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Abstract Fractal patterns generated in the complex
plane by root finding methods are well known in the
literature. In the generation methods of these fractals,
only one root finding method is used. In this paper,
we propose the use of a combination of root finding
methods in the generation of fractal patterns. We use
three approaches to combine the methods: (1) the use of
different combinations, e.g. affine and s-convex com-
bination, (2) the use of iteration processes from fixed
point theory, (3) multistep polynomiography. All the
proposed approaches allow us to obtain new and diverse
fractal patterns that can be used, for instance, as textile
or ceramics patterns. Moreover, we study the proposed
methods using five different measures: average num-
ber of iterations, convergence area index, generation
time, fractal dimension and Wada measure. The com-
putational experiments show that the dependence of the
measures on the parameters used in the methods is in
most cases a non-trivial, complex and non-monotonic
function.
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1 Introduction

Fractals, since their introduction, have been used in arts
to generate very complex and beautiful patterns. While
fractal patterns are very complex, only a small amount
of information is needed to generate them, e.g. in the
Iterated Function Systems only information about a
finite number of contractive mappings is needed [29].
One of the fractal types widely used in arts is complex
fractals, i.e. fractals generated in the complex plane.
Mandelbrot and Julia sets together with their varia-
tions are examples of this type of fractals [30]. They are
generated using different techniques, e.g. escape time
algorithm [34] and layering technique [24].

Another example of complex fractal patterns is pat-
terns obtained with the help of root finding methods
(RFM) [18]. These patterns are used to obtain paintings,
carpet or tapestry designs, sculptures [20] or even in
animation [22]. For their generation, different methods
are used. The most obvious method of obtaining various
patterns of this type is the use of different root finding
methods. The most popular root finding method used
is the Newton method [14,35,37], but other methods
are also widely used: Halley’s method [17], the secant
method [36], Aitken’s method [38] or even whole fam-
ilies of root finding methods, such as Basic Family and
Euler-Schroder Family [21]. Another popular method
of generating fractal patterns from root finding methods
is the use of different convergence tests [10] and differ-
ent orbit traps [7,42]. In [6,34], it was shown that the
colouring method of the patterns also plays a signif-
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icant role in obtaining interesting patterns. Recently,
new methods of obtaining fractal patterns from root
finding methods were presented. In the first method, the
authors used different iteration methods known from
fixed point theory [13,23,32]; then, in [11], a pertur-
bation mapping was added to the feedback process.
Finally, in [12] we can find the use of different switch-
ing processes.

All the above-mentioned methods of fractal genera-
tion that use RFMs, except the ones that use the switch-
ing processes, use only a single root finding method in
the generation process. Using different RFMs, we are
able to obtain various patterns; thus, combining them
together could further enrich the set of fractal patterns
and lead to completely new ones, which we had not
been able to obtain previously. In this paper, we present
ways of combining several root finding methods to gen-
erate new fractal art patterns.

The paper is organised as follows. In Sect. 2, we
briefly introduce methods of generating fractal patterns
by a single root finding method. Next, in Sect. 3, we
introduce three approaches on how to combine root
finding methods to generate fractal patterns. The first
two methods are based on notions from the literature,
and the third one is a completely new method. Sec-
tion 4 is devoted to remarks on the implementation of
the algorithms on the GPU using shaders. Some graph-
ical examples of fractal patterns obtained with the help
of the proposed methods are presented in Sect. 5. In
Sect. 6, numerical experiments regarding the genera-
tion times, average number of iteration, convergence
area, fractal dimension and Wada measure of the gener-
ated polynomiographs are presented. Finally, in Sect. 7,
we give some concluding remarks.

2 Patterns from a single root finding method

Patterns generated by a single polynomial root finding
method have been known since the 1980s and gained
much attention in the computer graphics community
[28,38,42]. Around 2000, there appeared in the liter-
ature the term for the images generated with the help
of root finding methods. The images were named poly-
nomiographs, and the methods for their creation were
collectively called polynomiography. These two names
were introduced by Kalantari. The precise definition
that he gave is the following [19]: polynomiography
is the art and science of visualisation in approxima-
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tion of the zeros of complex polynomials, via fractal
and non-fractal images created using the mathematical
convergence properties of iteration functions.

It is well known that any polynomial p € C[Z] can
be uniquely defined by its coefficients {a,, a,_1, ...,
ai, ao}:

P2 =ap" +an 12"+ +arz +ag (1)

or by its roots {ry, ra, ..., rp}:

pR)=@E@—ro@=r2)-...-(2—=rn). 2

When we talk about root finding methods, the poly-
nomial is given by its coefficients, but when we want
to generate a polynomiograph, the polynomial can be
given in any of the two forms. The advantage of using
the roots representation is that we are able to change
the shape of the polynomiograph in a predictable way
by changing the location of the roots.

In polynomiography, the main element of the gen-
eration algorithm is the root finding method. Many dif-
ferent root finding methods exist in the literature. Let
us recall some of these methods, that later will be used
in the examples presented in Sect. 5.

— The Newton method [21]
N =z- 29 3
P'(2)
— The Halley method [21]
2 /
HG) =z PO @)

C2p'(2)2 = p(2)p(2)

— The B4 method—the fourth element of the Basic
Family introduced by Kalantari [21]

B4(2)
6p'(2)>p(2)—3p"(2)p(2)?
" (2)p(2)*+6p' (2)3—6p"(2)p'(2)p(z)
)

— The E3 method—the third element of the Euler-
Schroder Family [21]

2 /7
p(2) > " (@) ©)

E = N(z .
3(2) (z) + (p/(z) e
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— The Householder method [15]

p()?*p"(2)
H,(z) = I LA i
h(z) = N(2) 2027 @)
— The Euler—Chebyshev method [39]
_ 2 2.1
EC(Z):Z_m(S’ m) p(z) m” p)p (z), ®)

2 Pl 2 pE?

where m € R.
— The Ezzati—Saleki method [9]

Eg(z)

= N(2)+p(N(2) (

4
P p/(z)+p/(N(z))> '
©)

In the standard polynomiograph generation algo-
rithm, used for instance by Kalantari, we take some
area of the complex plane A C C. Then, for each point
z0 € A we use the feedback iteration using a chosen
root finding method, i.e.

Zn+1 = R(zn), (10)

where R is a root finding method, n = 0,1,..., M.
Iteration (10) is often called the Picard iteration. After
each iteration, we check if the root finding method has
converged to a root using the following test:

|Zn41 — zul < &, (11)

where ¢ > 0 is the accuracy of the computations. If
(11) is satisfied, then we stop the iteration process and
colour z( using some colour map according to the iter-
ation number at which we have stopped iterating, i.e.
the iteration colouring. Another method of colouring
polynomiographs is colouring based on the basins of
attraction. In this method, each root of the polynomial
gets a distinct colour. Then, after the iteration process
we take the obtained approximation of the root and find
the closest root of the polynomial. Finally, we colour
the starting point with the colour that corresponds to
the closest root.

In recent years, some modifications of the standard
polynomiograph’s generation algorithm were intro-
duced. The first modification presented in [10] was
based on the use of different convergence tests other
than the standard test (11). The new tests were created

using different metrics, adding weights in the metrics,
using various functions that are not metrics, and even
tests that are similar to the tests used in the generation
of Mandelbrot and Julia sets were proposed. Examples
of the tests are the following:

znt1l® = lzal’] < &, (12)

10.01(zpg1 — 20)| + 10.029|z511> — 0.03]z,|%| < &,
(13)

10.04R (2741 — zn)| < € V [0.053(zp41 — z0)| < &,
(14)

where N(z), J(z) denote the real and imaginary parts
of z, respectively.

