Nonlinear Dyn (2018) 93:2121-2144
https://doi.org/10.1007/s11071-018-4311-1

@ CrossMark

ORIGINAL PAPER

Coherent neural oscillations induced by weak synaptic noise

Marius E. Yamakou® - Jiirgen Jost

Received: 12 September 2017 / Accepted: 23 April 2018 / Published online: 12 May 2018

© The Author(s) 2018

Abstract We analyze the effect of synaptic noise on
the dynamics of the FitzHugh—-Nagumo (FHN) neu-
ron model. In our deterministic parameter regime, a
limit cycle solution cannot emerge through a singular
Hopfbifurcation, but such alimit cycle can nevertheless
arise as a stochastic effect, as a consequence of weak
synaptic noise in a regime of strong timescale separa-
tion (¢ — 0) between the slow and fast variables of
the model. We investigate the mechanism behind this
phenomenon, known as self-induced stochastic reso-
nance (SISR) (Muratov et al. in Physica D 210:227—
240, 2005), by using multiple-time perturbation tech-
niques and by analyzing the escape mechanism of the
random trajectories from the stable manifolds of the
model equation. Even though SISR occurs only in the
limit as the singular parameter ¢ — 0, decreasing &
does not increase the coherence of the oscillations in
the FHN model, but rather increases the interval of the
noise amplitude o for which coherence occurs. This is
in contrast to the dynamical system studied in Mura-
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tov et al. (2005). Moreover, the phenomenon is robust
under parameter tuning. Numerical simulations exhibit
the results predicted by the theoretical analysis. In fact,
our analysis together with that in Yamakou and Jost
(Weak noise-induced transitions with inhibition and
modulation of neural oscillations, 2017) reveals that
the FHN model can support different stochastic reso-
nance phenomena. While it had been known (Pikovsky
and Kurths in Phys Rev Lett 78:775-778, 1997) that
coherence resonance can occur when the slow variable
is subjected to noise, we show that, when noise is added
to the fast variable, two other types, inverse stochastic
resonance and SISR, may emerge in the same weak
noise limit and that the transition between these phe-
nomena can be induced by varying a simple parameter.

Keywords Neuron model - Slow—fast systems -
Singular Hopf bifurcation - Limit cycle - Noise-
induced - Noise-controlled

1 Introduction

Since electrical information in the nervous system is
encoded, processed, and transmitted by trains of neu-
ronal action potentials [4,5], a major goal in neuro-
science is to understand how neurons generate action
potentials both spontaneously and in response to pos-
sibly random synaptic and ion channel inputs. It is
a standard electrophysiological observation that neu-
rons with nearly identical physiological features and
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external stimuli may react differently and therefore
exhibit different neurocomputational properties. Con-
versely, neurons having different physiological features
and external stimuli may show nearly identical activi-
ties. It is generally believed that these variances in neu-
ronal behavior are caused by differences in the neurons’
bifurcation dynamics. The latter, however, can only be
understood with the help of sophisticated tools from
nonlinear dynamics.

Noise is ubiquitous in neural systems. It may arise
from many different sources, and it may have different
effects. In fact, depending on the deterministic param-
eter regime of a neuron model, the addition of noise
to either the membrane potential variable and/or the
recovery current variable can induce different dynam-
ical effects. Some of these effects can be somewhat
counterintuitive, as noise, instead of being a nuisance,
in some settings actually plays a constructive role in
signal detection.

The sources of neuronal noise include synaptic
noise, that is, the quasi-random release of neurotrans-
mitters by synapses or random synaptic input from
other neurons, and channel noise, that is, the random
switching of ion channels. Since contributions of the
inherently stochastic nature of voltage-gated ion chan-
nels to neuronal noise levels are widely assumed to
be minimal, because typically a large number of ion
channels are involved and fluctuations should therefore
average out, the channel noise is frequently ignored
in the mathematical modeling. Synaptic noise on the
other hand is believed to be the dominant source of
membrane potential fluctuations in neurons, and it can
have a strong influence on their integrative properties
[6]. In this paper, we shall investigate the effects of
synaptic noise on the fast membrane potential variable
of the FHN neuron model. Here, we do not consider
channel noise, which, however, could be included by
simply adding it to the slow current recovery variable
equation of this neuron model.

Of course, we are not the first to study noise-induced
phenomena in the context of computational neuro-
science. Let us therefore briefly discuss four such phe-
nomena treated in the literature. The oldest such phe-
nomenon is stochastic resonance (SR). It was first pro-
posed in 1981 by Benzi et al. [7] in order to explain the
periodic recurrence of ice ages. The idea behind SR is
that a system in a noisy environment becomes more sen-
sitive to a subthreshold periodic perturbation at some
optimal finite level of noise intensity. In 1993, Douglass
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et al. [8] reported the first experimental demonstration
of SR in crayfish sensory neurons. This, coupled with
the development of a more general characterization of
SR as a threshold phenomenon independent of dynam-
ics, led to a widespread interest in applications of the
idea in biological systems, in general, and in computa-
tional neuroscience in particular [9,10].

In 1993, Longtin [11] demonstrated the occurrence
of SR in a computational neuron model. Here, the 2-
dimensional FHN neuron model is considered and per-
turbed by a subthreshold external periodic stimulus and
a noisy stimulus governed by an Ornstein—Uhlenbeck
process. As predicted by the SR scheme (see also [12]),
it was shown that the oscillation of the FHN neuron
becomes more closely correlated with the subthreshold
periodic input current at some optimal level of noise
intensity. The stochastic analysis of the FHN neuron
and other neuron models has been extensively stud-
ied in recent years with various types of noises, multi-
stability, and even how SR can be controlled; see, for
example, [13-23].

In 1997, Pikovsky and Kurths [3] reported on
another noise-induced phenomenon in an excitable sys-
tem. They considered the FHN neuron model with
the noise term added to the slow recovery variable
equation containing the Hopf bifurcation parameter.
For this neuron model, they then showed that, even
in the absence of an external periodic stimulus (unlike
SR), the noise could activate the neuron by produc-
ing a sequence of pulses that could achieve a maximal
degree of coherence for an optimal noise amplitude,
provided the bifurcation parameter is in the neighbor-
hood of its Hopf bifurcation value. They called this phe-
nomenon coherence resonance (CR). Following [3],
many research papers have investigated CR in a vari-
ety of systems ranging from multiple timescale systems
[24-26] to systems with no multiple timescales [27,28].
CR has also been extensively studied [29-36] and the
relation between CR and chimeras states in network of
excitable systems has also been recently reported [37].

In 2005, Muratov et al. discovered and developed
the fundamental theory (based on large deviation the-
ory [38,39]) of a new form of coherence behav-
ior. They called this new phenomenon self-induced
stochastic resonance (SISR); here, a weak noise ampli-
tude could induce coherent oscillations (a limit cycle
behavior) that the deterministic model equation cannot
exhibit [1]. SISR has been investigated theoretically
and numerical in different systems including Brown-
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ian ratchets and cancer model [40—43]. A natural ques-
tion is: in what ways is SISR different from SR and
CR? First, unlike SR and CR, which do not necessar-
ily require a system to evolve on a multiple timescale
[27,44], SISR requires the system to possess fast and
slow timescales. Moreover, in the complete absence of
a deterministic perturbation or in the presence of a sub-
threshold deterministic perturbation, SISR may occur.
This contrasts with SR, which always requires a sub-
threshold periodic perturbation (in fact, SR is precisely
the enhancement of this weak low-frequency harmonic
signal by some optimal noise strength). Also, in con-
trast to CR, SISR does not require the model parameter
to be in the immediate neighborhood of its bifurcation
value. Thus SISR, unlike CR, is robust to parameter
tuning.

In the FHN neuron model, coherent spike trains
emerge through very different mechanisms depending
on whether the noise term is added to the fast vari-
able (SISR) or to the slow variable (CR); the former
is analyzed in the present paper, and for the latter, see
[3,24,25,45]. There are, however, examples of multiple
timescale systems in which CR occurs when the noise
term is added to the fast variable equation, which con-
tains the bifurcation parameter (see, e.g., [26]). What
is crucial for CR is the proximity of the parameter to
the bifurcations (Hopf or saddle-node bifurcations on
a limit cycle).

In all of these phenomena (SR, CR, and SISR),
noise has a facilitating effect on the oscillations and
increases coherent responses. Noise can, however, also
have the opposite effect and turn-off repetitive neu-
ronal activity, as was discovered both experimentally
[46] and theoretically [47]. In fact, Gutkin et al. [47-49]
used neural model equations with a mean input current
consisting of both a constant deterministic and a ran-
dom input component, to computationally confirm the
inhibitory and modulation effects of noise on the neu-
ron’s spiking activity. They found that there is a tuning
effect of noise that has a character opposite to SR, CR,
and SISR. They called this other noise-induced phe-
nomenon inverse stochastic resonance (ISR). During
ISR, when the intensity of the (weak) noise amplitude
is increased, it will first strongly inhibit the spiking
activity and decrease the mean number of spikes to a
minimal value, but a further increase in the noise ampli-
tude will increase the mean number of spikes again,
even above what is observed in the noise-free case.
Mathematically, ISR has not been extensively studied

as compared to other resonance phenomena; see [50—
53], and it was recently confirmed experimentally in
[54].

