function,
while both the argument z and nome q are complex
numbers (with q restrained only to the upper half-

plane), it becomes real if the argument and nome are
real and when q ∈ (−1, 1). Figure 7 presents the
plot of ϑ3 for real z values and for different values of
q.

Equation (15) can then be presented in the form

B(x, y) = KBB0e
− x2

σx 2 (ϑ3 (z0y, q0)

−ϑ3

(
z0y − π

2
, q0

))
, (34)
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where

KB =
√

π

2
|k|,

z0 = π

2χ
,

q0 = e− 1
4 k

2π2
.

(35)

It can be seen that the nome is the same for both theta
functions and is a function of the correlation parameter
k [as defined in Eq. (17)]. The z0 parameter, which
affects the frequency of the Jacobi functions, is also
equal for those functions. The π

2 component acts as a
phase parameter shifting the negatively signed function
by exactly half of its period. An auxiliary function Θ

can be introduced to the equation for greater clarity.
This function is defined as follows

Θ(z, q) =
(
ϑ3 (z, q) − ϑ3

(
z − π

2
, q

))
. (36)

Figure 8 presents the plot of KBΘ(z0y, q0) func-
tion for different values of correlation parameter k and
consequently different values of q. It bares a very close
resemblance to Fig. 5 as, indeed, mathematically the
only difference between Eqs. (16) and (36) is in the
field’s magnitude parameter B0.

Similarly, aΘ0(z, q) function, used in stand’smodel
construction to incorporate the size of coils, can be
defined as

Θ0(z, q) = Θ (z − zL , q) − Θ (z + zL , q) , (37)

where zL = ly z0/2 is a winding length factor for a
motor with windings’ sizes of lx , ly .

By introducing Eqs. (34) and (37) to laboratory
stand’s equation of motion (Eq. (14)) and the currents’
equation (Eq. (5)) as well as defining the motor’s theta
force constant, theta back emf constant, and windings
displacement factor in the form of

K ′
f = B0KBn

√
πσx erf

(
lx
2σx

)
,

K ′
V = K ′

f

L
,

z j = z0yp( j − 2) f or j ∈ {1, 2, 3, },

(38)

the governing ODE take the form of

mÿ =
3∑
j=1

K ′
f Θ0

(
z0y + z pj , q0

)
I j − R (ẏ, y) ,

İ j = KUUGj (t) − K ′
VΘ0

(
z0y + z pj , q0

)
ẏ

− 1

Ke
I j for j ∈ {1, 2, 3} .

(39)

5 Model identification and validation

Following their construction, both models were vali-
dated against the physical motor. However, the stand’s
servodrive disallows subjectingmotors to voltage func-
tions directly and instead provides current functions
as the source for external excitation. Because of that,
the identification and validation was not done using a
known voltage function (such as a sinusoidal or square
wave), but instead by measuring both the currents in
each phase [I j in Eqs. (31) and (39)] and the dis-
placement of motor y. The models were then supplied
with the measured current functions, and their param-
eters were found, using genetic methods, such that the
difference between the values of displacement for the
model and physical motor was minimal. With param-
eters found, several numerical simulations and exper-
imental measurements were taken to further validate
the models. It has to be noted here that the models
need additional shift parameter to include the differ-
ence between the position y = 0 for the servo drive
and for magnetic field distribution functions Eqs. (34)
and (18).

5.1 Resistive force

Prior to identifying the model’s parameters, the nature
of system’s resistive force should be discerned. In order
to do so, the free-wheeling method was employed. The
stand’smotorwas cut from any external excitation volt-
age and windings were kept electrically separated so to
avoid the induction of EMF. The pusher was then man-
ually accelerated to a fixed speed and released allowing
it to move solely on inertia. By incorporating the stands
servo drive in the measurement process, a precise val-
ues ofmotor’s free-wheeling times as well as speed and
displacement functions during that time were obtained.
To further enhance the accuracy of collected data, the
same process was repeated for different initial speeds
and with additional weights added to the pusher. Fig-
ures 9, and 10 show a sample velocity and position
graphs for three free-wheeling operations with differ-
ent pusher weights.