In [27], we can find the next modification which later
was generalised in [13]. The modification is based on
the use, instead of the Picard iteration, of the different
iterations from fixed point theory. The authors have
used ten different iterations, e.g.

— the Ishikawa iteration

Znt1 = (1 — @)z, + aR(uy),

(15)
up = (1 = B)zn + BR(zn),

— the Noor iteration

Zn+1 = (I — @)z + aR(uy),
up = (1= B)zn + BR(vn), (16)
vy =1 —y)zn + Y R(zn),

where o € (0, 1], B, ¥ € [0, 1] and R is a root finding
method. Moreover, in [13], iteration parameters («, 3,
y), which are real numbers, were replaced by complex
numbers.

The last modification proposed in [11] is based on
the use, during the iteration process, of the so-called
perturbation mapping. In each iteration, the perturba-
tion mapping alters the point from the previous iteration
and this altered point is then used by the root finding
method.

Putting the different modifications together, we
obtain an algorithm that is presented as pseudocode
in Algorithms 1 and 2. In the algorithms, 7, is an iter-
ation method, Mann, Ishikawa, Noor, etc., that uses a
chosen root finding method, with perturbation mapping
added. The index v is a vector of parameters of the iter-
ation method, i.e. v € CV, where N is the number of
parameters of the iteration. Similarly, C,, is a chosen
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convergence test. The test takes two values: an element
from the previous and the current iteration. Moreover,
index u is a vector of parameters of the test and it con-
tains, for instance, the calculation’s accuracy ¢ > 0.

Algorithm 1: Rendering of a polynomiograph
Input: p € C[Z], deg p > 2 — polynomial, A C C — area,
M — number of iterations, [, : C — C — iteration,
C, : C x C — {true, false} — convergence test,
colours[0..k] — colour map.
QOutput: Polynomiograph for the area A.

1 for zo € Ado

2 [n, z] = ITERATEPOINT(z0, p, I, Cy, M)

3 Determine the colour for z using n, z and the colour
map colours

Algorithm 2: ITERATEPOINT
Input: zo € C —point, p € C[Z],degp > 2 -
polynomial, 7, : C — C — iteration,
C, : C x C — {true, false} — convergence test,
M — number of iterations.
Output: The iteration number for which we stop the
iteration process and the last calculated point.

ITERATEPOINT(z, p, I, Cy, M)
n=0
while n < M do
In41 = Iv(Zn)
if Cu (Zn, Zn+1) = true then
L break

7 n=n+1

= 7 I R S

8 return [n, z,+41]

3 Combined root finding methods

Each polynomiograph is generated by a single root find-
ing method. For a fixed polynomial, changing the root
finding method changes the obtained pattern (Fig. 1).
Similarly, when we fix the root finding method and
change the polynomial, we obtain different patterns
(Fig. 2). If we want to get new diverse patterns using the
combination of patterns obtained with the different root
finding methods or polynomials, then we need to do it
manually using some graphics software, e.g. GIMP or
Adobe Photoshop. This could be time consuming. So,
it would be good to have a method that uses a com-
bination of different properties of the individual root
finding methods to obtain new and complex patterns.
In this section, we introduce such methods.

@ Springer

Fig. 1 Polynomiographs for z3 — 1 generated using various
root finding methods. a Newton, b Halley, ¢ Euler—Chebyshev,
d Ezzati—Saleki, e colour map

In the literature, we can find different methods of
combining points, for instance:

— the affine combination [16]

m
061191+a2p2+-'-+anpm=zaipi, (17
i=1
where p1, p2, ..., pm arepoints, &y, «z, ..., 0y €
Rand Y7 o =1,
— the s-convex combination [31]
m
a{pl+a§p2+-~-+aflpmzzafpi, (18)
i=1
where py, p2, ..., pmarepoints, oy, a2, ..., Qy >

Oaresuchthat ) ;" ;o = lands € [0, 1].

We can use these combinations in the generation
of polynomiographs. Let us say that we have m root
finding methods and each method has its own iteration
method [, fori = 1,2, ..., m. Further, for each itera-
tion we fix o; fori = 1, 2, ..., m, so that the sequence
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Fig. 2 Polynomiographs for different polynomials generated
using the Householder method. a 2 —3z43,b*+72 -1,
¢zt +4,dz° + z, e colour map

meets the conditions for the combination that we want
to use, e.g. affine, s-convex. Then, we change the fourth
line of Algorithm 2 in the following way:

— for the affine combination

Znl = Y aily (2n), (19)

i=1

— for the s-convex combination
m
a1 = Ly (2n). (20)
i=1

In the case of the affine combination, we can extend
this combination from real to complex parameters, SO
we take o, &2, ...,y € Csuchthat Y 1 | o; = 1.
For a single root finding method in [13], Gdawiec et
al. have used different iteration methods known from
the fixed point theory. In fixed point theory, we can
find iteration methods for more than one transforma-
tion, which are used to find the common fixed points

of the transformations. We recall some of these itera-
tion processes known from the literature. Let us assume
that T, T», ..., T,, : X — X are transformations and
70 € X.

— The Das—Debata iteration [8]

Znt1 = (I —ap)zp + ayTo(uy),

21
up = (1 — Bp)zn + BuT1(zn),

where «,, € (0, 1], B, € [0, 1] forn =0,1,2,....
— The Khan—-Domlo—Fukhar-ud-din iteration [25]

Znt1 = (I —ap)zy +anTm(u(m71)n)7
Um—nn = (I = Ban—1yn)Zn+Bun—1n Tm—1 @ @m—2)n),
Um—2)n = (I- ﬂ(m—Z)n)Zn +,3(m—2)n Tm—2(u(m—3)n),

uzp = (1 — Bop)zn+PBon T2 (u1n),

uy, = (1 = Bi)zn+PB1aT1(zn), (22)
where «,, € (0, 1], Bi, € [0, 1] forn =0,1,2,...
andi =1,2,...,m—1.

— The Khan—Cho—Abbas iteration [26]

Znt1 = (1 —ap)T1(zy) + oy Ta(uy),

(23)
up, = (1 — IBH)Zn + ,BnTl(Zn):
where «,, € (0, 1], 8, € [0, 1]forn =0,1,2,....
— The Yadav-Tripathi iteration [41]
Zn+1 = dnZn + BuT1(zn) + yuT2(un), (24)

n = pzn + By T2 (zn) + ¥ T1(zn),

where ay,, Bu, Vu, ), B, v, € [0, 1]and a, + B +
vm=o,+B,+y,=1forn=0,1,2,....
— The Yadav iteration [40]

Znt1 = Ta(uy), (25)
up = (1 —ay)T1(z0) + ayT2(zy),

where «,, € [0, 1] forn =0,1,2,....