In the current paper, we analyze the mechanism
behind SISR in the FHN neuron model under the influ-
ence of synaptic noise. We clarify the different condi-
tions leading to either SISR or ISR (analyzed in our
previous paper [2]) in the weak synaptic noise limit.
For the FHN model, we obtain the interval in which the
noise amplitude o has to lie in order to induce a coher-
ent spike train (SISR) in the limit as ¢ — 0. We also
determine another very small interval for o in which
the FHN neuron generates only a Poisson sequence of
spikes in the limit as ¢ — 0. One of the most important
findings of our paper is that, even though SISR occurs
only in the limit as the singular parameter ¢ — 0,
decreasing ¢ does not increase the coherence of the
oscillations due SISR in the FHN model, but rather
increases the interval of o for which coherence occurs.
That is, making ¢ — 0 does not improve the coher-
ence of the oscillations (the coefficient of variation,
CV, does not turn to 0; it stays low and constant) when
the conditions required for SISR are satisfied. This is in
contrast to the excitable model considered in [1], where
theoretical and numerical analyses show that when the
conditions required for SISR are satisfied (which are
essentially the same conditions as required for SISR
in the FHN model), the coherence of the oscillations
becomes perfect (CV — 0) in the limit as the singular
parameter turns to O (see Fig. 3(b) in [1]). Therefore, the
coherence of the oscillations as the singular parameter
turns to O depends on the excitable model under con-
sideration, and this might be worth to be investigated
in more detail.

Furthermore, our analysis also clarifies the crucial
difference between the deterministic parameter setting
required for SISR to occur and those required for the
occurrence ISR (analyzed in [2]) in the FHN model.
We find that it depends on the stability of the (unique)
fixed point and whether it is located to either the left or
right of the fold point of the critical manifold, whether
SISR or ISR can emerge in the same weak noise limit.
We thereby produce a unified mathematical setting to
analyze both ISR and SISR. This allows us to under-
stand how a neuron could effectively switch from one
phenomenon to the other (thus encoding different infor-
mation) without changing the weak synaptic noise limit
required for both phenomena to occur.
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The rest of the paper is organized as follows: Sect.
2 introduces the version of the neuron model used for
our investigation. Section 3 analyzes the deterministic
dynamics of the model equation: The singular Hopf
bifurcation scenario of the fixed point considered is
investigated. We define the critical manifold of the
model equation on which we determine the reduced
equation of the fast variable together with its evolution
timescale. In Sect. 4, we analyze the stochastic dynam-
ics: For the model equation, we obtain the order of
the stochastic timescale at which random trajectories
escape from the basins of attraction of the stable parts
of the critical manifold. In Sect. 5, we analyze the scal-
ing asymptotic limit of the deterministic and stochastic
timescales and the consequences on resonance. In Sect.
6, we characterize the limit cycle behavior induced by
noise. In Sect. 7, we present and discuss numerical
results. We have concluding remarks in Sect. 8.

2 Model equation

The FHN neuron model (for biophysical details, see
[55]) has been extensively used to investigate many
complex dynamical behaviors occurring in neuro-
science [56—60]. For our investigation of SISR, we con-
sider the following version of the FHN neuron model
written on the slow timescale T as

{dvr = g*]f(vr, we)dtr + %dWr, 0

dwr = g(vy, wr)dr,

with the deterministic velocity vector fields given by

—y— 2
fo,w)=v—-5 —w, 2
glv,w) =v+d—cw,
where 0 < ¢ = t/t < 1 is the timescale separa-

tion parameter between the slow timescale v and the
fast timescale t; the fast variable v € R represents
the membrane potential (or action potential) variable
and the slow variable w € R represents the recov-
ery current (or sodium gating) variable which restores
the resting state of the neuron model. Biologically, ¢
accounts for the slow kinetics of the sodium channel in
the nerve cell and controls the main morphology of the
action potential generated [61]. d € (0, 1) is a constant
parameter, and ¢ > 0is a co-dimension-one Hopf bifur-
cation parameter. d and c influence the generation of
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the action potential, and their ranges have been chosen
such that the FHN model best captures some excitable—
oscillatory behaviors of the biophysically more realistic
Hodgkin—Huxley neuron model [55,61-63].

dW, is standard white noise, the formal derivative
of Brownian motion with mean zero and unit variance.
This term which is added to the membrane potential
variable (v) equation mimics the influence of synap-
tic noise on the dynamics of the neuron [64]. We note
that because of the scaling law of Brownian motion,
the scaling % of the noise term will guarantee that
the amplitude of the noise (o) measures the relative
strength of the noise term compared to the determin-
istic term f (v, w) irrespective of the value of &, when
we transform Eq. (1) to its equivalent fast timescale
equation [see Eq. (22)].

To analyze SISR, we notice that in Eq. (1), the ran-
dom term is added to the membrane potential variable
equation to mimic the effect of synaptic noise. This
is different for CR in the FHN model, where the ran-
dom term is added instead to the recovery variable to
mimic the effect of channel noise (see [3,24,25]). We
further note that, just as for the phenomenon of CR, our
model equation in Eq. (1) has no periodic perturbation,
in contrast to the phenomenon of SR [11].

3 Deterministic dynamics and its timescale on
stable manifolds

The deterministic dynamics and the emergence of a
limit cycle solution (relaxation oscillation) in the FHN
neuron model equation have been studied extensively
[65-70], and various types of behavior were detected or
confirmed. In this section, we shall establish the deter-
ministic setting in which we want our neuron model to
be before a random perturbation is introduced into the
equation. In particular, we shall clarify the role played
by the relative positioning of the fixed point and the
local minimum of the cubic nullcline in the occurrence
of either SISR or ISR (analyzed in [2]) in the FHN neu-
ron. It seems to be a new discovery that just (carefully)
changing the position of the fixed point with respect to
the minimum of the cubic nullcline of the FHN neuron
model can lead to very different noise-induced phe-
nomena (in particular SISR and ISR) in the same weak
noise limit. We shall also determine the timescale of
the slow dynamics of the fast variable v on the stable
parts of the critical manifold.
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We thus consider the deterministic dynamics corre-
sponding to the behavior of Eq. (1) when o = 0. At the
fixed (or equilibrium) points (v, w,) (rest states of the
neuron), the variables v(7) and w(7) reach a stationary
state, while the set of equilibrium points defined by the
intersection of nullclines as

(Vg Wy) = {(u, w) € R : f(v,w) = g(v, w) = 0}
3)

depends on the parameters d € (0, 1) and ¢ > 0. The
sign of

1 g2
A:(;—l) +9,5 4)

determines the number of fixed points. If A > 0, we
have a unique fixed point given by

Va(=9+2)
Ve = —
¢ | 31(c,d)
we:*(ve'i'd)v

C

I(c,d)
32

| d 9\3 &2
Ie.d) = —816+\/4<— 9+E> + 656155

®)

If A < 0, three real and distinct solutions (fixed
points) exist. For this, we need ¢ > 1 or ¢ < 0. The
three fixed points are given by

1 1
Ve, = 2\/:s1n¢, We, = Z(UEI +d).

where
1 3d

¢ = — arcsin | ————
2e /(1= 1)3

As A < Oifand only if ¢ € (— %, ), we have v,, <
Ve, < Ves-

1. b4 1

Ve, = —2\/:8111 <¢ + g), We, = E(Uez +d).
1. b 1

Vey = 2\/:8111 (—¢ + §>, Wey = E(Ue3 +d).

If A = 0, we have two fixed points. This happens
if and only if ¢ = & %. These limiting cases corre-
spond to saddle-node-type bifurcations during which
two fixed points in the case A < 0 coincide. If ¢ = %,
then v, and v, will coincide and the two fixed points
are given by

/ 1 1
Voy = V3 =241 — =, we; = —(ve, +d).
c C
1 1
v62:_2 1_25 wé,’z:;(veZ +d)

If $ = —%, then v,, and v,, will coincide and the
two fixed points are given by

/ 1 1
Vey = Vey = —/1 — - We, = ;(ve1 +d).
1 1
Ue3=2 1—;, Wes Zz(vg3 +d)

We denote such a fixed point by (v,, w,) and study
its stability from the linearization of Eq. (1) at the fixed
point chosen. The linearization at (v,, w,) is given by

dp )

Ed =@ —V0 =1,

g ®)
Ui

_ = —cn,

dz % n

with the Jacobian matrix

1 2 1
cd—v) -

Jij (Vs wy) = . (7)
1 —c

The stability of a fixed point (v,, w,) depends on the
signs of the trace (trJ;;) and the determinant (detJ;;) of
the Jacobian matrix in Eq. (7). For a fixed point (vs, wy)
to be stable, we need trJ;; < 0 and detJ;; > 0. Since
€,c¢ > 0, we have trJ;; < 0 and detJ;; > O only if

l—vf<0. (®)

It is important to note here that the condition in Eq.
(8) is sufficient, but not necessary for the stability of
a fixed point (vy, wy). In [2], this was crucial for the
analysis of ISR, via the consequences that the stability
of a fixed point has on the dynamics of the slow—fast
neuron model when the condition in Eq. (8) is violated.

In the present paper, we shall choose ¢ and d such
that A in Eq. (4) is greater than 0, in which case we have
a unique fixed point at (ve, w,) given by Eq. (5). We

@ Springer



2126

M. E. Yamakou, J. Jost

also choose c and d such that 1 — vf < 0, sothat we have
a unique and stable fixed point located at (v,, w,). For
the FHN neuron model with a unique and stable fixed
point, in the absence of any perturbation as in Eq. (1)
with 0 = 0 (or in general in the presence of a sub-
threshold perturbation), the neuron cannot maintain a
self-sustained oscillation (i.e., no limit cycle solution).
One says in this case that the neuron is in the excitable
regime [71]. In this regime, choosing an initial condi-
tion in the basin of attraction of (v,, w,) will resultin at
most one large non-monotonic excursion into the phase
space after which the trajectory returns exponentially
fast to this fixed point and stays there until the initial
conditions are changed again.

