Skip to main content
Log in

Application of Morse potential in nonlinear dynamics of microtubules

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We here present a model of nonlinear dynamics of microtubules using modified extended tanh-function method as a mathematical tool. Interaction between neighbouring dimers belonging to a single protofilament is commonly modelled by a harmonic potential. In this paper, we introduce a more realistic Morse potential energy instead. We obtained three solitary waves as before, when the harmonic potential was used. However, the Morse potential allows transition from the state when elastic term in the expression for total energy is bigger than the inertial one to the state when the inertial potential is bigger. Also, three new solutions were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dustin, P.: Microtubules. Springer, Berlin (1984)

    Book  Google Scholar 

  2. Cifra, M., Pokorný, J., Havelka, D., et al.: Electric field generated by axial longitudinal vibration modes of microtubule. BioSystems 100, 122–131 (2010)

    Article  Google Scholar 

  3. Havelka, D., Cifra, M., Kučera, O., et al.: High-frequency electric field and radiation characteristics of cellular microtubule network. J. Theor. Biol. 286, 31–40 (2011)

    Article  Google Scholar 

  4. Zdravković, S., Kavitha, L., Satarić, M.V., et al.: Modified extended tanh-function method and nonlinear dynamics of microtubules. Chaos Solitons Fract. 45, 1378–1386 (2012)

    Article  MATH  Google Scholar 

  5. Zdravković, S.: Microtubules: a network for solitary waves. J. Serb. Chem. Soc. 82(5), 469–481 (2017)

    Article  Google Scholar 

  6. Satarić, M.V., Tuszyński, J.A., Žakula, R.B.: Kinklike excitations as an energy-transfer mechanism in microtubules. Phys. Rev. E 48, 589–597 (1993)

    Article  Google Scholar 

  7. Satarić, M.V., Tuszynski, J.A.: Relationship between the nonlinear ferroelectric and liquid crystal models for microtubules. Phys. Rev. E 67, 011901 (2003)

    Article  Google Scholar 

  8. Zdravković, S., Satarić, M.V., Zeković, S.: Nonlinear dynamics of microtubules—A longitudinal model. Europhys. Lett. 102, 38002 (2013)

    Article  Google Scholar 

  9. Zdravković, S., Zeković, S., Bugay, A.N., et al.: Localized modulated waves and longitudinal model of microtubules. Appl. Math. Comput. 285, 248–259 (2016)

    MathSciNet  Google Scholar 

  10. Zeković, S., Muniyappan, A., Zdravković, S., et al.: Employment of Jacobian elliptic functions for solving problems in nonlinear dynamics of microtubules. Chin. Phys. B 23, 020504 (2014)

    Article  Google Scholar 

  11. Zdravković, S., Maluckov, A., Đekić, M., et al.: Are microtubules discrete or continuum systems? Appl. Math. Comput. 242, 353–360 (2014)

    MATH  MathSciNet  Google Scholar 

  12. Zdravković, S., Gligorić, G.: Kinks and bell-type solitons in microtubules. Chaos 26, 063101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ali, A.H.A.: The modified extended tanh-function method for solving coupled MKdV and coupled Hirota-Satsuma coupled KdV equations. Phys. Lett. A 363, 420–425 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. El-Wakil, S.A., Abdou, M.A.: New exact traveling wave solutions using modified extended tanh-function method. Chaos Solitons Fract. 31, 840–852 (2007)

    Article  MATH  Google Scholar 

  15. Abdou, M.A.: New solitons and periodic wave solutions for nonlinear physical models. Nonlinear Dyn. 52, 129–136 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kudryashov, N.A., Loguinova, N.B.: Extended simplest equation method for nonlinear differential equations. Appl. Math. Comput. 205, 396–402 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Zdravković, S., Satarić, M.V.: Parameter selection in a Peyrard–Bishop–Dauxois model for DNA dynamics. Phys. Lett. A 373, 2739–2745 (2009)

    Article  MATH  Google Scholar 

  18. Tabi, C.B., Ekobena Fouda, H.P., Mohamadou, A., et al.: Wave propagation of coupled modes in the DNA double helix. Phys. Scr. 83, 035802 (2011)

    Article  MATH  Google Scholar 

  19. Ndjoko, P.B., Bilbault, J.M., Binczak, S., et al.: Compact-envelope bright solitary wave in a DNA double strand. Phys. Rev. E 85, 011916 (2012)

    Article  Google Scholar 

  20. Sulaiman, A., Zen, F.P., Alatas, H., et al.: The thermal denaturation of the Peyrard–Bishop model with an external potential. Phys. Scr. 86, 015802 (2012)

    Article  MATH  Google Scholar 

  21. Bugay, A.N., Aru, G.F.: New types of solitonic excitations in a nonlinear helicoidal model of DNA and their biological significance. Nonlin. Phenom. Complex Syst. 17, 1–9 (2014)

    MATH  MathSciNet  Google Scholar 

  22. Kononova, O., Kholodov, Y., Theisen, K.E., et al.: Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico. J. Am. Chem. Soc. 136, 17036–17045 (2014)

    Article  Google Scholar 

  23. Satarić, M.V., Ilić, D.I., Ralević, N., et al.: A nonlinear model of ionic wave propagation along microtubules. Eur. Biophys. J. 38, 637–647 (2009)

    Article  Google Scholar 

  24. Sekulić, D.L., Satarić, B.M., Tuszynski, J.A., et al.: Nonlinear ionic pulses along microtubules. Eur. Phys. J. E 34, 49 (2011)

    Article  Google Scholar 

  25. Bugay, A.N.: Nonlinear waves as signals in microtubules. Nonlin. Phenom. Complex Syst. 18, 236–242 (2015)

  26. Darvishi, M.T., Najafi, M., Arbabi, S., et al.: Exact propagating multi-anti-kink soliton solutions of a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation. Nonlinear Dyn. 83, 1453–1462 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  27. Darvishi, M.T., Kavitha, L., Najafi, M., et al.: Elastic collision of mobile solitons of a (3+1)-dimensional soliton equation. Nonlinear Dyn. 86, 765–778 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Project within the Cooperation Agreement between the JINR, Dubna, Russian Federation and Ministry of Education and Science of Republic of Serbia: Theory of Condensed Matter Physics. The works of S. Zdravković was supported by funds from Serbian Ministry of Education and Sciences (Grant No. III45010). The work of A.N. Bugay was supported by Russian Science Foundation (Project No. 17-11-01157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slobodan Zdravković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zdravković, S., Bugay, A.N. & Parkhomenko, A.Y. Application of Morse potential in nonlinear dynamics of microtubules. Nonlinear Dyn 90, 2841–2849 (2017). https://doi.org/10.1007/s11071-017-3845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3845-y

Keywords

Navigation