Some of the iterations for m transformations when
W =T, = ... = T, reduce to the iterations for
a single transformation, e.g. the Das—Debata iteration
reduces to the Ishikawa iteration. Moreover, in the case
of two mappings 71, 1>, the Khan—-Domlo—Fukhar-ud-
din iteration reduces to the Das—Debata iteration.
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To combine root finding methods using the iterations
for m transformation, we take m root finding meth-
ods as the transformations. For simplicity, we limit the
sequences used in the iterations to constant sequences,
ie. a, = a, :Bn = :3? Yn =V, a;; = a/’ ,Br/z = ,3/,
Yo =Y Bon—tn = Bm—1s ---» Bin = B1. Now, we
replace the iteration used in Algorithm 2 by the new
iteration.

In the two presented methods so far, we used a com-
bination of different root finding methods for the same
polynomial. The last proposed method generates poly-
nomiographs in several steps and uses not only differ-
ent root finding methods, but also various values of the
other parameters in the consecutive steps. We call this
type of polynomiography the multistep polynomiogra-
phy. For each step, we take separate parameters that
are used in standard polynomiography: polynomial,
the maximal number of iterations, root finding method,
iteration method, convergence test. Thus, we can use
various values of the parameters in different steps, e.g.
different polynomials. The area and colour map are
defined only once for the multistep polynomiograph.
In each step, we use the ITERATEPOINT function (Algo-
rithm 2) and accumulate the number of iterations n that
the function returns. Moreover, for each step we give
a mapping f : C — C that transforms the difference
between the last computed point in the iteration process
for the step and the starting point of the step. We call
this transformation the area transformation. The trans-
formed point will then be used as a starting point for the
next step. The pseudocode of the method is presented
in Algorithm 3.

4 GPU implementation

In the generation algorithm of complex fractals, each
point is calculated independently from the others. This
makes the algorithm easy to parallelise on the GPU.
In the literature, we can find implementations of the
algorithms for the generation of Mandelbrot [4] and
Julia sets [33] using the OpenGL Shading Language
(GLSL). The idea of implementation using GLSL of
the generation algorithm for the fractals obtained with
the help of RFMs is very similar. Calculations for each
point are made in the fragment shader, but the num-
ber of parameters that are needed in the calculations
is larger than in the case of the Mandelbrot or Julia
sets.
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Algorithm 3: Rendering of a multistep poly-
nomiograph
Input: A C C - area, {p1, p2, ..

., PN} — polynomials,

{1y, Ly, ..., Iy, } —iterations, {M, M>, ..., My}
—number of iterations, {Cy,, Cy,, ..., Cuy} —
convergence tests, { f1, f2, ..., fy} —area

transformations, colours[0..k] — colour map.
Output: Multistep polynomiograph for the area A.

1 for zo € A do
m=0
=20
fori =1,2,...,Ndo
[n, u] = ITERATEPOINT(z, p;, I.;, Cy;, M;)
m=m-+n
z= filu—72)
8 Determine the colour for zo using m and the colour
| map colours

N v R W

«We ©
(a) (b)

Fig. 3 Polynomiographs obtained for the same parameters but
with different precision of the calculations. a f1oat,b double

In the GLSL implementation of the Mandelbrot and
Julia sets, the £1oat type is usually used in the calcu-
lations, which is sufficient if we do not zoom into the
sets. But when we zoom in, the precision of the f1oat
type is insufficient and we lose details of the fractal. In
the case of the RFM fractals, we have the same issue
even in the macro scale, i.e. without zooming in. Fig-
ure 3 presents an example of RFM fractal pattern in
[=2.5, 2.5]2 obtained using the same parameters, but
with different number types used in the calculations:
(a) float, (b) double. In the central part of Fig. 3a
and in the branches of the pattern, we see circular areas
of uniform colour. When we look at the same areas in
Fig. 3b, we see that more details appeared. Thus, in our
implementation we used the double type, which was
introduced in version 4.0 of the GLSL.

To represent a point, we can use two separate vari-
ables: one for the real part and the other for the imag-
inary part, but in GLSL it is better to use the dvec?2
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type. In this way, we need to implement only the multi-
plication and division of complex numbers, because for
the addition and subtraction we can use the arithmetic
operators +, — defined for the dvec? type.

In every presented generation algorithm, we need to
pass input parameters to the shader. Some of the param-
eters are passed as single uniform variables, but some
of them need to be passed as a sequence, e.g. coef-
ficients for the affine combination. Because in GLSL
we do not have dynamic arrays, we need to overcome
this issue using an array of fixed size and passing to
the shader the actual number of elements that will be
used in the algorithm. Of course, the number should be
less than the size of the array. Nevertheless, we cannot
use this technique when it comes to the coefficients of
the polynomial and its derivatives, because the degree
of the polynomial can be large, e.g. in [21], Kalantari
used polynomials of degree 36 to generate some inter-
esting polynomiographs. To pass polynomial and its
derivatives, we used a two-dimensional floating point
texture. Each row in this texture stores coefficients of
one polynomial (polynomial, derivative). In multistep
polynomiography, we need to pass several polynomi-
als and their derivatives. In this case, the number of
columns in the texture is determined by the largest
degree of the polynomials and we store the coefficients
in sequence, i.e. the coefficients of the first step polyno-
mial and its derivatives, the coefficients of the second
step polynomial and its derivatives, etc. Each of the
input parameters (root finding method, iteration, con-
vergence test, area transformation) cannot be written
as a single function with some parameters, and we do
not want to recompile the shader every time we change
one of these input parameters. Thus, to change these
parameters in a running application we used GLSL’s
subroutines and their arrays.

A known issue in the generation of complex frac-
tals is aliasing. To deal with this problem, we imple-
mented the supersampling method, which is widely
used in many programs for generating fractal patterns,
e.g. Fractint, ChaosPro, Ultra Fractal.

5 Graphical examples

In this section, we present some graphical examples
of the fractal art patterns obtained using modifications
proposed in Sect. 3. In all the examples, we used super-
sampling anti-aliasing with a factor of 4. In the poly-

Fig.4 Polynomiographs for z7 4+z* — 1 generated using various
root finding methods. a Euler—Chebyshev, b B4, ¢ Householder,
d colour map

nomiographs with the basins of attraction, the distinct
colours indicate distinct basins of attractions.

We start with an example presenting the use of
an affine combination of the root finding methods.
In the example, we use three root finding methods:
Euler—Chebyshev (with m = 1.7), B4 and House-
holder. The other parameters used were the following:
p(z) = +722—1,A = [-25,252, M = 20,
Picard iteration for all three root finding methods and
convergencetest (11) withe = 0.001. Figure 4 presents
the polynomiographs obtained using the standard poly-
nomiograph generation algorithm for the three root
finding methods, and Fig. 5 shows their basins of attrac-
tion.

Examples of fractal patterns obtained with the help
of an affine combination of the root finding methods
are presented in Fig. 6, and their basins of attraction
in Fig. 7. Comparing the images from Fig. 4 with the
images from Fig. 6, we see that the obtained patterns
differ from the original ones, forming new patterns.
Moreover, we see that the new patterns possess some
features of the polynomiographs obtained with the sin-
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Fig. 5 Basins of attraction for 77 + z> — 1 generated using var-
ious root finding methods. a Euler—Chebyshev, b B4, ¢ House-
holder

gle root finding methods. We also observe that the use
of complex coefficients with a nonzero imaginary part
introduces some twists in the patterns, which were not
present in any of the original patterns. The dependence
of the pattern’s shape on the parameters of the affine
combination is a non-trivial function. The non-triviality
of this function is shown in Sect. 6.4, where the fractal
dimension of patterns obtained with the affine combi-
nation is studied.