It can be noted that unlike the position graph the
velocity profile is significantly jagged and overshot
appears to manifest near the end of motion (especially
noticeable during free-wheelingwith 1 kg addedmass).
Obviously, those phenomena should not be present dur-
ing free-wheeling with no closed-loop control. Instead,
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they are the result of the servo drive’smeasurement sys-
tem specifics and the fact that there exists no method of
accurately measuring the linear motor’s velocity. The
results shown in Fig. 9 are actually numerically calcu-
lated derivatives of motor’s displacement (Fig. 10), as
such they carry substantial noise and cannot be used in
identification or validation processes. They were nev-
ertheless included for the sake of completion.

As observed on the graphs, the behaviour of the lab-
oratory stand during free-wheeling is typical of sys-
tems with high dry friction component. The experi-
ments proved that the guideway was homogeneous and
therefore that the resistive function R was independent
form displacement y. Following [21] the LuGre dry
friction model in the form of

R (ẏ.ẇ, w) = σ0w + σ1ẇ + σ2 ẏ (40)

was incorporated as a resistive force model [22]. Here
σ0, σ1, σ2 represent, respectively, the stiffness, micro-
damping and viscous aspect of the resistive force andw

is the internal friction state [the symbol w was chosen
instead of more widely used z to avoid confusion with
parameters in Eqs. (33)–(39)]. The value of w can be
obtained by solving a differential equation in the form
of

ẇ = ẏ − σ0
|ẏ|
g(ẏ)

, (41)

where g(ẏ) is a function of velocity used to incorporate
theStribeck effect andCoulomb friction into themodel.
It is defined as

g(v) = FC + (FS − FC )e|v/vs |α . (42)

The values of FS and FC represent the values of stic-
tion force and Coulomb friction force, while parameter
vs determines how quickly does the value of function
switch from FS to FC . According to references [23–
25], the values of α should be in the range between 0.5
and 2. In this paper, α = 2 was chosen and used for
both identification and validation.

The parameters in Eq. (43) were identified using the
following free-wheelingmodel for the laboratory stand

ẇ = ẏ − σ0
|y|

FC + (FS − FC )e|ẏ/vs |2
,

ÿ = −σ0w + σ1ẇ + σ2 ẏ

m + mA
,

(43)

where m is the forcer’s mass and mA is the known
value of the mass added during free-wheeling. As with
all other models presented in this paper, the parameters

Table 3 Parameters obtained elliptic theta model identification

Parameter Symbol Value

Force constant K f 80.63 [N]

Guideway density factor z0 1.047 [1/mm]

Winding length factor zL −1.376 [-]

Windings displacement factor z p 1.513 [-]

Shift parameter zS 0.7680 [-]

Theta function nome q0 0.493 [-]

Coulomb force value FC 1.720 [N]

Static friction value FS 3.198 [N]

Average bristles stiffens σ0 11.69 [N/m]

Damping coefficient of the bristles σ1 92.14 [Ns/mm]

Viscous coefficient σ2 2.517 [Ns/mm]

Stribeck velocity vs 2.993 [mm/s]

were found using genetic algorithms. Table 1 shows the
values of those parameters, and Fig. 11 shows sample
validation of the free-wheeling model.

5.2 Sine model

By incorporating the obtained resistive force function
in Eq. (31) and adding the shift parameter in the form
of αS , the sine model is obtained. It is governed by
equations

ẇ = ẏ − σ0
|y|

FC + (FS − FC )e|ẏ/vs |2
,

ÿ = −K f

m

3∑
j=1

sin (ωg y + αpj + αS)I j (t)

− σ0w + σ1ẇ + σ2 ẏ

m
.

(44)

During identification, the excitation functions I1(t),
I2(t) and I3(t) were constructed by setting the ampli-
fier work mode to “Current sine function generator”
and measuring actual values of current (as shown in
Fig. 12) along with values of displacement and veloc-
ity. These values were then converted to a continuous
function using the spline interpolation [26]. Figure 13
shows all three excitation functions. The model was
then identified in similar manner as with the resistive
force function by using a genetic algorithm. The com-
parison between best acquired simulation result and
experimental data during identification is displayed in
Fig. 15. Table 2 presents identified parameters value,
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Fig. 17 Validation of identified model against experimental data
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and Fig. 14 shows examples of comparison between
simulation and experimental data for four model cases
of motor operation. It has to be noted that parameters
of resistive force [Eq. (40)] were identified separately
for the sine model and their values slightly differ from
those listed in Table 1.

