Skip to main content
Log in

Effects of the electromagnetic radiation on cognitive performance: a model study

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We constructed a two-layer network model to study the effect of electromagnetic radiation on the cognitive functions. The network model was used to simulate two cognitive tasks under the electromagnetic radiation: the visual-guided saccade task and the memory-guided saccade task. The performance of these tasks showed that the electromagnetic radiation could induce faster ramping up activities, higher level of persistent activities and shorter reaction time, but the basic functions of the network such as working memory and motor output did not impair. We found that the electromagnetic radiation have both excitatory effect and inhibitory effect on the neuronal activities of the network model, but the excitatory effect played a major role. Finally, we concluded an excitatory mechanism to explain the effects of the electromagnetic radiation on the cognitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cinel, C., Boldini, A., Fox, E., Russo, R.: Does the use of mobile phones affect human short-term memory or attention? Appl. Cogn. Psychol. 22(8), 1113–1125 (2008)

    Article  Google Scholar 

  2. Curcio, G., Ferrara, M., De Gennaro, L., Cristiani, R., D’Inzeo, G., Bertini, M.: Time-course of electromagnetic field effects on human performance and tympanic temperature. Neuroreport 15(1), 161–164 (2004)

    Article  Google Scholar 

  3. Jech, R., Sonka, K., Ruzicka, E., Nebuzelsky, A., Bohm, J., Juklikova, M., Nevsimalova, S.: Electromagnetic field of mobile phones affects visual event related potential in patients with narcolepsy. Bioelectromagnetics 22(7), 519–528 (2001)

    Article  Google Scholar 

  4. Koivisto, M., Revonsuo, A., Krause, C., Haarala, C., Sillanmaki, L., Laine, M., Hamalainen, H.: Effects of 902 MHz electromagnetic field emitted by cellular telephones on response times in humans. Neuroreport 11(2), 413–415 (2000)

    Article  Google Scholar 

  5. Lee, T.M.C., Lam, P.-K., Yee, L.T.S., Chan, C.C.H.: The effect of the duration of exposure to the electromagnetic field emitted by mobile phones on human attention. Neuroreport 14(10), 1361–1364 (2003)

    Article  Google Scholar 

  6. Okano, T., Terao, Y., Furubayashi, T., Yugeta, A., Hanajima, R., Ugawa, Y.: The effect of electromagnetic field emitted by a mobile phone on the inhibitory control of saccades. Clin. Neurophysiol. 121(4), 603–611 (2010)

    Article  Google Scholar 

  7. Eliyahu, I., Luria, R., Hareuveny, R., Margaliot, M., Meiran, N., Shani, G.: Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans. Bioelectromagnetics 27(2), 119–126 (2006)

    Article  Google Scholar 

  8. Keetley, V., Wood, A.W., Spong, J., Stough, C.: Neuropsychological sequelae of digital mobile phone exposure in humans. Neuropsychologia 44(10), 1843–1848 (2006)

    Article  Google Scholar 

  9. Luria, R., Eliyahu, I., Hareuveny, R., Margaliot, M., Meiran, N.: Cognitive effects of radiation emitted by cellular phones: the influence of exposure side and time. Bioelectromagnetics 30(3), 198–204 (2009)

    Article  Google Scholar 

  10. Regel, S.J., Tinguely, G., Schuderer, J., Adam, M., Kuster, N., Landolt, H.T.E.R., Achermann, P.: Pulsed radio-requency electromagnetic fields: dose-ependent effects on sleep, the sleep EEG and cognitive performance. J. Sleep Res. 16(3), 253–258 (2007)

    Article  Google Scholar 

  11. Regel, S.J., Gottselig, J.M., Schuderer, J., Tinguely, G., Retey, J.V., Kuster, N., Landolt, H.-P., Achermann, P.: Pulsed radio frequency radiation affects cognitive performance and the waking electroencephalogram. Neuroreport 18(8), 803–807 (2007)

    Article  Google Scholar 

  12. Smythe, J.W., Costall, B.: Mobile phone use facilitates memory in male, but not female, subjects. Neuroreport 14(2), 243–246 (2003)

    Article  Google Scholar 

  13. Krause, C.M., Haarala, C., Sillanmaki, L., Koivisto, M., Alanko, K., Revonsuo, A., Laine, M., Hamalainen, H.: Effects of electromagnetic field emitted by cellular phones on the EEG during an auditory memory task: a double blind replication study. Bioelectromagnetics 25(1), 33–40 (2004)