In the second example, we use various iteration
processes of several root finding methods. Figures 8
and 9 present polynomiographs and basins of attrac-
tions obtained with the single root finding methods
(Ezzati—Saleki, Halley) used in the iteration processes.
The other parameters used to generate the patterns
were the following: p(z) = A 4+4 A= [—2, 2]2,
M = 25, Picard iteration and convergence test (11)
with ¢ = 0.001.

Figure 10 presents polynomiographs obtained with
the help of the different iteration processes of the two
considered root finding methods (77 = Eg, T» = H),
and Fig. 11 shows their basins of attraction. The param-
eters for the iteration processes were the following:

(a) Das—-Debata o = 0.3, 8 = 0.9,
(b) Khan—Cho-Abbas @ = 0.5, 8 = 0.5,
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(@) (b)

@

Fig. 6 Fractal patterns obtained with an affine combination of
the root finding methods from Fig. 4. a oy = 0.1, ap = 0.8,
o3 = 0.1, b o] = 0.7, oy = 1.0, o3 = —0.7, cop = —0.8,
a =09, 03 =09, do; = —-03—-0.2i, ap = 1.6 — 0.7,
a3 =—03+4+0.9i

Fig. 7 Basins of attraction obtained with an affine combination
of the root finding methods from Fig. 5. a a; = 0.1, ap = 0.8,
a3 = 0.1, b o] = 0.7, oy = 1.0, a3 = —0.7, cay = —0.8,
a =09, a3 =09, do; = —-03—-0.2i,p = 1.6 — 0.7,
a3 = —03+0.9i
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Fig. 8 Fractal patterns used in the example with the iteration
processes. a Ezzati—Saleki, b Halley, ¢ colour map

(b)

Fig.9 Basins of attraction used in the example with the iteration
processes. a Ezzati—Saleki, b Halley

(c) Yadav-Tripathi « = 03, 8 = 0.3, y = 0.4,
a' =08, =01,y =0.1,
(d) Yadav o = 0.9.

One can observe that the obtained patterns have prop-
erties of the two original patterns generated using the
methods used in the iteration processes. For instance,
the central part of the patterns reminds the central part
of the pattern obtained with the Ezzati—Saleki method,
and the four branches are thinner than the ones in the
case of the Ezzati—Saleki method reminding branches
obtained with the Halley method, e.g. Fig. 10d. In gen-
eral, the obtained patterns differ from the original ones
in a significant way. The dependence of the pattern’s
shape on the parameters used in the iteration processes,
similar to the case of an affine combination, is a non-
trivial function. A detailed discussion on this depen-
dence is made in Sect. 6.4.

(d)

Fig. 10 Fractal patterns obtained with the help of different iter-
ation processes. a Das—Debata, b Khan—Cho—Abbas, ¢ Yadav—
Tripathi, d Yadav

Fig. 11 Basins of attraction obtained with the help of dif-
ferent iteration processes. a Das—Debata, ¢ Khan—Cho—Abbas,
d Yadav—Tripathi, e Yadav
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Table 1 Parameters used to generate the patterns from Figs. 12
and 13

Sttp RFM p(zx)= M I, Cu f@)=
1 N 2—1 25 Picad (1) p@)
2 H 241 10 Picard (13)  p(2)
3 E3 2441 35 Picard (1) p()

In the last examples, we present some patterns
obtained with the help of multistep polynomiography.
We start with an example showing how the fractal pat-
tern changes from step to step. In this example, we
use three root finding methods with different values
of the parameters. The parameters used in the genera-
tion algorithm are presented in Table 1 and for all the

methods A = [—2.5,2.5]% and ¢ = 0.001. Figure 12
presents the polynomiographs obtained using the root
finding methods and the parameters from Table 1.
The successive steps in the generation of the multi-
step polynomiograph are presented in Fig. 13. After the
first step, we obtain the pattern that was created with
the first root finding method. Now, when we add the
second step, the pattern becomes more complex and
differs from the two original patterns used to generate
it. The addition of the third step further changes the
pattern, which significantly differs from the patterns
of previous steps. Moreover, we can observe that the
main shape (division of the plane into three parts) of
the resulting pattern is determined by the polynomial
used in the first step. The polynomials from the other
steps add some further details to the pattern, mainly

Fig. 13 Successive steps in the generation of a multistep polynomiograph for the parameters from Table 1. a 1st step, b 2nd step, ¢ 3rd

step
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Fig. 14 Examples of fractal patterns obtained with the help of multistep polynomiography

in the regions where the first root finding method has
converged fast to the roots.

The last example presents various fractal patterns
obtained with the help of multistep polynomiography.
The patterns are presented in Fig. 14 and the parame-
ters used to generate them are gathered in Table 2. The
& parameter in all the examples was equal to 0.001.
From the images, we see that using different combi-
nations of the parameters, e.g. root finding methods,
iteration processes, we are able to obtain very diverse
and interesting fractal patterns.

6 Numerical examples

In this section, we present numerical examples and a
comparison of the proposed methods of combining the
root finding methods. We divide the examples accord-
ing to the measures: average number of iterations [1],

convergence area index [2], generation time [13], frac-
tal dimension [44] and Wada measure [44].

In all the examples, the same polynomial is used,
namely p(z) = z> — 1. Other common parameters
used in the examples are the following: A = [—1, 1%,
M = 30, convergence test (11) with ¢ = 0.001, poly-
nomiograph resolution 800 x 800 pixels.

In each method of combining the root finding meth-
ods, we have parameters that belong to intervals. In
the experiments, we divide each of the intervals inde-
pendently into 201 equally spaced values and for each
of the values we calculate the given measure. In the
example with the affine combination, we use two com-
binations. In the first combination, we use three root
finding methods, so we have two parameters, because
the third parameter is determined by the condition that
the parameters must sum to one. In the second exam-
ple, we use two root finding methods, but this time with
the complex coefficients. In this case, we have only one
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Table 2 Parameters used to generate the patterns from Fig. 14

Area Step RFM p(z) = M I, Cy f@)=
(a) [—2.5,2.5]% 1 N 4+ 25 Noor a = 0.3, ) p(2)
B=02,y=02
2 Ec 2 -1 15 Picard (12) p(2)
m=1.7
(b) [-2.5,2.5]% 1 H -1 10 Picard (11) 1/z3
2 Hy, 2 —1 25 Noor a = 0.5 (11) 1/z3
B=05y=05
(© [-3,3)% By 21 5 Picard (11) »(2)
2 N A+ 25 Picard 11 ()
E; 2 -1 55 Ishikawa an p(2)
«a=068=02
(d) [—2.5,2.5]% 1 N P4z 25 Picard (11) )
2 E3 P4z 5 Picard (14) ()
3 E3 2 +z 55 Ishikawa an p(2)
a=068=02
(e) [—2.5,2.5]% 1 Ec 2-1 55 Ishikawa (11) p(2)
m=1.7 a=07+04i8=06
2 By PD+z 15 Picard (11) )
E; 21 5 Picard (14) 263)
) [—3,3]% 1 H 21 20 Noor a = 0.8 — 0.4i (11) 2/(0.75 + 2.51)
B=02y=09-0.5i
2 N 241 20 Ishikawa (14) 7/(0.75 + 2.5i)
«a=07,8=07

parameter, because the second one, similar to the previ-
ous example, is determined using affine’s combination
condition. The only parameter in this case is separated
into a real and imaginary part, and each of the parts
is then divided independently into 201 values. In the
example with the different iteration processes, we use
two root finding methods, so the number of parame-
ters in each case is the following: 2 for the Das—Debata
iteration, 2 for the Khan—-Cho—Abbas, 1 for the Yadav
iteration and 6 for the Yadav—Tripathi one. In the case
of the Yadav—Tripathi iteration, we can reduce the num-
ber of parameters to four, because « + 8 + y = 1 and
o'+ B’ +y’ = 1. Even for four parameters, the analy-
sis of the results is difficult, so we reduced the number
of parameters to two by fixing the other two parame-
ters. In this way, we obtained two examples. In the first
example, we have fixed @’ = 0.2, 8/ = 0.5, y' = 0.3
and varying «, B, y, and in the second we have fixed
a=02,8=0.5,y =0.3 and varying o/, 8/, y'.