However, as we saw in [2], the existence of a unique
and stable fixed point in the FHN model with no per-
turbation (or even with a subthreshold perturbation) by
itself does not necessarily mean that the neuron is in
an excitable regime, as in some cases it might have
just one stable fixed point coexisting with a stable limit
cycle. We consider here the case of a bistable regime (a
crucial requirement for the occurrence ISR) consisting
of a stable fixed point and a stable limit cycle (see also
[72,73]) in which the dynamical behavior is globally
different from the one in the excitable regime.

With parameters ¢ and d chosen such that condi-
tion Eq. (8) holds for the fixed point (v., w,) in Eq.
(5), a Hopf bifurcation is the only way through which
Eq. (1) (with ¢ = 0) can exhibit a limit cycle solu-
tion. As we shall see later why this should be so, the
noise-induced phenomenon of SISR requires that the
timescale parameter ¢ — 0. For the deterministic sys-
tem in Eq. (1), we shall, for ¢ — 0, calculate a special
value of ¢ = cp that will give us the location of the
so-called singular Hopf bifurcation of the fixed point
(Ve, we). A singular Hopf bifurcation in Eq. (1) with
o = 0 (and in planar slow—fast dynamical systems in
general) is said to occur if the linearized center mani-
fold system has a pair of singular eigenvalues A(g; ¢)
at the Hopf bifurcation point ¢ = cy [74], that is,

Ae;c) = ul(e; c) +if(s; o),

d
so that u(e; ¢) =0, d—,u(e; ¢) # 0, with
C

lirr%) |B(g; ¢)] = oo on the slow timescale 7, and
E—>

lim B(e; c) = 0 on the fast timescale 7.
e—0
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Clearly, for the fixed point (v, w,) in Eq. (5), with
the associated linearization in the slow timescale T
given by the matrix J;; in Eq. (7), the Hopf bifurca-
tion occurs at trJ;; = 0, that is, at ¢ = é(l — vg).
The eigenvalues of J;;(ve, w,) at the Hopf bifurcation

are Ay = %1, /% — ¢(1 — v2) which tend to infinity as
& — 0. Alternatively, we can also look at Eq. (1) on the
fast timescale t = 7/¢ [see Eq. (17)] with linearization
eJij(ve, we) and eigenvalues at the Hopf bifurcation
given by A+ = i /e[l —c(l — vg)] which tend to
0 as ¢ — 0. On both timescales, the eigenvalues at
the Hopf bifurcation are ““singular.” In short, a singular
Hopf bifurcation occurs when the eigenvalues become
singular as ¢ — 0. We shall return to the singular Hopf
bifurcation later.

We now need to define the critical manifold of Eq.
(1), to determine its stability properties and to obtain
the reduced equation describing the evolution of the
fast variable v and the deterministic timescale at which
v evolves on this manifold. The deterministic critical
manifold M defining the phase space of the slow sub-
system associated with Eq. (1) [that is, the system we
obtain from Eq. (1) in the singular limit & = 0] is, by
solving f (v, w) = O for the slow variable w, given by

3
Mozz{(v,w)eRzzwzv—%}. )

We note that M coincides with the v-nullcline of
the neuron model; see the red cubic curve in Fig. 1a,
b. This manifold is normally hyperbolic away from the

d
fold points at v = =1 satisfying d—w(:t 1) =0 and
v

naturally splits into three sub-manifolds:

vE(w) = Monfv < —1},
vf;(w) =MonNn{—-1<v <1}, (10)
vi(w) = MoN{v>1}.

The linearized stability of points on My as steady
states of the fast sub-system [that is, the system we
obtain in the singular limit ¢ = 0 of Eq. (1) when
it is written on the fast timescale ¢, that is, Eq. (17)],
is determined by the Jacobian scalar (D, f)(v, w) =
1 — v2. This shows that points with [v| > 1 are sta-
ble, while points with |[v| < 1 are unstable. It fol-
lows that the branch v* (w) € (— o0, —1) is stable,
vy (w) € [—1, 1]is unstable, and v} (w) € (1, +00) is
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stable. A trajectory will therefore be attracted to v* (w)
or vi(w) (depending on initial conditions) and move
along these stable manifolds toward the stable fixed
point or fold points. Along v (w), motion is not possi-
ble as itis arepulsive branch of M. Motion is however
possible on v (w) when conditions for the so-called
canard explosion [75] are satisfied. This situation is
not of interest in the context of this work.

For simplicity, we shall denote the basins of attrac-
tion of the stable parts of the critical manifold v* (w)
and vj‘_(w) [that is, the sets of initial conditions that
asymptotically lead to v* (w) or v} (w)] by B(v* (w))
and B(v (w)), respectively. v (w) plays the role of the
separatrix between these basins of attraction.

From Fenichel’s invariant manifold theorem [76],
we know that, while the dynamics of the slow sub-
system takes place on the critical manifold My, the
dynamics of the full system [the dynamics of Eq. (1)
when ¢ # 0, i.e., ¢ strictly different from 0] takes
place not on My itself, but on a perturbed My, the
so-called slow manifold denoted by M. The theorem
states that M, is at a distance of O(g) from Mg and
the flow on M, converges to the flow of the slow sub-
system on Mg as ¢ — 0. This can be seen in Fig. 1.
Here, the black trajectories (with arrows) of the slow
sub-system in Fig. la evolve on Mg with fast jumps
(indicated by the horizontal double arrows) at the fold
points of My. In Fig. 1b, we see the trajectories of
the full system for 3 different values of the singular
parameter &. We see that with ¢ # 0, the trajectories
of the full system do not move on My, but instead
move at a distance from M, that is, on the slow mani-
fold M, (not shown). In Fig. 1b, trajectories get closer
and closer to M) and eventually will coincide with the
trajectories of the slow sub-system in Fig. la in the
limitas ¢ — 0.

Therefore, because the noise-induced phenomenon
under investigation in this paper occurs only in the limit
as ¢ — 0, this suggests to consider the approxima-
tion where the full dynamics of Eq. (1) (with ¢ — 0)
takes place on the critical manifold My, which, as just
explained, is very close to M, in the limit ¢ — 0. In
other words, the full dynamics of Eq. (1) (with e — 0)
will coincide with the dynamics of the slow sub-system
whose equation is given by Eq. (11), itself obtained in
the singular limit ¢ = 0. Moreover, with this approx-
imation, the basins of attraction of the stable parts of
M, can be assumed to coincide with B(v* (w)) and

B (w)).

Fig. 1 In a, black trajectories moving on the critical manifold
M (red cubic curve) represent the singular solution of Eq. (11)
(which coincides with the solution of Eq. (1) in the limit as ¢ —
0). The single arrows indicate slow motion, and the double arrows
indicate fast motion (horizontal jumps at the fold point). In b,
trajectories of the full system with & > 0 move on M (not shown
but at a distance of O(e) from M) into the stable fixed point
located at the intersection of M and the w-nullcline, represented
by the green line. As € becomes smaller and smaller, the dynamics
of the full system get closer and closer and eventually coincide
with the dynamics of Eq. (11) on the stable parts of My

The reduced dynamics along v* (w) and v} (w) for
the fast variable v is governed by Eq. (11). This reduced

equation is obtained by implicitly differentiating w =
3
v .
v — 5 with respect to 7:

dw dv

Combining this with the equation for w in Eq. (1),
we eliminate the slow variable to get

dv d+(—cw+50°
o= g . (11)
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Equation (11) is an ODE with an algebraic constraint

w=uv— 'éi Therefore, we have a differential-algebraic
equation whose initial conditions must satisfy this con-
straint for solutions to exist. In other words, the dynam-
ics on the slow timescale is described by the reduced
equation [in Eq. (11)] defined by the projection of the
slow dynamics onto the tangent space of the critical
manifold. We note that Eq. (11) becomes singular at
v = =+ 1 (the fold points) where M loses its normal
hyperbolicity. In particular, the existence and unique-
ness theorems for ODEs do not apply at these points.
This is the reason why a trajectory moving along v* (w)
and v’ (w) jumps away horizontally when it reaches the
fold points located at (£ 1, £ %). See the black trajec-
tory with arrows in Fig. la.

In view of the properties of this approximation, we
shall henceforth talk of the dynamics of the full system
on the critical manifold M. Thus, in the limit ¢ — 0,
the dynamics of the full systemin Eq. (1) is described by
Eq. (11). For concreteness, we shall choose ¢ = 0.0001
in the numerical plots, except in Figs. 5 and 8, where
we vary ¢ to see how it affect the phenomenon.

Witho =0, A >0and 1 — ve2 < 0, a trajectory
with initial conditions in B(v* (w)) will be attracted
to v* (w) and slowly (as ¢ — 0) move along it down-
wards toward the unique and stable fixed point (v,, w,)
in Eq. (5), where it stops. This behavior is shown in
Fig. 2d for the blue trajectory with the initial condi-
tions at (vg, wg) = (—2.0,0.25). If the initial con-
ditions are now chosen in B(v} (w)), as in Fig. 2d
for the black trajectory with the initial conditions at
(vo, wo) = (2.0, —0.25), then this trajectory is also
attracted to v (w) and moves slowly (as ¢ — 0) along
it upwards toward the fold point at (1, 3), where it is
forced to jump to v* (w) and then moves again down
toward the stable fixed point (v,, w,), where it stops.

We note that as a trajectory moves along on v* (w),
and when the unique fixed point (v, w,) satisfies the
condition in Eq. (8), then it will stop at this fixed point
and not move onto the fold point at (— 1, — %), from
where it will have jumped to the other stable mani-
fold v} (w). This is observed again in Fig. 2d with
the blue and black trajectories. There, the trajectories
stop at the stable fixed point located at (v, w,) =
(—1.003988, — 0.666651) and do not move on to the
jump point (— 1, — %), which is located to the right
of (v., w,); notice 1 — vf < 0. Thus, the fold point
(-1,- %) will not be reached by the trajectories of the
full systém.