    Article  Google Scholar 

  14. Rodina, A., Lass, J., Riipulk, J., Bachmann, T., Hinrikus, H.: Study of effects of low level microwave field by method of face masking. Bioelectromagnetics 26(7), 571–577 (2005)

    Article  Google Scholar 

  15. Curcio, G., Nardo, D., Perrucci, M.G., Pasqualetti, P., Chen, T.L., Del Gratta, C., Romani, G.L., Rossini, P.M.: Effects of mobile phone signals over BOLD response while performing a cognitive task. Clin. Neurophysiol. 123(1), 129–136 (2012)

    Article  Google Scholar 

  16. De Vocht, F., Liket, L., De Vocht, A., Mistry, T., Glover, P., Gowland, P., Kromhout, H.: Exposure to alternating electromagnetic fields and effects on the visual and visuomotor systems. Br. J. Radiol. 80(958), 822–828 (2007)

    Article  Google Scholar 

  17. Hamblin, D.L., Croft, R.J., Wood, A.W., Stough, C., Spong, J.: The sensitivity of human event-related potentials and reaction time to mobile phone emitted electromagnetic fields. Bioelectromagnetics 27(4), 265–273 (2006)

    Article  Google Scholar 

  18. Krause, C.M., Pesonen, M., Haarala Bjornberg, C., Hamalainen, H.: Effects of pulsed and continuous wave 902 MHz mobile phone exposure on brain oscillatory activity during cognitive processing. Bioelectromagnetics 28(4), 296–308 (2007)

    Article  Google Scholar 

  19. Sauter, C., Dorn, H., Bahr, A., Hansen, M., Peter, A., Bajbouj, M., Danker-Hopfe, H.: Effects of exposure to electromagnetic fields emitted by GSM 900 and WCDMA mobile phones on cognitive function in young male subjects. Bioelectromagnetics 32(3), 179–190 (2011)

    Article  Google Scholar 

  20. Terao, Y., Okano, T., Furubayashi, T., Ugawa, Y.: Effects of thirty-minute mobile phone use on visuo-motor reaction time. Clin. Neurophysiol. 117(11), 2504–2511 (2006)

    Article  Google Scholar 

  21. Regel, S.J., Achermann, P.: Cognitive performance measures in bioelectromagnetic research-critical evaluation and recommendations. Environ. Health 10(1), 10–10 (2011)

    Article  Google Scholar 

  22. Hareuveny, R., Eliyahu, I., Luria, R., Meiran, N., Margaliot, M.: Cognitive effects of cellular phones: a possible role of non-radiofrequency radiation factors. Bioelectromagnetics 32(7), 585–588 (2011)

    Article  Google Scholar 

  23. Boardman, I., Bullock, D.: A neural network model of serial order recall from short-term memory. In: IJCNN-91-Seattle International Joint Conference on Neural Networks, vol. 2, pp. 879–884 (1991)

  24. Lo, C.C., Boucher, L., Pare, M., Schall, J.D., Wang, X.J.: Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model. J. Neurosci. 29(28), 9059–9071 (2009)

    Article  Google Scholar 

  25. Lo, C.C., Wang, X.J.: Conflict resolution as near-threshold decision-making: a spiking neural circuit model with two-stage competition for antisaccadic task. PLoS Comput. Biol. 12(8), e1005081–e1005081 (2016)

    Article  Google Scholar 

  26. Wiecki, T.V., Frank, M.J.: A computational model of inhibitory control in frontal cortex and basal ganglia. Psychol. Rev. 120(2), 329–355 (2013)

    Article  Google Scholar 

  27. Heinzle, J., Hepp, K., Martin, K.A.: A microcircuit model of the frontal eye fields. J. Neurosci. 27(35), 9341–9353 (2007)

    Article  Google Scholar 

  28. Tajima, S., Koida, K., Tajima, C.I., Suzuki, H., Aihara, K., Komatsu, H.: Task-dependent recurrent dynamics in visual cortex. eLife 6, e26868 (2017)

    Article  Google Scholar 

  29. Silver, M.R., Grossberg, S., Bullock, D., Histed, M.H., Miller, E.K.: A neural model of sequential movement planning and control of eye movements: item-order-rank working memory and saccade selection by the supplementary eye fields. Neural Netw. 26, 29–58 (2012)

    Article  Google Scholar 

  30. Miller, P.: A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cereb. Cortex 13(11), 1208–1218 (2003)

    Article  Google Scholar 

  31. Ye, W., Liu, S., Liu, X., Yu, Y.: A neural model of the frontal eye fields with reward-based learning. Neural Netw. 81, 39–51 (2016)