@ Springer

Different root finding methods are used in the dif-
ferent methods of combining them. In the first example
with the affine combination, we use three root find-
ing methods: Ezzati—Saleki, Halley and Newton, and
in the second example, we use Euler—Chebyshev (with
m = 1.7) and Newton. The Picard iteration is used
for all root finding methods in both examples with the
affine combination. For the example with the iterations
using several root finding methods, we use the Ezzati—
Saleki and Halley methods.

In multistep polynomiography, we can use a dif-
ferent polynomial in each step. Thus, in this case, we
cannot compute the considered measures—except for
generation time—because in each step we have a differ-
ent set of roots, so we do not know if after performing
all the steps the method has converged to a root or not.
Because of this, in the case of this method we will mea-
sure only generation time. The times will be measured
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for two implementations, namely an implementation
using CPU and another using GPU.

All the algorithms for polynomiograph generation
were implemented using GLSL shaders (GPU imple-
mentation) and, in the case of multistep polynomiogra-
phy, the CPU implementation was made in a Java-based
programming language named Processing. The exper-
iments were performed on a computer with the follow-
ing specifications: Intel i5-4570 (@3.2 GHz) processor,
16 GB DDR3 RAM, AMD Radeon HD7750 with 1 GB
GDDRS5, and Microsoft Windows 10 (64-bit).

6.1 Average number of iterations

The average number of iterations (ANI) [1,2] is com-
puted from the polynomiograph obtained using the iter-
ation colouring. Each point in this polynomiograph cor-
responds to the number of iterations needed to find a
root or to the maximal number of iterations when the
root finding method has not converged to any root. The
ANI measure is computed as the mean number of iter-
ations in the given polynomiograph.

Figure 15 presents the average number of iterations
in the parameters’ space for the affine combination of
three root finding methods. From the plot, we see that
ANI is a non-trivial and non-monotonic function of the
parameters. The minimal value of ANI, equal to 2.908,
is attained at 1 = 0.0, ap = 0.89, a3 = 0.11 and
the maximal value 20.422 is attained at «; = —1.0,
ar = —1.0, a3 = 3.0, so the dispersion of the values
is wide. The values of ANI for the methods used in the
combination are the following: 5.926 for the Ezzati—

Fig. 15 The average number of iterations in the parameters’
space (R2) for the affine combination of three root finding meth-
ods

Fig. 16 The average number of iterations in the parameters’
space (C) for the affine combination of two root finding methods

Saleki method, 3.155 for the Halley method and 5.082
for the Newton method. Comparing these values with
the minimal value obtained with the affine combination,
we see that using the affine combination we are able to
obtain a lower value of ANI than in the case of the
methods used in the combination.

The plot of ANI in the parameters’ space for the
affine combination of two methods is presented in
Fig. 16. Looking at the plot, we see that the ANIis a very
complex function of the parameters. We do not see any
monotonicity of this function. Moreover, we see that
the use of the complex parameters has a great impact
on the value of ANI. The low values of ANI are visible
in the central part of the plot, attaining the minimum
4222 at o; = 0.04 4 0.12i, o = 0.96 — 0.12i. The
maximal value of ANI (30) is attained at o) = —2 — 2i,
oy = 3 + 2i (the lower-left corner of the considered
area). Thus, dispersion in this case is also wide. The
values of ANI for the two methods used in the combina-
tion are the following: 7.846 for the Euler—Chebyshev
method and 5.082 for the Newton method. Thus, also in
the case of using the complex parameters in the affine
combination we are able to obtain a lower value of ANI
than in the case of the component methods of the com-
bination.

Figure 17 presents the results of computing the ANI
measure obtained for different iteration processes. The
values of ANI for the root finding methods (with the
Picard iteration) that were used in these iteration pro-
cesses are the following: 5.926 for the Ezzati—Saleki
method and 3.155 for the Halley method. For the Das—
Debata iteration (Fig. 17a), we see that the o parameter
has the biggest impact on the ANI, i.e. the greater the
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Fig. 17 The average number of iterations in the parameters’
space ([0, 11% and [0, 1]) for various iteration processes. a Das—
Debata, b Khan—Cho—Abbas, ¢ Yadav-Tripathi (fixed o', 8/, ¥')
d Yadav—Tripathi (fixed o, 8, y), e Yadav

value of o the lower the value of ANI. The minimum
value 1.738, that is significantly lower in the case of
the Ezzati—Saleki and Halley methods, is attained at
a = 1.0, B = 0.665. In Fig. 17b, we see the plot for
the Khan—Cho—Abbas iteration. This plot seems to have
auniform colour. This is due to the fact that for this iter-
ation we have small dispersion of the values, and the
obtained values of ANI are small compared to the max-
imum number of 30 iterations (minimum 1.738, maxi-
mum 6.238). In order to show better the variation of the
values, a plot with the colours limited to the available
values is presented in Fig. 18a. We see that ANI is a
complex function of the parameters used in the iteration
process. The results for the Yadav—Tripathi iteration are

@ Springer

Fig. 18 The average number of iterations in the parameters’
space ([0, 1 1?) for various iteration processes (the colours are lim-
ited to the available numbers of performed iterations). a Khan—
Cho—Abbas, b Yadav-Tripathi (fixed «, 8, y)

presented in Fig. 17¢ and d. In the case of fixed o', B’
and y’ (Fig. 17¢), we see that the higher the value of
« is, the higher the value of ANI. The minimal value
(2.132)is attained ata = 0,8 =0,y = 1 (¢’ = 0.2,
B = 0.5, vy = 0.3 are fixed). In the other case
(Fig. 17d), similarly to the Khan—Cho—Abbeas iteration,
we see a plot with an almost uniform colour. The disper-
sion of the values in this case is between 4.33 and 8.216.
In Fig. 18b, a plot with better visibility of the values’
variation is presented. From this plot, we see that the
dependency of ANI on the parameters is more complex
than in the case of fixed «’, B/, y'. This time, the mini-
mum is attained at &’ = 0.675, 8’ = 0.02, y’ = 0.305
(¢ = 0.2, 8 = 0.5, y = 0.3 are fixed). The last plot
in Fig. 17 presents the dependency of ANI on the «
parameter in the Yadav iteration. The dispersion of the
values is smaller than in the case of the Khan—Cho—
Abbas iteration and ranges from 1.7 to 2.433. Thus, for
all values of o we obtain better results than in the case
of methods used in the iteration. Moreover, we see that
the higher the value of « is, the lower the value of ANI.