@ Springer

Equation (11) together with the equations of the sta-
ble manifolds v = v*(w) and v = v} (w) specifies
the dynamics of the fast variable v arising on the deter-
ministic slow timescale of O(¢~!). We note that this
timescale becomes slower and slower as ¢ — 0.

‘We now return to our discussion of the singular Hopf
bifurcation. We state and use the theorem by Krupa and
Szmolyan [75] to determine the value of the singular
Hopf bifurcation cy for Eq. (1) together with its criti-
cality. Consider a general slow—fast dynamical system
on the fast timescale 7 given in the normal form:

d
d_f = - yhl(X, y’ o, 8) +x2h2(-x7 y1a7 8)
+ eha(x,y, a,¢),
dy (12)
o= (xhax, y.a.8) = ahs(x, v, @, 0)

+ yhe(x,y, a, 8)),

where ¢ is the timescale separation parameter, « is the
Hopf bifurcation parameter, and the functions h; are
given by

h3(x,y,a, &) =O(x,y,ac¢),
hj(x,y,a,6) =14+ 0(x,y,a,¢), (13)
j=1,2,4,5.

We define several computable constants, abbreviat-

ing (0, 0, 0, 0) = (0) in the definitions:

_ 0h3(0) _ 9h1(0) _ 0ha(0)
ar = 7%y 2= Th 43 = Ty

h
ay = MO a5 = he(0).

(14)

Note that all a; to as only depend on the partial
derivatives with respect to x. Next we define another
constant:

A = —ay + 3az — 2a4 + 2as. (15)

Theorem Suppose (x, y) = (0, 0) is a generic folded
singularity for o = 0 with normal form Eq. (12). Then
there exist g > 0 and oy > 0 such that for0 < ¢ < g9
and || < g, in a suitable neighborhood of the origin,
system Eq. (12) has precisely one equilibrium point
(Xe, Ye) With (Xe, ye) — (0,0) as (a,e) — (0,0).
Furthermore, the equilibrium point (x., y.) undergoes
a Hopf bifurcation at oy with:

_Atas L oE?), (16)

oyg =
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(a) c<c

() -0.665
-0.6655
2 _0.666

-0.6665

-0.667

-1.05 -1 -0.95

Fig. 2 a, c are the time series of the spiking activity of the neu-
ron. v in blue and w in black; this legend is maintained through
out this paper. A limit cycle is present for ¢ = 0.745 < cp in (a)
and absent for ¢ = 0.756 > cy in (c). b, d are the phase por-
traits of the time series (a) and (c), respectively. In b, the limit
cycle (in blue) made up of relaxation oscillations with jumps
at the fold points located at (+ 1, £ %) and initial conditions
at (vo, wo) = (—2.0,0.25). In d, just a transient solution (in
blue) with initial conditions at (vg, wg) = (— 2.0, 0.25) moves
and stops at (v., w.) and another transient solution (in black)

The Hopf bifurcation is non-degenerate for A # 0,
supercritical for A < 0, and subcritical for A > 0.

To apply the theorem, we write Eq. (1) witho =0
on the fast timescale r = 7/¢ as

® —-0.665

—-0.6655

= -0.666

—-0.6665

-0.667 :
-1.05 -1

-0.95

with initial conditions now at (vg, wo) = (2.0, — 0.25) through
a jump at p, = (1, %) also moves and stops at (ve, w,) Which
is stable. e, f are the ‘magniﬁcations of the immediate neighbor-
hood of the fold point p; = (— 1, — %) in (b) and (d), respec-
tively. One clearly sees the relative position of the fixed point
and the fold point at p;. The critical manifold (red curve) and
w-nullcline (green line) intersecting at the unique fixed point
at (ve, we) = (—1.003988, —0.666651) for ¢ = 0.756 and
e = 0.0001

dv =(—w+v— %)dl,

(17)
dw =¢(v+d — cw)dr.
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The fold points of My are at its extrema: p; =
(-1, — %) and pp = (1, %). Since we want our unique
fixed point (v., w,) in Eq. (5) to be stable, we again
choose ¢ and d such that Eq. (8) holds. It is useful
to see that this will imply that our unique fixed point
(ve, we) will be located on a decreasing part of the criti-
cal manifold M, that is, either on v* (w) or on v} (w).

It is easy to check that the fold point p; satisfies the
conditions necessary for a generic folded singularity
[77]. We therefore direct our interest to the fold point
p1. Locating the fixed point (v, w,) to the left of p;
[that is, locating it on v* (w)] is sufficient to make it
stable. We shall consider this deterministic setting for
our analysis of SISR.

It is important to point out that, even though the
fold point p; = (— 1, — %) is very close to the fixed
point (ve, w,) = (— 1.003988, —0.666651), the rela-
tive position of these points is crucial for the occur-
rence of either SISR or ISR as analyzed in [2]. To
see why this relative positioning (positioning the fixed
point (v., w,) either to the left or right of the fold
point p; = (—1, — %)) is important for SISR, con-
sider the opposite situation, that is, assume that the
fixed point (v, w,) lies to the right of the fold point
p1 = (—1,— %) [that is, (v, w,) is now lying on
the unstable branch vj(w) of Mpy]. With the fixed
point (ve, we) lying on vj(w), it can be either sta-
ble or unstable (recall that Eq. (8) is only a sufficient
but not a necessary condition for stability of a fixed
point). If (v, w,) is unstable (after losing stability
through a Hopf bifurcation), then even in the com-
plete absence of noise, a trajectory with initial con-
ditions in B(v* (w)) will be attracted to v* (w) along
which it moves toward the fold point p; = (— 1, — %),
at which point it jumps horizontally and avoids the
unstable fixed point (v., w.) located on the unstable
branch vj(w) as it finally drops on the stable branch
v} (w). Along v} (w), it moves toward the fold point
p2 = (1, %), where it again jumps horizontally to drop
back on the stable branch v* (w), from where the whole
cycle repeats again. This behavior is shown in Fig. 2b
where the blue closed trajectory with initial conditions
located at (vg, wog) = (— 2.0, 0.25) jumps at the fold
points located at the extrema (£ 1, & %) of M. This
will lead to a deterministic limit cycle (relaxation oscil-
lation) around the unstable fixed point. This is precisely
the deterministic setting we do not want to have, as the
phenomenon of SISR requires the emergence of a limit
cycle behavior due only to the introduction of noise into
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the system and not because of the presence of a Hopf
bifurcation.

On the contrary, as we have shown in [2], the phe-
nomenon of ISR requires that the fixed point (v, w,)
is located to the right of the fold point p; [that is, on the
unstable manifold v (w)] and, most importantly, has to
be stable. This deterministic setting requires thate > 0,
a condition which, as we shall see, does not allow SISR
to occur, but which is crucial for the occurrence of ISR.
Therefore, for SISR to occur in Eq. (1), the unique fixed
point (v, w,) should be located to the left of the fold
point p; = (— 1, — %), which by the condition in Eq.
(8) makes it already stable.

We now return to the computation of the singular
Hopf bifurcation value cyg and its criticality given by
the sign of A in Eq. (15). After translating the generic

folded singularity p; = (—1, — %) to the origin by
2

using the transformations v — v —land w — w — 2,

we write Eq. (17) in the normal form of Eq. (12) as

_ (_ 2 v
{dv = (—w+v2(1 + $)Hdr, (18)

dw =¢e(v — a — cw)dr,

wherew :=1—d — 23—C We compare Eq. (18) and the
standard form in Eq. (12), and we compute the relevant
parameters a; defined in Eq. (14) to get

1
ar =0, a;=0, a3 = -z as =0,
as=—c¢, A=—1-—2cy. (19)

We use Eq. (16) to get the singular Hopf bifurcation
value cy of our neuron model equation as

2
oszl—d—ﬂ:—al_i_a5

3 5 e+ O
6(1 —d — O(32))

4+ 3¢

S o= (20)

Itis important to note that Eq. (20) gives the location
of the Hopf bifurcation only in the limit as ¢ — 0. We
choose d = 0.5 (this value is maintained through out
the paper), and we choose ¢ very small, for example
& = 0.0001, to have

cy = 0.749942,
{ A = —2.499885. @1

Therefore, with o = 0, Eq. (1) [or Eq. (17) which is
equivalent to Eq. (1) with o = 0] exhibits a super-
critical (A < 0) Hopf bifurcation near (¢ — 0)
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cy = 0.749942. For values of ¢ such that ¢ < cy, Eq.
(1) [or Eq. (17)] exhibits a continuous spiking activity
(a limit cycle solution), while for ¢ > cy there is no
spiking (no limit cycle solution). These deterministic
behaviors are shown in the time series in Fig. 2a, c and
in their respective phase portraits in (b) and (d).

Figure 2e is a zoom into the neighborhood of the
fold point p; = (— 1, — %) in Fig. 2b, that is, when
¢ = 0.745 < cp. Here, the fixed point is located to
the right of the p; and it is unstable. We recall that the
situation where ¢ < cy is not of interest to us because
in this regime, we already have a limit cycle due to a
supercritical singular Hopf bifurcation at cy.