    Article  Google Scholar 

  32. Ardid, S., Wang, X.J.: A tweaking principle for executive control: neuronal circuit mechanism for rule-based task switching and conflict resolution. J. Neurosci. 33(50), 19504–19517 (2013)

    Article  Google Scholar 

  33. Fusi, S., Asaad, W.F., Miller, E.K., Wang, X.J.: A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54(2), 319–333 (2007)

    Article  Google Scholar 

  34. Cain, C.A.: A theoretical basis for microwave and RF field effects on excitable cellular membranes. IEEE Trans. Microw. Theory Technol. 28(2), 142–147 (1980)

    Article  Google Scholar 

  35. Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46(3), 237–238 (2010)

    Article  Google Scholar 

  36. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurcat. Chaos 20(05), 1335–1350 (2010)

    Article  MATH  Google Scholar 

  37. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  38. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  39. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  40. Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 31(2), 1650251–1650251 (2017)

    Article  MathSciNet  Google Scholar 

  41. Fan, D., Wang, Q.: Synchronization and bursting transition of the coupled Hindmarsh-Rose systems with asymmetrical time-delays. Sci. China Technol. Sci. 60(7), 1019–1031 (2017)

    Article  Google Scholar 

  42. Zhang, L., Wang, Y., Wang, Q.: Synchronization for time-varying complex dynamical networks with different-dimensional nodes and non-dissipative coupling. Commun. Nonlinear Sci. Numer. Simul. 24(1), 64–74 (2015)

    Article  MathSciNet  Google Scholar 

  43. Zheng, Y., Lu, Q., Wang, Q.: Spatio-temporal coherence resonance and firing synchronization in a neural network: noise and coupling effects. Int. J. Mod. Phys. C 20(03), 469–478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mvogo, A., Takembo, C.N., Ekobena Fouda, H.P., Kofane, T.C.: Pattern formation in diffusive excitable systems under magnetic flow effects. Phys. Lett. A 381(28), 2264–2271 (2017)

    Article  MathSciNet  Google Scholar 

  45. Pariz, A., Esfahani, Z.G., Parsi, S.S., Valizadeh, A., Canals, S., Mirasso, C.R.: High frequency neurons determine effective connectivity in neuronal networks. NeuroImage 166, 349–359 (2018)

    Article  Google Scholar 

  46. Bayati, M., Valizadeh, A., Abbassian, A., Cheng, S.: Self-organization of synchronous activity propagation in neuronal networks driven by local excitation. Front. Comput. Neurosci. 9, 69 (2015)

    Article  Google Scholar 

  47. Wang, X.J.: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19(21), 9587–9603 (1999)

    Article  Google Scholar 

  48. Compte, A., Brunel, N., Goldman-Rakic, P.S., Wang, X.J.: Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10(9), 910–923 (2000)

    Article  Google Scholar 

  49. Wu, F., Wang, C., Jin, W., Ma, J.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    Article  MathSciNet  Google Scholar 

  50. Ma, J., Wang, Y., Wang, C., Xu, Y., Ren, G.: Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos Solitons Fractals 99, 219–225 (2017)

    Article  Google Scholar 

  51. Wu, F., Wang, C., Xu, Y., Ma, J.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6(1), 28–40 (2016)

    Article  Google Scholar 

  52. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcat. Chaos 18(11), 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu, J., Xu, Y., Ma, J.: Levy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS One 12(3), e0174330–e0174330 (2017)

    Article  Google Scholar 

  54. Wang, Y., Ma, J., Xu, Y., Wu, F., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurcat. Chaos 27(02), 1750030–1750030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Brunel, N., Wang, X.J.: Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11(1), 63–85 (2001)

    Article  Google Scholar 

  56. Everling, S., Fischer, B.: The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36(9), 885–899 (1998)

    Article  Google Scholar 

  57. Johnston, K., Everling, S.: Monkey dorsolateral prefrontal cortex sends task-selective signals directly to the superior colliculus. J. Neurosci. 26(48), 12471–12478 (2006)

    Article  Google Scholar 

  58. Terao, Y., Okano, T., Furubayashi, T., Yugeta, A., Inomata-Terada, S., Ugawa, Y.: Effects of thirty-minute mobile phone exposure on saccades. Clin. Neurophysiol. 118(7), 1545–1556 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11702064), and by the Science and Technology Program of Guangzhou, China (Grant No. 201707010227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Mai, W. & Hu, G. Effects of the electromagnetic radiation on cognitive performance: a model study. Nonlinear Dyn 93, 2473–2485 (2018). https://doi.org/10.1007/s11071-018-4337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4337-4

Keywords

Navigation