6.2 Convergence area index

The convergence area index (CAI) [1,2] is computed
from the polynomiograph obtained using the iteration
colouring. Using the polynomiograph, we count the
number of converging points 7., i.e. points whose value
in the polynomiograph is less than the maximum num-
ber of iterations. Next, we divide n. by the total number
of points n in the polynomiograph, i.e.

CAI = 2. (26)
n



Fractal patterns from the dynamics

2471

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 19 The convergence area index in the parameters’ space
(R?) for the affine combination of three root finding methods

The value of CAI is between 0 and 1 and tells us how
much of the polynomiograph’s area has converged to
roots. The higher the value is, the larger area has con-
verged (0—no point has converged, 1—all points have
converged).

The CAI measure in the parameters’ space for the
affine combination of three root finding methods is pre-
sented in Fig. 19. Similarly to ANI, the function of
the parameters is a non-trivial one. Many points in the
parameters’ space have a high value of CAI. The max-
imal value (1.0) is, for instance, attained at «; = —1.0,
oy = —0.07, az3 = 2.07. The minimal value of 0.38,
which indicates a poor convergence of the combination,
is attained at 1 = —1.0, ap = —1.0, a3 = 3.0 (the
lower-left corner of the considered area). All the meth-
ods (Ezzati—Saleki, Halley and Newton) used in the
combination obtained the same value of CAI, namely
1.0, so all points have converged to the roots. Thus,
only the points in the parameters’ space that obtained
the same value of CAI are comparable with the original
methods. For instance, the point with the lowest ANI
has a value of CAl equal to 1.0; thus, using a combina-
tion with those parameters gives the same convergence,
but less iterations are needed to converge to the root.

Figure 20 presents the convergence area index in the
parameters’ space for the affine combination of two
root finding methods. The CAI measure for the meth-
ods used in the combination was the following: 0.991
for the Euler—Chebyshev method and 1.0 for the New-
ton method. From the plot in Fig. 20, we see that the
dependence of CAI on the parameters is very simi-
lar to the one obtained in the case of ANI—function
with a very complex shape. The highest values of CAI

Fig. 20 The convergence area index in the parameters’ space
(C) for the affine combination of two root finding methods

are obtained in the central part of the plot—the max-
imum is, for instance, attained at oy = 0.04 + 0.12i,
ar = 0.96 — 0.12i (the point with the minimal value
of ANI). To the contrary, the minimal value (0.0—no
point has converged) is attained at the lower-left corner
of the area. Thus, using the affine combination with the
complex parameters can worsen in a significant way the
convergence of the method compared to the methods
used in the combination.

The results of computing the CAI measure in the
parameters’ space for various iteration processes are
presented in Fig. 21. The CAI measure for both the
root finding methods (Ezzati—Saleki, Halley) that were
used in these iteration processes is equal to 1.0. For the
Das—Debata iteration (Fig. 21a), we see that, similar to
the case of ANI, the biggest impact on the CAl is due
to the  parameter. For low values of « the CAl is also
low, and from about 0.179 the value of CAI becomes
high. The value of 1.0 has about 40% of the points
in the parameters’ space. Compared to the Das—Debata
iteration, the Khan—Cho—Abbas iteration (Fig. 21b) has
lower dispersion of the values — from 0.962 to 1.0. In
order to see better the variation in the values, a plot
with the colours limited to the available values is pre-
sented in Fig. 22a. From the plot, we see that CAl is a
complex function of the parameters. Moreover, about
60% of the points has the highest value (1.0). For the
Yadav-Tripathi iteration (Fig. 21c, d), we see a very
similar dependency like the one for ANI. For the first
case (fixed o', B/, '), we see that the biggest impact
on the value of CAl is due to the o parameter and that
for high values of « the CAI measure has low values.
Moreover, only about 33% of the points in the parame-
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Fig. 21 The convergence area index in the parameters’ space
([0, 11% and [0, 1]) for various iteration processes. a Das—Debata,
b Khan-Cho-Abbas, ¢ Yadav-Tripathi (fixed o', B/, y') d
Yadav-Tripathi (fixed «, B, y), e Yadav
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Fig. 22 The convergence area index in the parameters’ space
([0, 11?) for various iteration processes (the colours are limited
to the available values of CAI). a Khan—Cho-Abbas, b Yadav—
Tripathi (fixed o, 8, y)
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ters’ space has a value of 1.0. In the second case (fixed
o, B, y), dispersion is low—values from 0.933 to 1.0.
The variation of the CAI values is a non-monotonic
function of the parameters (Fig. 22b) and the value of
1.0 has about 45% of the points. For the last iteration,
the Yadav iteration, the dependency on the parameter o«
of the CAl measure is a very simple function (Fig. 21e).
The function is constantly equal to 1.0, so for all values
of « all the points in the considered area have converged
to the roots.

6.3 Polynomiograph generation time

Generation time [13] is the time it takes to generate
the polynomiograph. This time gives us information
about the real time of computations, as distinct from
the ANI, where we have information about the number
of iterations without taking into account the cost of
computations in a single iteration.

In all examples, we are searching for the roots of
the same polynomial. In order to be able to compare
visually the plots in this section, the same interval of
time values was used to assign the colours. The ends
of the interval were selected as the minimum (0.035)
and the maximum (0.42) value of time taken from all
the examples. All times are in seconds.

Figure 23 presents the generation times in the param-
eters’ space for the affine combination of three root
finding methods. From the plot, we see that there is no
simple relationship between the parameters and time.
The times vary between 0.048 and 0.320 s. The short-
est time is attained at «; = 0.0, ap = 0.89, a3 = 0.11.

Fig. 23 Generation time (in seconds) in the parameters’ space
(R2) for the affine combination of three root finding methods
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Fig. 24 Generation time (in seconds) in the parameters’ space
(C) for the affine combination of two root finding methods

This is the same point as the point with the lowest
value of ANI. Comparing the shortest time with the
times measured for the root finding methods used in the
combination, i.e. 0.069 s for the Ezzati—Saleki method,
0.015 s for the Halley method and 0.026 s for the New-
ton Method, we see that the best time was obtained from
the combination of the Ezzati—Saleki method, while the
other two methods obtained a shorter time.

The obtained generation times for the affine com-
bination of two root finding methods are presented in
Fig. 24. The overall shape of the obtained function is
very similar to the functions obtained for the other two
measures (ANI, CAI). The shortest time (0.057 s) is
attained at &y = 0, «p = 1, which corresponds to
the second method used in the combination, i.e. the
Newton method. Thus, we see that the point with the
shortest time does not correspond to the point with
the lowest value of ANI, ie. o1 = 0.04 + 0.12i,
az = 0.96 — 0.12i. The time for the point with the
lowest ANI is 0.070 s.