Figure 2f is a zoom into the neighborhood of the
fold point p;y = (—1,— %) in Fig. 2d. We clearly
see that for ¢ = 0.0001, ¢ = 0.756 > cg, and
d = 0.5, the fixed point in Eq. (5) is located at
(Ve, we) = (—1.003988, — 0.666651), that is, to the
left of the fold point at pj. This makes the fixed point
(ve, we) stable by the condition in Eq. (8). This is pre-
cisely the state in which we want our deterministic neu-
ron in Eq. (17) to be before a random perturbation is
added to its fast variable (v) equation, and we want
to see how this noise can induce a limit cycle behav-
ior (coherent spike train) that the deterministic model
cannot exhibit, that is, the phenomenon of SISR.

4 Stochastic dynamics and timescale of escape
processes from the stable manifolds

So far, we have considered the dynamics of Eq. (1)
when there is no noise, i.e., when 0 = 0. Now we
switch on the noise. In order to use the correspond-
ing theory [78,79], we shall derive the necessary for-
mulae for the FHN neuron model in detail. Due to
the diffusion that results from the presence of noise,
random trajectories may then eventually escape from
B(v* (w)) or B(v’i (w)) before the fixed point or fold
points are reached. To understand the escape processes
from the basins of attraction and to quantify the stochas-
tic timescale of these escape processes, we transform
Eq. (1) to its equivalent fast timescale equation [which
evolves on a timescale of O(1)] by rescaling the time
as t = t/e. We note that the noise term (and not only
the variables v; and w;) has to be taken into consider-
ation during the rescaling. The noise term is rescaled
according to the scaling law of Brownian motion. That
is, if W7 is a standard Brownian motion, then, for every

A > 0,212 W,.¢ is also a standard Brownian motion
(i.e., the two processes have the same distribution [80]).
We therefore have Eq. (1) written on the fast timescale
as follows:

3
dvy = (—w; + v — F)dr + odW,, 22)
dw; = e(vy +d — cw,)dt.

We also notice that the noise term is now inde-
pendent of ¢, and hence, o will measure the relative
strength of the noise term compared to the determinis-
tic term irrespective of the value of . Furthermore, the
form of Eq. (22), unlike Eq. (1), will avoid singularity
problems when we are in the limit ¢ — 0.

In the singular limit ¢ — 0, the timescale separa-
tion between v; and w; becomes larger and Eq. (22)
becomes a singularly perturbed ODE, with the equa-
tion for w; reducing to dw; = 0. This indicates that
wy is frozen on the O(1) fast timescale and, on this
timescale, the dynamics is governed by the fast equa-
tion in Eq. (22), where w; enters merely as a fixed
parameter. Thus, Eq. (22) in this limit becomes a 1-D
stochastic differential equation of the form

AU (v,
dv, = V@) 4w, (23)
81)[
where
Uwow) = —v* — 22 ¢ 24)
v, w) = 121) 2v vw,

viewed as a function of v with w nearly constant,
is a double-well potential. The two local minima are
located at the value of v where v* (w) and v (w) inter-
sect the horizontal line w = k with k € ( — %, %), and
a local maximum at the intersection with the unstable
branch vjj(w); see Fig. 3. We now define the quantities
{AU(w) = U(va‘(w),w) - U(vi(w),w), 25)
AUy (w) = U(va‘(w), w) - U@i(w), w),

where from Eq. (9), we use Viete’s trigonometric
expressions of the roots in the three-real-roots case
(w? < 2/3) to get

v* (w) = 2cos (%ﬂ + %arccos(—%w)) ,
vg(w) = 2cos (—%n + Jarccos(—3w)),  (26)

v} (w) = 2cos (% arccos(—%w)) .
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w<0

U(v,w)

-4 -2 0 2 4

Fig. 3 Landscapes of the potential in Eq. (24) with the energy
barriers AU+ (w) indicated in the asymmetric (w # 0) cases
(a) and (b) and in the symmetric (w = 0) case (c¢). The saddle
point and the left and right minima of the potential are located at
v =vi(w), v =v* (w), and v = v} (w), respectively

The graphs of v* (w) and v} (w) in Eq. (26) are
strictly monotonically decreasing for values of w € [—
%, %] In each case, AU+ (w) is the potential difference
(energy barrier function) between the local maximum
vg(w) and a local minimum v’ (w), respectively. See
Fig. 4.

In order to understand the escape processes of the
trajectories of Eq. (23) from the basins of attraction

@ Springer

Fig. 4 Graphs of the energy barriers AU_(w) (in red) and
AU4 (w) (in black) as a function of w. AU_(w) and AU (w)
are monotone in the intervals ( — % 0) and (0, %), respectively.
AU_(w) = AUs(w) = 075 at w = 0. AU_(w(c)) — 0
because w(c) - w, = —Zasc— cﬁ

B(v}(w)), and to estimate the stochastic timescale at
which these escape processes take place, one may pic-
ture these escape processes as the motion of a parti-
cle in a double-well potential under the influence of
a stochastic perturbation. That is, one could view the
escape of a trajectory of Eq. (23) from the basin of
attraction B(v* (w)) into B(v} (w)) as the escape of a
particle from the minimum of the left well at v* (w)
into the minimum of the right well at v} (w) of the
double-well potential U (v, w) and vice versa. For the
neuron model equation under consideration, there is a
perfect analogy between the escape process of a tra-
jectory from the basins of attraction B(v} (w)) and the
escape process of a particle from those minima of the
double-well potential U (v, w).

With this picture in mind, we can conveniently esti-
mate the escape rate E,_ of a trajectory from B(v* (w))
into B(v} (w)) and hence the stochastic timescale
1/E,_ at which the trajectory escapes. The escape rate
E;, of atrajectory from B(vY (w)) back into B(v* (w))
and the stochastic timescale 1/E,, at which it occurs
can be estimated analogously to E,_ because of the
symmetry between the two escape processes.

To estimate E,_, we consider our particle obeying
the dynamics of Eq. (23), initially at the minimum
v* (w) of the left well and wanting to escape to the min-
imum v’ (w) of the right well of the potential U (v, w).
This setting corresponds to the situation in Fig. 3a. For
this escape event to occur, the particle should be able
to go over the potential barrier AU_(w) given in Eq.
(29).
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With o # 0, the probability density p(v, t) of find-
ing the particle at position v at time ¢ in the double-well
potential U (v, w) obeys the Fokker—Planck equation
(FPE) [81] corresponding to the Langevin equation in
Eq. (23); that is,

2 82
Tﬁp(v, 1),
(27)

0 _ 0 U
—p.n) = —%[ (w wp.n ] +

with initial and natural boundary conditions chosen,
respectively, as

lim p(v, t|vg, o) = 8(v — vp),

p(v, t) =0, 28)

l1rin pv,t) = hrin

where vg and 7 are the initial position and starting time,
respectively.

We write Eq. (27) in the form of the continuity equa-
tion [81] as

d Jd .
Ep(vvt) :_a_v.](vvt)» (29)

where the so-called current or probability flux j(v, t)
is given by

. 0 %

J. 1) == U@ w)p@. 1) = == pv. 1)

o2 . _2U()
= ——eX
2 P o2 v

|:p(v t)exp( U(”)ﬂ (30)

as w is merely a constant here.

With our particle at the left minimum v* (w) of the
potential U (v, w), an escape event into the right mini-
mum at v’{ (w) occurs if the noise is strong enough to
push the particle over the potential barrier AU_(w). If
the particle is initially (+ = 0) at position v* (w), then
from the initial boundary condition in Eq. (28), we have
the probability density given by

p(,0) =80 —v* (w)). (31)

U
When the quantity ( ) ; in Eq. (30) is large (e.g.,
in the limit as o — 0), we expect p(v, t) to be concen-

trated around the minimum v* (w) of the left potential

well. This implies that the escape over the potential bar-
rier AU_(w) becomes a rare event. We are precisely
interested in the probability of this rare event.
However, if we allow the particle to interact with the
noise for a sufficiently long time (in other words, if we
integrate Eq. (23) in a sufficiently large time interval),
then this weak noise may eventually push the particle
far away from v* (w) into the right minimum at v’ (w)

U
by going over AU_(w). Thus, making (;) — 00, We
o
make the probability flux j in Eq. (30) infinitely small
and the probability density p(v,?) becomes almost

time-independent. In this case, we obtain a stationary

0
probability density 3 p(v,t) = 0 and the continuity

5i

equation in Eq. (29) then implies that 9~ 0. Hence,
v

J 1s approximately some constant jy and Eq. (30) is

simply rewritten as

. o 2U()\ @
o=-Fen (=750
2U (v)
|:p(v t)exp( 2 )i| (32)

To obtain the escape rate of the particle, we therefore
have to integrate Eq. (32) from the initial position of
the particle [that is, at the minimum v* (w)] to some
point 1 beyond the maximum v (w) (81 > vg(w)) of
the potential U (v, w), i.e.,

B

r U

]o/exp< 5 )dv
o

v* (w)

2

=(’2 [ P(,Bl,t)eXP< (ﬂ”)

2
+ p(t (w), 1) exp <w>] 33)

From the natural boundary condition in Eq. (28),
we have that p(B1, t) =~ 0 and we obtain the constant
probability flux jo from Eq.(33) as

/2 20U (v*
Jo=—%5 éU( ) pW(w), 1) exp (%)
/ ex ( 5— )dv
v* (w) o

(34)

When the particle is at the minimum v* (w), and the

U
quantity # — oo as 0 — 0, and in Eq. (30), we
o
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have j ~ 0 which means that p(v, t) exp (ZU(”))

B2, where f3; is a constant. We then obtain the invariant
probability distribution as

2U (v)
pi(v,n:ﬂzexp(— s )

(35)

The constant B, can be given a convenient arbitrary
2U (vE (w))
=),
so that the invariant probability density of the particle
when it is at the minimum v* (w) is now given by

value; we choose By = p(v* (w),t) exp(

2(U) — U(v*(w)))
02 '

pi(v, 1) = p(X(w),1)exp ( -
(36)

We now consider two points 83 < v* (w) < B4 in
the immediate neighborhood of the minimum at v* (w).
The probability pg of finding the particle in the interval
[B3. B4] is calculated by integrating over the invariant
probability density p; (v, 1), i.e.,

2U (v*
po = p(* (), 1) exp (('jT(w»)
B4 5
x/exp(— Ugv)>dv. 37
o
B3

As the value of the invariant density p; (v, t) in Eq.
(36) becomes small away from the minimum at v* (w)
2(U@-UW* w))
=
small, then we do not need to know the values of 83
and f4 to evaluate the integral in Eq. (37).