As can be seen in Figs. 14 and 15, the model with
identified parameters fits closely to experimental data
for most cases of closed-loop working conditions and
with slowly changing sine current functions. However,
during sudden and rapid changes of current value, as
was the case with square wave current excitation func-
tion, the model exhibited strong oscillations of velocity
and displacement not present in the physical counter-
part.

The identified force constant parameter has nega-
tive value, which means that the phase order in math-
ematical model was inverted in comparison with the
actualmotor. It should also be noted that despite a slight
change of resistive function parameters the obtained
displacement and velocity functions for free-wheeling
operations still very closely resemble the experiment
(Fig. 16).

5.3 Elliptic theta model

The second tested model was identified in a very sim-
ilar pattern. Firstly, a shift parameter zs and resistive
force were incorporated into model’s ODE (Eq. (39))
resulting in the following final model’s equations

ẇ = ẏ − σ0
|y|

FC + (FS − FC )e|ẏ/vs |2
,

ÿ = K ′
f

m

3∑
j=1

Θ0
(
z0y + z pj + zs, q0

)
I j (t)

− σ0w + σ1ẇ + σ2 ẏ

m
.

(45)

During identification, the current functions I j (t)
were chosen and defined in the same manner as in
Sect. 5.2 and are represented in Figs. 12 and 13. As in
previous cases, genetic algorithm was used during the
process. Figure 14 presents the obtained results, while
values of model parameters are shown in Table 3. Same
as with sine model, Fig. 17 presents examples of com-
parison between four experiment and simulation data
for four cases of motor operation (experiment data and
excitation functions are exactly the same as with sine
model presented in Fig. 15).

The simulation results provide close resemblance to
experiments for all studied cases of closed and open-
loopworking conditions. In case of square current exci-
tation, both the physical motor and simulation exhibit
similar square wave oscillations; however, the experi-
ment shows a slight drift of displacement values in neg-
ative direction, while the simulation continues oscil-
lates around a single point. One possible explanation of
this is that the stand tends to exhibit slightly lower fric-
tion for high negative values of velocity. In case of sine
wave position excitation, the model exhibited an unex-
pected drop and peak in velocity during first moments
of operation; it was, however, brief and did not greatly
affect the desired position function shape and values.
As with sine model, the dry friction parameters were
changed compared to previous model; however, this
did not adversely affect themodel during free-wheeling
operation. The negative value of zL demonstrates that,
as with sine model, the phases for motor were chosen
inversely.

6 Conclusions

The proposed model of coreless linear three-phase
motor was constructed with respect to Lorentz force
and electromagnetic induction. The functions of mag-
netic induction were assumed as a sum of infinitely
many single magnets, while the magnets individual
fields distributionwas calculated usingAmperesmodel
of permanentmagnets andBiot–Savart law.Thenumer-
ically calculated distribution between two bar mag-
nets was then superseded with a single Gaussian func-
tion. Two methods of calculating the sum from many
magnets were proposed. First of them uses the sine
approximation, and second provides exact values and
incorporates Jacobi elliptic theta functions. For certain
cases, with appropriate relationship between magnets
size, distances between magnets and number of mag-
nets (as shownby the red line inFig. 6) the two solutions
provide nearly identical values of field distribution. In
accordance with these two methods, two mathematical
models of themotorwere created. Preceding their iden-
tification and validation, a resistive force function was
chosen as a dry friction force and model with LuGre
method. Both models were correctly identified and val-
idated. In most studied cases, the results of simulations
matched closely to experiment for both models; how-
ever, during operationswith sudden and abrupt changes
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to current value the sine model produced significantly
worse results. On the other hand, while the elliptic theta
function model provided a more accurate results, the
sine model’s results were smoother and resembled the
experiment better during sine wave position excitation.
The value of theta function nome q0 calculated dur-
ing identification suggests that motor was indeed con-
structed in a manner in which sine approximation nets
similar results as actual magnetic field values.

A huge differences between models were observed
in both computation time and ease of finding the neces-
sary parameters. On average, a single simulation of the
model with elliptic theta field distribution took ten to
twenty times longer than sine model. At the same time,
finding satisfactory convergent solution took over ten
thousand passes of genetic algorithm (so-called gen-
erations) for sine model, while elliptic theta model
required only two thousand.

Both models can be used depending on required
task. The elliptic theta model requires more compu-
tation time, but provides more accurate solution for
all cases. The sine model works well for usual motor
applications. It provides results faster and requires less
parameters to identify, but falls short during atypical
operations.
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