The results obtained for the various iteration pro-
cesses are presented in Fig. 25. Generation times for
the root finding methods used in the iteration pro-
cesses were the following: 0.069 s for the Ezzati—Saleki
method and 0.015 s for the Halley method. The plot
for the Das—Debata iteration (Fig. 25a) is very simi-
lar to the plots of ANI and CAI. The longest times are
obtained for low values of «, whereas the shortest for
the high values. The shortest time (0.042) is attained
at« = 1, B = 0. At this point, the ANI measure is
equal to3.155, so it does not correspond to the point
with the lowest value of ANI (1.738). For the Khan—
Cho—Abbas iteration (Fig. 25b), again we see a plot
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Fig. 25 Generation time (in seconds) in the parameters’ space
([0, 11% and [0, 1]) for various iteration processes. a Das—
Debata, b Khan-Cho—Abbas, ¢ Yadav-Tripathi (fixed o', 8/, ')
d Yadav—Tripathi (fixed «, 8, y), e Yadav

of almost uniform colour. The variations in the values
are shown in Fig. 26a. From the plot, we see that the
dependency is different than in the case of ANI and
CAI and that it is a very complex function. The short-
est time (0.041) is attained at @ = 1, B = 0. This point
also does not correspond to the lowest value of ANI,
because at this point we have ANI equal to 3.155 and
the lowest value is equal to 1.738. In the first case of the
Yadav—Tripathi iteration (Fig. 25¢), the dependency of
time on the parameters looks very similar to the one for
ANI, but in the second case (Figs. 25d, 26b) we see a
different dependency. In Fig. 26b, we see that the vari-
ation in the values of time is small, and the variation
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Fig. 26 Generation time (in seconds) in the parameters’ space
([0, 11?) for various iteration processes (the colours are limited
to the available values of time). a Khan—Cho—Abbas, b Yadav—
Tripathi (fixed o, B, y)

Table 3 Generation times (in seconds) of multistep poly-
nomiographs using GPU and CPU implementations

Figures GPU CPU CPU/GPU
13a 0.256 10.235 39.980
13b 0.765 29.499 38.560
13c 3.547 125.474 35.374
14a 3.297 167.778 50.888
14b 4.532 288.217 63.595
14c 8.222 250.494 30.466
14d 11.358 367.619 32.366
l4e 3.269 194.876 59.613
14f 2.053 83.311 40.580

is bigger only near the lower-right corner. The shortest
times are the following: 0.07 s (at « = 0, 8 = 0.005,
y = 0.995) for the first case and 0.131 s (ata’ = 0.22,
B’ = 0.045, y' = 0.735) for the second case. Similar
to the other iterations, these points do not overlap with
the points with the lowest value of ANI. The last plot
in Fig. 25 presents the dependence of generation time
on the value of parameters « for the Yadav iteration.
We clearly see that the value of « has a great impact on
time and that the dependency has other characteristics
than in the case of ANI. The time varies between 0.035
and 0.078 s, so the shortest time is better than the one
obtained for the Ezzati—Saleki method, but worse than
the time obtained for the Halley method.

In Table 3, generation times (in seconds) of multi-
step polynomiographs from Figs. 13 and 14 are gath-
ered. The times for the GPU implementations vary
between 0.256 and 11.358 s, whereas for the CPU
implementation between 10.235 and 367.619 s. The
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Fig.27 The fractal dimension in the parameters’ space (R?) for
the affine combination of three root finding methods

speed-up obtained with the GPU implementation varies
between 30.466 and 63.595 times. Similar speed-up
was observed also for the other methods of combin-
ing root finding methods (affine combination, various
iteration processes).

6.4 Fractal dimension

The fractal dimension (FD) of a set provides an objec-
tive means to compare different sets in terms of their
complexity [44]. Using FD, we can compare how
details of a pattern change with the scale at which it
is being measured. In this experiment, we compute the
fractal dimension of boundaries of the basins of attrac-
tion of the polynomiograph. In order to estimate fractal
dimension, we use the standard box-counting method
[5].

Fractal dimension in the parameters’ space for the
affine combination of three root finding methods is pre-
sented in Fig. 27. The fractal dimension of boundaries
of the basins of attraction of the original methods used
in the combination was the following: 1.464 for the
Ezzati—Saleki method, 1.135 for the Halley method
and 1.324 for the Newton method. From the plot in
Fig. 27, we see that the FD is a non-trivial, complex
function of the parameters. Thus, we are not able to
predict the complexity of the pattern easily. The dis-
persion of the values is between 1.135 and 1.611, so
we obtain patterns with different complexity. The min-
imal value of FD is attained at oy = 0,0 = 1, a3 = 0.
This point in the parameters’ space corresponds to the
second root finding method, i.e. the Halley method. The
maximal value is attained at ;] = —0.85, ap = —0.07,
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Fig. 28 The fractal dimension in the parameters’ space (C) for
the affine combination of two root finding methods

a3 = 1.92. Comparing the values of FD obtained for
the affine combination to the values of FD of the origi-
nal methods, we see that with the use of the combination
we are able to obtain patterns of higher complexity than
that of the original patterns.

The results of computing FD depending on the
parameters of the affine combination of two root finding
methods are presented in Fig. 28. The obtained approx-
imation of the dependence function is very complex
and non-monotonic. Moreover, it is almost symmet-
rical with respect to the line J(«;) = 0. The low-
est values of FD are visible in the central part of the
plot, attaining the minimum at oy = 0, ap = 1. The
point with the minimum value of FD corresponds to the
Newton method, that was used as the second method
in the example. The FD for the Newton method is
equal to 1.324, and for the other method used in the
combination—the Euler—Chebyshev method—1.562.
The maximal value of FD 1.711, that is higher than
the values of FD for the methods used in the combina-
tion, is attained at o = 1.3 + 1.8i, ap = —0.3 — 1.8i.
Moreover, from the plot we see that for 9i(«1) > 0 the
obtained patterns for most of the points in the param-
eters’ space have a higher complexity than in the case
of N(a1) < 0.

Figure 29 presents plots of fractal dimension in the
parameters’ space for various iteration processes. The
fractal dimension for the root finding methods that were
used in the iteration processes is the following: 1.464
for the Ezzati—Saleki method and 1.135 for the Hal-
ley method. For the Das—Debata iteration (Fig. 29a),
we see a different relationship than in the case of the
previous measures. This time the biggest impact on the
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Fig. 29 The fractal dimension in the parameters’ space ([0, 17
and [0, 1]) for various iteration processes. a Das—Debata, b
Khan-Cho—-Abbas, ¢ Yadav-Tripathi (fixed &', ', ) d Yadav—
Tripathi (fixed «, 8, y), e Yadav

measure—fractal dimension—is due to the 8 parame-
ter. For very low values of 8, a low value of FD is visi-
ble. The minimal value 0.944 is attained at « = 0.004,
B = 0. This value of FD is less than the value of
FD for both methods used in the iteration. To the con-
trary, the maximal value 1.566 (attained at @ = 0.079,
B = 0.945) is greater than the value of FD for the
original methods. Thus, using the Das—Debata itera-
tion we are able to obtain patterns with both lower and
higher complexity compared to the patterns obtained
with the original methods. In Fig. 29b, the plot for the
Khan—-Cho—Abbas iteration is presented. The disper-
sion of values of FD is between 1.135 and 1.511. The
minimal value of FD is attained at « = 1, 8 = 0
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(lower-right corner of the parameters’ space), whereas
the maximal value at « = 0.412, 8 = 0.330. Similar to
the Das—Debata iteration, the relationship between the
parameters and the measure is different than in the case
of other measures. The function is non-monotonic. In
the case of the Yadav—Tripathi iteration (Fig. 29¢ and
d), the dispersion of FD values is different. For the
first case, the values vary between 1.327 and 1.535,
and for the second case between 1.42 and 1.525. In
both cases, the values of FD are greater than for the
Halley method (1.135). Moreover, the variations of the
values in the parameters’ space are different in both
cases. In the first case (Fig. 29¢), we see low variation
and obtain patterns with similar complexity, whereas
in the second case (Fig. 29d) we see higher variation
which results in obtaining patterns with various com-
plexities. The plot of FD for the last iteration process,
the Yadav iteration, is presented in Fig. 29e. From this
plot, we can observe that when we want to obtain pat-
terns with higher complexity we must take lower val-
ues of . The minimal value of FD, equal to 1.135, is
attained at « = 1, whereas the maximal value 1.49 at
a = 0.295.