The escape rate E,_ can then be obtained by noting
that Eq. (34) gives the conditional probability of escape
per unit time, given that the escaping particle is initially
at the minimum v* (w) of the potential. With

for o — 0 since exp ( — is very

E. =2, (38)
Po

and Egs. (34) and (37), we obtain

Lo ool
i U
X / exp( U(zv))dv. 39)

v¥ (w)
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Since the integrands in the first and second integral
of Eq. (39) are peaking at the minimum v* (w) and
the maximum v (w), respectively, the next approx-
imation consists in Taylor expanding U (v) to sec-
ond order about these peak values while noting that
at the local extrema of the potential U (v), we have
U"(v* (w)) = U"(v5(w)) = 0. We have

{ 20U (v) % 2U (v* (w)) + U" (v () (v — v* (w))?,
20 (v) % 2U (v (w)) — |U” (0 w)| (v = v* (w))2.
(40)

Noting that U (v* (w)) and U(v(}"(w)) are, respec-
tively, the dominant terms in the two integrals in Eq.
(39), we insert the Taylor expansions into Eq. (39) and
use the fact that [
the escape rate E,_ as

exp (—ax?)dx = 7 to obtain

(41)

Er_ — H_exp<_ M)

o2

By the same analysis, we get the escape rate E,, in
the reverse direction as

(42)

QAU (w)
o2 )’

Er+ = lu’+exp<_

where the prefactors @4 are given, respectively, by the
square roots of the product of the curvatures of the
potential at its local extrema as

_ 1 "ok 1o % 172
e = (V0L U @sn]) L @)

Here, we could extend the domain of the integration
in Eq. (39) to the real line because the contributions
of points away from the minimum point v* (w) and the
maximum point vg(w) are exponentially small. For this
step, it is important that the original domain of integra-
tion extended to some point 81 beyond the maximum
v; (w), so that we integrate over some interval contain-
ing v (w) in its interior.

For bistable systems, the inverse of the escape rate
from a basin of attraction is the escape time from this
basin of attraction [78,82]. The stochastic timescales
at which trajectories escape from the basins of attrac-

tion B(v} (w)) are therefore of (’)( ) and (9( )
"
respectively.
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5 Asymptotic matching of timescales and
resonance

We still need to do some work, as even though in the
previous section we derived for Eq. (22) the stochastic
timescale of the escape processes in 1-D by neglect-
ing the slow equation in the limit ¢ = 0, ¢ is only
very small, but not exactly O in the full dynamics of
the neuron [that is, the dynamics of Eq. (22) when
& # 0]. However, as we already pointed out in Sect. 3,
from Fenichel’s invariant manifold theorem, the limit
& — 0 used to obtain the stochastic timescales in
the previous section is a sufficiently good approxima-
tion because under this limit, the basins of attraction
of the stable parts of the slow manifold M, coincide
with B(v(w)). In this section, where we consider the
full dynamics, this approximation will continue to be
valid.

Now consider 0 < ¢ <« 1 (positive but very small),
that is, we allow w in Eq. (22) to move as well. We
choose ¢ > cy so that no limit cycle can appear due to
a singular Hopf bifurcation. If the stochastic timescales
of the escape processes are much longer (this can hap-
pen with extremely weak noise) than the deterministic
timescale of the reduced equation in Eq. (11) on the
manifolds v} (w), then the trajectory has no time to
escape and is most likely to stay in the basins of attrac-
tion B(vi (w)) for a very long time with no or very rare
transitions between B(v* (w)) and B(v} (w)). In this
case, the trajectory is forced to move “almost” deter-
ministically on v} (w) toward the stable fixed point
(ve, w,) where it sticks.

On the other hand, when the stochastic timescales
are much shorter (this can happen when the noise
is strong) than the deterministic timescale, the noise-
induced transitions are very frequent and incoherent. In
this case, the neuron’s dynamics can only be captured
by its invariant density. This is an immediate conse-
quence of a strong noise with which no coherent struc-
ture can emerge.

An interesting case occurs when the escape events
from B(vZ (w)) and motions along v} (w) have compa-
rable timescales. With the stochastic timescales given
by the inverse of Eqgs. (41) and (42), a trajectory
with initial conditions in B(v* (w)) may escape into
B(vj_(w)) and conversely at some specific points of
w with probabilities close to 1 if some suitable scal-
ing limit conditions are imposed. With these condi-
tions, the reduced equation in Eq. (11) may not be

valid along v*(w) all the way down to the fixed
point (v., w.) and may neither be valid along vi(w)
all the way up to the fold point p; = (1, %). This
equation will only govern the motions on these sta-
ble manifolds until some well-defined points, w_ €
v* (w) and w € v} (w) where the trajectory, respec-
tively, escapes from B(v* (w)) and B(v} (w)). Indeed,
as soon as w_ is reached, the stochastic timescale
becomes comparable to the deterministic timescale of
the motion along v* (w) and an escape event instan-
taneously happens at w_ and likewise for w.. There-
fore, we can only expect a coherent spike train with
a weak noise when the neuron can match the deter-
ministic timescale to the stochastic timescale only
when w = wx, but not at other points. Thus, we
need

L exp (—MU’(“”)), w <0

-1 H— o?
el a (44)
u1_+ exp (—MU;;M)), w >0

For this, we must therefore choose a suitable double
scaling limit: (o, €) — (0, 0), such that

1 AU_(w-), 0
b — _02 IOge(S_l) N (w ) w < (45)
2 AU+(w+)’ w >0

for some finite @ € (Ppin, Pmax), With @pin and Dpax
to be specified later. Eq. (45) implies that AU_(w_) —
AUy (w4), and therefore, if a trajectory escapes from
B(* (w)) at w_, then at wy = —w_, we should
expect an escape from B(vi(w)).

Provided that the equations in Eq. (46) have solu-
tions on the accessible parts of the stable manifolds
v} (w), the jump points w are the unique solutions of

{ AU_(w_) = @,
The uniqueness follows from the monotonicity of the
energy barrier functions AU_(w) forw € (— % 0) and
AU (w) for w € (0, 3); see Fig. 4. The matching
of these timescales implied in Eq. (45) is precisely the
resonance mechanism in standard stochastic resonance
[12].

We note that we must have w, < w_, that is,
when the point w = w_ can be reached by the slow
flow of Eq. (11) along v* (w). Otherwise, the trajec-
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tory of Eq. (11) will stick to the stable fixed point at
w,. Since AU_ (w) is monotone, this will occur when
D > Dpin = AU_(w,) (since w, is the lowest attain-
able point on v* (w)).

On the other hand, we should also have w_ < w,
which is violated when @ > @« = % (w- = w4 =
0 at @ = Ppux); see Fig. 4. The limit cycle behavior
(coherent spike train) emerges only if we choose o and
¢ sufficiently small such that @ € (Pnin, Pmax) =
(AU_(we), %) This interval is not empty because
w, = — 0.666651 < 0.

With the asymptotic limits in Eq. (45), that is, @ €
(A U_(w,), %), a truly deterministic limit cycle behav-
ior could emerge even though ¢ > cpg (a regime in
which the zero-noise dynamics cannot display a limit
cycle). The phase portrait of this noise-induced limit
cycle behavior is composed of the two portions of the
critical manifolds v} (w) between the jump points w =
w_ and w = w., together with the horizontal lines
joining these manifolds at w_ and w_ . See the phase
portraits in Fig. 7; they are different from the one in
Fig. 2b, where the jumps from the stable manifolds can
only occur at the fold points (£ 1, + %). We note also
that on v* (w), w_ is a jump point, while w_ is a drop
point. On v’ (w), w_ is adrop point, while w isajump
point.

6 Characterization of the limit cycle

First, we note that while the deterministic character-
istics (e.g., the period) of the limit cycle behavior
obtained are controlled by the value of @, the degree
of its coherence is controlled by ¢ and ¢. It can thus
be made as high as desired by choosing o and ¢ very
small, provided that @ € (AU_ (we), %)

Since a trajectory spends most of the time on the
stable manifolds v* (w) and v (w) (due to the slow
motion on the timescale of O(e~!) with ¢ — 0),
asymptotically, the period of the limit cycle will be the
sum of the time it spends on these manifolds. That is, it
is the sum of the time it takes to go from the drop point
w4 to the jump point w_ on v* (w) and from the drop
point w_ to the jump point w4 on v’ (w). This period,
T(d,c,o,¢), can be obtained explicitly as the sum of
the integrals over the reduced equation in Eq. (11) from
v* (w4) to v* (w-) and from v} (w-) to v} (wy), that
is,
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v¥ (w-)
1—?

Td7 s U = d
d,c,o,¢) /d+(1—c)v+%v3 v

v (wq)

vi(wy)
T f Lo dv.  (47)
n V.
d+(1—-cv+ 503

v (wo)

The integrals in Eq.(47) certainly exist for any wy €

( - %, %), thanks to the boundedness of the graphs

of v* (w) and vi(w) forw € [ — %, %] and thanks

to the bzoundedness and continuity of the integrand
1—v

T s in the compact intervals given by
3

02 (3).v* (=3) [=[-2 1] and [ v (3). 02 (<3) |-
[1, 2] in the first and second integral, respectively.

From the boundaries of integration in Eq. (47), one
can see that the period of the limit cycle created by
noise has a non-trivial dependence on o and ¢ through
its dependence on the points w4, themselves connected
to o and ¢ as in Egs. (45) or (46). Thus, the period of
the limit cycle can be controlled by o for a fixed ¢
without significantly affecting its coherence, provided
Eq. (44) holds. From the asymptotic theory above, it
is determined [from Eq. (46)] that a trajectory escapes
at w_ = —w4 = —0.432 for ¢ = 0.0001 and o =
0.005, which gives a period of T ~ 1.6396 for ¢ =
0.760 > cy.

We now investigate what happens in the neighbor-
hood of the singular Hopf bifurcation value, more pre-
cisely how the emergence of the limit cycle behavior is
affected as ¢ approaches cy from above (¢ — c]*{' ). The
case in which cy is approached from below (¢ — c¢py)is
notinteresting because in this case, a limit cycle already
exists due to a supercritical singular Hopf bifurcation,
while we are interested in a limit cycle behavior due
only to the presence of noise. As before, we take the
double limit (o, €) — (0, 0) such that

%o2loge(8_l) —dc <AU_(we), Z) (48)

The upper bound of this open interval is fixed and does
not depend on the choice of the parameter c. But the
lower bound depends on w, which in turn depends on
the parameter c¢ as in Eq. (5). Therefore, the effect of
c— CI—E on the emergence of the limit cycle behavior
could be “observed” just by looking at the behavior of
the following limit:
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lim AU_ (we (c)) . 49)

C—)L’K

If this limit decreases as we get closer and closer to cy,
thus increasing the length of the open interval in Eq.
(48), then the emergence of the limit cycle behavior is
facilitated in the sense that for a fixed e, weaker and
weaker noise could trigger the limit cycle behavior.

On the other hand, if this limit continuously in-
creases, thus decreasing the length of this open interval,
then the emergence of the limit cycle behavior is inhib-
ited in the sense that for a fixed ¢, we are now having
a thinner and thinner interval of the noise amplitude
for which the behavior can occur. And if this interval
length shrinks to zero, then the limit cycle behavior sim-
ply disappears regardless of the value of o we choose
for a fixed €.

With d = 0.5, we see [from Eq. (5)] that v, — —1
as ¢ — cﬁ', making w, — —%. Then, in Eq. (49),
AU_(w.(c)) — Oasw, — —%; this limiting behavior
is readily seen in the red curve in Fig. 4. Thus, as we
approach the singular Hopf bifurcation value, the limit
cycle behavior due to noise is facilitated; see Fig. 9 and
compare with Fig. 6.

7 Numerical simulations and discussion

For the purpose of numerical computations, the term
102 in 102 log,(e~!) will be absorbed into o so that
the matching of the timescales in Eq. (45) leading to the

emergence of a coherent spike train will require that

3
lim olog,(e7!) € (AU-(w), 7). 50
()00 ge) (we- 3 C
With Eq. (50), we easily calculate the minimum (oyip)
and the maximum (omax) of the noise amplitude
required to induce a coherent spike train in the neu-
ron’s activity when ¢ — 0 as

AU_(w,) 3

= oY) S 51
log,(e-1)" "™ = Zlog, (e 1) S

Omin
With the fixed point (ve, w.) = (—1.003988, —
0.666651) located to the left of the fold point p; =
(-1, — %), we therefore must have w, > — % (even
though w, is very close to — % the inequality has to be

strict). Moreover, the energy barrier function AU_ (w)
at the fold point py is AU_(w = — %) = 0 (again seen

from the red curve in Fig. 4). These facts imply that
AU_(w,) > AU_(— %) = 0. Therefore, in the double
limit (¢, ) — (0, 0) we have an incoherent spike train
if

olog,(e7h) e <AU_(— %), AU_(we)>, (52)
a very small but non-empty interval, since w, >
— % and AU_(w) is a monotonically increasing func-
tion of w € (— %, 0). Inserting the value of w, in
AU_(w,), we get the interval in Eq. (52) for which
only a rare and incoherent spike train emerges in the
limit (e,0) — (0,0) as (AU_(—3), AU_(w,)) =
(0, 1.46667 x 1073). It follows from Eq. (51) that
choosing the noise amplitude o such that 0 < opin =
1.46667 x 1073/ log, (¢~ 1) for a fixed & — 0 will lead
only to incoherent spike trains. For o > opmax, we of
course have incoherent spike trains as the noise ampli-
tude is already too strong.

Now we present and discuss the numerical simula-
tions carried out to illustrate the theoretical analysis. To
numerically generate the Gaussian white noise W;, we
start from two random numbers by and b, which are
uniformly distributed on the unit interval [0, 1] and,
with the Box—Muller algorithm [83], we generate a
standardized Gaussian distributed sequence. We use the
Euler algorithm [84] to integrate Eq. (22) with initial
conditions at (vg, wo) = (— 2.0, 0.25); the numerical
scheme is

Wiar = /=40 Atlog(by) cos(2mby),

vlar = v+ (Cwtv— A+ Wa,  (53)
wlar = w+e(w+d—cw)At.

To quantify the regularity of the spiking activity of
the neuron, we use the first two moments of the interval
between excitations [the interspike interval (ISI)] of
[3]. We determine the spike occurrence times by the
upward crossing of the membrane potential variable v
past the spike detection threshold of vy, = 0. Then,
we calculate the regularity of the spike train using the
coefficient of variation (CV) defined as

(ISI?) — (ISI)2

CV = ,
(IST)

(54)

where (ISI) and (ISIZ) represent the mean and the mean
squared interspike intervals, respectively. Biologically,
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Fig. 5 The mean interspike interval (ISI) in (a) and the coeffi-
cient of variation (CV) in (b), as a function of the noise amplitude
o. In (a), the standard deviation is also shown as error bars. In all
cases, ¢ = 0.760 > cp. Note the high degree of coherence that

CV is important because it is related to the timing pre-
cision of the information processing in neural systems
[85].

For a Poissonian spike train (rare and incoherent
spiking), CV = 1. If CV < 1, the sequence becomes
more coherent and CV vanishes for periodic determin-
istic spikes, for example in the deterministic limit cycle
regime of Eq. (17); see the perfect coherence of the
spike train in Fig. 2a. In the case CV < 1, large excur-
sions of trajectories in the phase space can be inter-
preted as motion on a “stochastic limit cycle” [86]. CV
values > 1 correspond to a point process that is more
variable than a Poisson process.

InFig. 5a, we have the mean interspike interval (ISI)
and its standard deviation shown as error bars as a func-
tion of the noise amplitude o for 4 different values of
the timescale parameter . The mean interspike interval
decreases with increase in the noiseif o ¢ (o*min s amax)
and stays almost unchanged if o € (amin, Umax), for
each value of €.

In Fig. 5b, we show the CV as a function of o for
the same 4 values of ¢ as in Fig. 5a. For very small
values of o (i.e., 0 ~ 1077 < omin for ¢ = 0.0001,
o ~ 1070 < oy for & = 0.0005, 0 ~ 107> < oy
for & = 0.001, and o ~ 107* < oy for & = 0.01,
with each omin(e) given by Eq. (51)), the firing has
the character of a Poisson process since CV is close to
1 (see also the large error bars). The activity in these
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can be achieved when ¢ is small, while at the same time (ISI)
shows significant dependence on the noise amplitude o. In b,
CV = 0.2 for all values of ¢ with a larger interval of o for which
CV remains that low for ¢ = 0.0001

cases represent rare and incoherent spike trains. For
o ~ 1077 and ¢ = 0.0001 for example, the noise is
just too weak to induce any oscillation, and because
¢ = 0.76 > cy, the trajectory just evolves and stops at
the stable fixed point at (v, w,).

On the other hand, when o begins to be large, i.e.,
when ¢ ~ 1072 > o for all 4 values of &, with
omax (&) given by Eq. (51), the spike train also starts
losing coherence as CV starts to increase rapidly.

When 107¢ < o < 1072 for ¢ = 0.0001, 107> <
o < 1072 for ¢ = 0.0005, 10~* < o < 1072 for
e =0.001,and 1073 < o < 1072 for ¢ = 0.01, we
have CV = 0.2, indicating a high level of coherence
of the spike train consistent with theory. In the value
range of ¢ satisfying Eq. (50), a smaller value does not
increase the coherence of the spike train, but instead
increases the interval in which the noise amplitude must
lie to be able to induce SISR. This is not the case in [1],
where CV — 0 as the singular parameter turns to 0
and the interval of the noise for which SISR occurs
stays almost unchanged. We can also see in Fig. 5a that
in these intervals of o, for each ¢, the short error bars
do not almost change in height indicating that the high
coherence of the spike train is not affected by noise
when o lies in these intervals for each value of ¢.

Figure 6a, b shows the time series and its correspond-
ing phase portrait for ¢ = 0.0001, ¢ = 0.76 > cy,

1.46667x1075 __ 1.59242 x

— =7 in =
o =155x%x10 < Omin = fog,(1/0.0001) —
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Fig. 6 Time series in (a) and corresponding phase portrait
in (b) showing a rare and incoherent (Poissonian) spike train.
e = 0.0001, ¢ = 0.76 > cy. Compare this with Fig. 9 having

107°. As predicted, we have a rare and incoherent spike
train. Recall that the emergence of a coherent spike train
requires the matching of the timescales such that Eq.
(50) holds. One easily checks that this is not the case
for Fig. 6, where Eq. (52) holds instead. Therefore,
even though o and ¢ are small, we have only a rare and
incoherent spike train for a very large integration time
interval.