6.5 Wada measure

A point P on the basin of attraction boundary is a Wada
point if every open neighbourhood of P has a non-
empty intersection with at least three different basins
[43]. If every boundary point is a Wada point, then
the set has a Wada property. In order to check if the
set has the Wada property, one can calculate a Wada
measure. A Wada measure W for a compact non-empty
set F' C Cis defined as
N3(e)

W = lim ——,
e—0 N(¢)

(27
where N (&) is the number of e-sized boxes that cover
F, and N3(g) is the number of g-sized boxes that cover
F and intersect at least 3 different basins of attraction.

In the experiment to approximate the Wada measure
of the basins of attraction, we use an algorithm intro-
duced in [44]. This measure indicates what percent-
age of boundary points is neighbouring more than two
basins of attraction simultaneously. This takes values
from O (region does not resemble a Wada situation) to
1 (region has full Wada property), where O corresponds
to 0% and 1 to 100%.
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Fig. 30 The Wada measure in the parameters’ space (R?) for
the affine combination of three root finding methods

Figure 30 presents the plot of a Wada measure in
the parameters’ space for the affine combination of
three root finding methods. The Wada measure for the
methods used in the combination has a high value,
i.e. 0.909 for the Ezzati—Saleki method, 0.847 for the
Halley method and 0.886 for the Newton method.
From the plot, we can observe that using the affine
combination we can obtain basins of attraction that
have a lower Wada measure than the methods used
in the combination. The values of the Wada measure
for the affine combination vary between 0.585 and
0.932. Thus, using the affine combination we cannot
only decrease the value of the Wada measure, but also
increase it. The minimal value of the Wada measure

is attained at o7 = —0.99, ap = —1, a3 = 2.99,
whereas the maximal value at «; = —0.57, ap = 0.01,
a3 = 1.56.

The Wada measure in the parameters’ space for the
affine combination of two root finding methods is pre-
sented in Fig. 31. From the plot, we see that the Wada
measure is a highly non-trivial and non-monotonic
function of the parameters. Moreover, we can observe
that the obtained function is symmetric with respect to
the line J(a1) = 0. For N(«;) > 0, the Wada measure
has a high value with the maximum of 0.965 located at
o1 = 1.42—1.56i,ap = —0.42+1.56i. The low values
are located in the left semi-plane, i.e. for J(a1) < O,
and the minimum 0.32 is attained at &1 = —2, ap = 3.
Comparing the values with the values of the Wada mea-
sure for the original methods used in the combination
(0.916 for the Euler—Chebyshev method and 0.886 for
the Newton method), we see that using the affine combi-
nation with complex parameters we are able to reduce
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Fig. 31 The Wada measure in the parameters’ space (C) for the
affine combination of two root finding methods

the Wada property of the basins of attraction signifi-
cantly.

The results of computing the Wada measure depend-
ing on the parameters of various iteration processes are
presented in Fig. 32. The values of the Wada measure
computed for the methods used in the iterations were
the following: 0.909 for the Ezzati—Saleki method and
0.847 for the Halley method. Looking at the plot for the
Das—Debata iteration (Fig. 32a), we see that the lowest
values of the Wada measure are obtained for very low
values of «, attaining the minimum 0.013 (no Wada
property) at « = 0.004, B = 0. The value of the mea-
sure increases as the value of « increases obtaining the
maximum value of 0.902 at « = 0.975, 8 = 0.68. In
the case of the Khan—Cho—Abbas iteration (Fig. 32b),
we can observe that for all the values of the parameters
the Wada measure is high. The dispersion of the values
is between 0.847 and 0.915. The variation of the values
is very complex (Fig. 33a) and looks like a noisy image.
The minimal value is attained at « = 1, § = 0 (the
lower-right corner of the parameters’ space), whereas
the maximal value at « = 0.407, 8 = 0.02. For the
first case of the Yadav—Tripathi iteration (Fig. 32c), the
Wada measure has low values near the lower-right ver-
tex of the parameters’ space. The minimal value 0.417,
which s significantly less than in the case of the original
methods used in the iteration, is attained at « = 0.99,
B =0,y =001 =028 =059y =03
are fixed). The high values of the Wada measure are
obtained for low values of «, attaining the maximum
of 0911 ata = 0, B = 0.985, y = 0.015 (¢/ = 0.2,
B’ = 0.5, ¥’ = 0.3 are fixed). In the second case of
the Yadav—Tripathi iteration (Fig. 32d), the dispersion
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Fig.32 The Wada measure in the parameters’ space ([0, 11? and
[0, 1]) for various iteration processes. a Das—Debata, b Khan—
Cho-Abbas, ¢ Yadav-Tripathi (fixed o', 8/, ') d Yadav-Tripathi
(fixed «, B, y), e Yadav
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Fig.33 The Wada measure in the parameters’ space ([0, 1]%) for
various iteration processes (colours are limited to the available
numbers of performed iterations). a Khan-Cho—Abbas, b Yadav—
Tripathi (fixed o, B, y)
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of the values is low. The values are between 0.879 and
0.908, so they lie between the values of the Wada mea-
sure obtained for the methods used in the iteration. The
variation of the values, similar to the case of the Khan—
Cho—Abbeas iteration, is a complex function (Fig. 33b).
The plot for the Yadav iteration (Fig. 32e) shows that the
Wada measure significantly depends on the o parame-
ter. The values of the measure (minimum 0.847, max-
imum 0.903) lie between the values obtained for the
methods used in the iteration.

7 Conclusions

In this paper, we presented the concept of the use
of combinations of different polynomial root find-
ing methods in the generation of fractal patterns. We
used three different combination methods: (1) affine, s-
convex combination, (2) iteration processes from fixed
point theory, (3) multistep polynomiography. The use
of combined root finding methods gives us more pos-
sibilities to obtain new and very interesting fractal pat-
terns. Moreover, we numerically studied the proposed
methods using five different measures. The obtained
results showed that in most cases the dependence of
the considered measure on the methods’ parameters is
a non-trivial, non-monotonic function. The results also
showed that using the combined root finding methods
we are able to obtain faster convergence, measured in
iterations, than using the methods of the combination
separately.

When we search for an interesting fractal pattern
using polynomiography, we must make the right choice
of polynomial, iteration process, convergence test etc.,
and using trial and error, we must find an interesting
area[21]. Adding the possibility of using different com-
bination methods of the root finding methods makes
the choice even more difficult, so there is a need for
an automatic or semi-automatic method that will find
interesting fractal patterns. The notion of an interest-
ing pattern is very difficult to define, because of the
subjectivity of what is interesting. Nevertheless, there
are some attempts to estimate this notion. For instance,
in [3] Ashlock and Jamieson introduced a method of
exploring Mandelbrot and Julia sets using evolution-
ary algorithms with different fitness functions. In future
research, we will attempt to develop a method similar
to Ashlock’s that will search for interesting patterns in
polynomiography.
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