In the double limit o — 0 and ¢ — 0 such that
olog,(e71) e (AU_ (we), %) the spike train abruptly
changes to a frequent and coherent one (limit cycle
behavior; see Fig. 7), consistent with the theoretical
analysis. We further note that the simulations in Fig.
7 run for a time interval 5 times shorter than those
in Fig. 6. But because of SISR in Fig. 7, we have a
more frequent and coherent spiking than in Fig. 6. In
Fig. 7a, b, with 0 = 0.005, the jump points are at
w_ ~ —0.585+£0.075 and w4+ ~ 0.591 £0.025, with
(ISI) ~ 1.9348. These jump points are a little later than
those predicted by the theory and (ISI) is within ~ 18%
of the period from the theory.

The simulations in Fig. 7 show that the stronger the
noise is (of course the noise amplitude always has to
satisfy Eq. (50) for a given ¢), the further away are the
jump points w_ from the fixed point (v,, w,.) and w
from the fold point p, = (1, %). The trajectories never
succeed in attaining (v, w,) and (1, %) as they are
systematically kicked out of B(v* (w)) and B(vi (w))
before these points are reached. Moreover, increasing
the noise amplitude has the effect of decreasing the
period of the oscillations while remarkably keeping the
high degree of coherence of the spike train.

The simulations in Fig. 8 show how the spiking fre-
quency for a fixed weak noise amplitude varies with

a frequent and coherent spike train with the same noise strength
and same integration time interval but with ¢ = 0.756 which is
closer to cy than in Fig. 6

the singular parameter €. As the value of ¢ increases,
the spiking frequency also increases. The reason for this
lies in the fact that the deterministic timescale on which
trajectories move on the stable manifolds v* (w) and
v’ (w) is of the order of ¢~ L. Therefore, as & becomes
larger and larger (for example, 0.0005, 0.001, 0.002),
the time spent by the trajectories on these stable mani-
folds becomes shorter and shorter, thus decreasing the
period of oscillations for a given integration time inter-
val.

In Fig. 9, we verify that as ¢ — c;{' the limit cycle
behavior can be induced by a weaker noise. We choose
¢ = 0.756 > cy, a value at which the deterministic
neuron cannot display a limit cycle as in Fig. 2c and at
the same time is closer to cy than in the case of Fig.
6, where the same weak noise amplitude (o = 1.55 x
10~7) cannot induce a coherent spike train. At ¢ =
0.756, this noise intensity produces a coherent spike
train; see Fig. 9. This has been predicted theoretically
above by Eq. (49) where AU_ (we(c)) — Oasc — c;;.
This increases the length of the open interval in Eq. (50)
which means that weaker and weaker noise amplitudes
have enough strength to induce a coherent spike train.
The limit cycle behavior in this case is much closer to
that in Fig. 2a due to proximity to cy.

Finally, we verify the robustness of SISR to param-
eter tuning. We show that the effect does not require
tuning of the bifurcation parameter and can be realized
for any value ¢ even much farther away from cy. In con-
trast, for CR to occur in the FHN model, the bifurcation
parameter has to be in the immediate neighborhood of
the Hopf bifurcation [3,24].

To check the robustness of SISR, we take ¢ = 1.5,
which is two times larger than cy. The result is shown
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Fig. 7 The time series in

(a), (¢), (e) and their phase
portraits in (b), (d), (f),
respectively. The eftect of
varying the noise amplitude
on the period of the coherent
structure. Increasing the
noise amplitude reduces the
period of oscillations

without considerably
affecting its coherence.
e =0.0001,c =0.76 > cy

Fig. 8 a—c show the time
series for a fixed time

interval with the
corresponding value of the
singular parameter ¢. We
observe the effect of varying
¢ on the period of the
coherent structure for a

weak noise amplitude;
increasing ¢ (but remaining
in the limit ¢ — 0)
decreases the period
(increases the frequency) of
oscillations without
affecting its coherence.

o =0.01,¢c=0.76 > cy

in Fig. 10. Note that for this value of ¢ one needs a
stronger noise intensity to induce the oscillations. We
see a coherent almost periodic spike train, with clearly
defined jump points which are significantly higher than
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manifold Mg and lower than the fold point at p»
(1, %) on the right branch of M.
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Fig.9 Here, we have ¢ = 0.0001 and ¢ = 0.756 which is closer
to cy than in Fig. 6. We observe that the same noise amplitude
producing only rare and incoherent spike train in Fig. 6 produces
rather a frequent and coherent spike train in Fig. 9 for the same

Fig. 10 Parameter tuning is

integration time interval. Thus, closeness to the singular Hopf
bifurcation value facilitates SISR by extending the interval of o
for which a coherent spike train emerges

not required for the effect.
Coherence is preserved for
the bifurcation parameter
tuned at c = 1.5 =~ 2cyq,

¢ =0.0001

8 Concluding remarks

In this paper, we have analyzed the effects of synap-
tic noise on the dynamics of a spiking neuron model
with a strong timescale separation (¢ — 0) between its
dynamical variables. First, we analyzed the determin-
istic dynamics (o = 0) and determined the locations
of the unique and stable fixed point and the singular
Hopf bifurcation value cy. From the slow—fast struc-
ture of the neuron model, we obtained the deterministic
timescale at which the slow trajectories move on the
stable parts of the critical manifold.

We set our neuron model in a regime where deter-
ministic dynamics cannot display a limitcycle (¢ > cp)
and added white noise (0 > 0) to the fast mem-
brane potential variable (to model the effect of synap-
tic noise). By considering the singular limit on the fast
timescale, we obtained the stochastic timescales of the
escape processes from the basins of attraction of the
stable manifolds of the model equation.

If the deterministic timescale of the motion of a
trajectory on the stable parts of the critical manifold
is always matched to the stochastic timescale of the
escaping trajectory at specific points on these stable

manifolds, then weak noise can induce a transition to
a coherent spike train (limit cycle behavior) which has
no deterministic counterpart, that is, the following con-
ditions should be satisfied:

o — 0,
e — 0, (55)

c > cqy,

such that

ologe(s_l) =0O(). (56)

{ologe(s_l) € (AU-(w,), 3),

We saw that, within the range of values of ¢ for
which Egs. (55) and (56) hold, a smaller value does not
significantly increase the coherence of the spike train,
but instead increases the interval of the noise amplitude
which could induce SISR.

Moreover, the coherent spiking activity due to noise
is shown to be robust to parameter tuning as it persists
for values of ¢ > cy. This effect is quite different
from CR, where the bifurcation parameter has to be
in the immediate neighborhood of the Hopf bifurca-
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tion threshold, making it sensitive to parameter tuning.
SISR could therefore, from a biological point of view,
provide a mechanism through which real neurons may
convertirregular signals into a frequency-encoded peri-
odic output irrespective of the state of other parameters.

Summarizing and comparing the findings of [2] and
the present paper, we first used Fenichel’s theorem to
approximate the dynamics for a small timescale sep-
aration ¢ by the dynamics on the stable part of the
slow manifold, with jumps to the other stable branch
occurring at those points where the slow manifold loses
its stability. These fold points are given by the local
extrema of the cubic polynomial that defines the slow
manifold. The crucial point then is whether the trajec-
tory on the slow manifold first reaches the stable fixed
point or the fold point. In the first case, introducing
noise can have the effect of causing an escape before
the stable fixed point (located to the left of the fold
point) is reached. That is self-induced stochastic reso-
nance requires ¢ — 0 as investigated in this paper. In
contrast, in the second case, noise can induce a transi-
tion to the basin of attraction of the fixed point (now
located to the right of the fold point) before the fold
point is reached. This is inverse stochastic resonance,
which requires ¢ > 0, as studied in [2]. In both phe-
nomena, the fold point corresponds to the minimum of
the slow manifold.

However, both SISR and ISR require a weak synap-
tic noise limit to occur. This could mean that in a weak
synaptic noise limit, a neuron could spontaneously
switch from encoding information generated during
SISR to encoding information generated during ISR,
just by changing the membrane voltage of its quiescent
state (i.e., by changing the position of the fixed point).
Our results could explain experimental observations
where very distinct spiking behaviors in physiologi-
cally identical neurons may emerge even when these
neurons are excited by the same strength and type of
stimulus.

Finally, it is worth noting that the type of bifurca-
tion leading to deterministic spiking (Hopf bifurcation
for a type II neuron or saddle-node bifurcation for a
type I neuron) does not affect the mechanisms behind
SISR. We see that SISR occurs if an excitable system
is driven by small noise, the escape times of the trajec-
tories from some part of the phase space are exponen-
tially distributed, and their transition rate is governed
by an activation energy. If the system is placed out of
equilibrium, the parameters are chosen such that the
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system relaxes slowly to the equilibrium, and the acti-
vation energy function monotonically decreases as the
system relaxes, then at a specific time during the relax-
ation period, the timescale for escape events matches
the relaxation timescale, and the system jumps at this
point almost surely. If the jump brings the system back
out of equilibrium, the relaxation stage can start over
again, and then the scenario repeats itself indefinitely,
leading to a rather regular behavior (i.e., coherent spik-
ing) which cannot occur in the noise-free system. This
coherent spiking (due to SISR) cannot occur in the
noise-free system simply because the system param-
eters are chosen such that a Hopf or Saddle-node bifur-
cation leading to deterministic spiking activity cannot
occur. What is crucial for SISR is the interplay between
different timescales, and not the type of bifurcation
leading to deterministic spiking.
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