Skip to main content
Log in

Coexistence stability in a four-member hypercycle with error tail through center manifold analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Establishing the conditions allowing for the stable coexistence in hypercycles has been a subject of intensive research in the past decades. Deterministic, time-continuous models have indicated that, under appropriate parameter values, hypercycles are bistable systems, having two asymptotically stable attractors governing coexistence and extinction of all hypercycle members. The nature of the coexistence attractor is largely determined by the size of the hypercycle. For instance, for two-member hypercycles the coexistence attractor is a stable node. For larger dimensions more complex dynamics appear. Numerical results on so-called elementary hypercycles with \(n=3\) and \(n=4\) species revealed, respectively, coexistence via strongly and weakly damped oscillations. Stability conditions for these cases have been provided by linear stability and Lyapunov functions. Typically, linear stability analysis of four-member hypercycles indicates two purely imaginary eigenvalues and two negative real eigenvalues. For this case, stability cannot be fully characterized by linearizing near the fixed point. In this letter, we determine the stability of a non-elementary four-member hypercycle which considers exponential and hyperbolic replication terms under mutation giving place to an error tail. Since Lyapunov functions are not available for this case, we use the center manifold theory to rigorously show that the system has a stable coexistence fixed point. Our results also show that this fixed point cannot undergo a Hopf bifurcation, as supported by numerical simulations previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eigen, M., Schuster, P.: The Hypercycle. A Principle of Natural Self-Organization. Springer, Berlin (1979)

    Google Scholar 

  2. Campos, P.R.A., Fontanari, J.F., Stadler, P.F.: Error propagation in the hypercycle. Phys. Rev. E 61, 2996–3002 (2000)

    Article  Google Scholar 

  3. Hofbauer, J., Mallet-Paret, J., Smith, H.L.: Stable periodic solutions for the hypercycle system. J. Dyn. Differ. Equ. 3(3), 423–436 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Smith, J.M., Szathmáry, E.: The Major Transitions in Evolution. Oxford University Press, Oxford (2001)

    Google Scholar 

  5. Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften 58, 465–523 (1971)

    Article  Google Scholar 

  6. Sardanyés, J.: The hypercycle: from molecular to ecosystems dynamics. In: Dupont, A., Jacobs, H. (eds.) Landscape Ecology Research Trends, chapter 6, pp. 113–124. Nova Publishers, 978-1-60456-672-7 (2009)

  7. Groenenboom, M.A.C., Hogeweg, P.: Space and the persistence of male-killing endosymbionts in insect populations. Proc. Biol. Sci. 269(1509), 2509–2518 (2002)

    Article  Google Scholar 

  8. Solé, R.V., Saldaña, J., Montoya, J.M., Erwin, D.E.: Simple model of recovery dynamics after mass extinction. J. Theor. Biol. 267(2), 193–200 (2010)

    Article  MathSciNet  Google Scholar 

  9. Nuño, J.C., Montero, F., de la Rubias, F.J.: Influence of external fluctuations on a hypercycle formed by two kinetically indistinguishable species. J. Theor. Biol. 165, 553–575 (1993)

    Article  Google Scholar 

  10. Sardanyés, J., Solé, R.V.: Ghosts in the origins of life? Int. J. Bifurc. Chaos 16(9), 2761–2765 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sardanyés, J., Solé, R.V.: Bifurcations and phase transitions in spatially-extended two-member hypercycles. J. Theor. Biol. 243, 468–482 (2006)

    Article  MathSciNet  Google Scholar 

  12. Sardanyés, J., Solé, R.V.: Delayed transitions in non-linear replicator networks: about ghosts and hypercycles. Chaos Solitons Fractals 31(2), 305–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Silvestre, A.M.M., Fontanari, J.F.: The information capacity of hypercycles. J. Theor. Biol. 254, 804–806 (2008)

    Article  Google Scholar 

  14. Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006)

    Article  MATH  Google Scholar 

  15. Carr, J.: Applications of Centre Manifold Theory. Applied Mathematical Sciences. Springer, New York (1981)

    Book  MATH  Google Scholar 

  16. Monagan, M.B., Geddes, K.O., Michael Heal, K., Labahn, G., Vorkoetter, S.M., McCarron, J., DeMarco, P.: Maple 10 Programming Guide. Maplesoft, Waterloo ON (2005)

    Google Scholar 

  17. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, Berlin, Heidelberg, Tokyo (1986)

    MATH  Google Scholar 

  18. Gasull, A., Guillamon, A., Mañosa, V.: An explicit expression of the first Liapunov and period constants with applications. J. Math. Anal. Appl. 211(1), 190–212 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Andronov, A.A., Leontovich, E.I., Gordon, I.I., Maier, A.G.: Theory of Bifurcations of Dynamic Systems on a Plane. Wiley, New York/Toronto (1973)

    MATH  Google Scholar 

  20. Eigen, M., Biebricher, C.K., Michael, G.: Coupling of RNA and protein biosynthesis in the infection cycle of an RNA bacteriophage. Biochemistry 30, 11005–11018 (1991)

    Article  Google Scholar 

  21. Shou, W., Ram, S., Vilar, J.M.G.: Synthetic cooperation in engineered yeast populations. Proc. Natl. Acad. Sci. USA. 104, 1877–1882 (2006)

    Article  Google Scholar 

  22. Amor, D.R., Montañez, R., Duran-Nebreda, S., Solé, R.: Spatial dynamics of synthetic microbial hypercycles and their parasites (2017). arXiv:1701.04767

Download references

Acknowledgements

This work has been partially funded by the Spanish grants MTM2013-41168-P, MTM2016-80117-P (MINECO/FEDER, UE) (EF) and MTM2015-71509-C2-2-R (MINECO/FEDER, UE) (AG), and the Catalan grants AGAUR 2014SGR-1145 (EF) and 2014SGR-504 (AG). JS has been partially funded by the CERCA Programme of the Generalitat de Catalunya. The research leading to these results has received funding from “la Caixa” Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Sardanyés.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 361 KB)

Appendices

Appendix 1: Proof of Proposition 1

Suppose we have an equilibrium point \(x^{*}\in S\) (in particular all components are greater or equal than 0) such that \(x^{*}_{j}=0\) for a fixed \(0\le j <n\). Then since \(\dot{x}_{j+1}=x_{j+1}\left( a(Q-1)+Qx_{j}-\sum _{k=1}^{n}{x_{k}x_{k-1}}\right) \) we have either \(x^{*}_{j+1}=0\) or

$$\begin{aligned} 0= & {} a(Q-1)+Qx^{*}_{j}-\sum _{k=1}^{n}{x^{*}_{k}x^{*}_{k-1}}=a(Q-1)\nonumber \\&-\sum _{k=1}^{n}{x^{*}_{k}x^{*}_{k-1}}. \end{aligned}$$

This last case would imply

$$\begin{aligned} \sum _{k=1}^{n}{x^{*}_{k}x^{*}_{k-1}}=a(Q-1)<0 \end{aligned}$$

since \(a>0\) and \(Q<1\), leading to a contradiction because the left-hand side should be positive or zero. Therefore, \(x^{*}_{j}=0\) implies \(x^{*}_{j+1}=0\) for any \(0 \le j < n\) (recall we identify \(x_{0} \equiv x_{n}\)) and so if there is some \(0\le j <n\) such that \(x^{*}_{j}=0\) we must have \(x^{*}=\vec {0}\). It is clear then that any fixed point \(x^{*} \in S\) different from the origin must satisfy

$$\begin{aligned} a(Q-1)+Qx^{*}_{j}-\sum _{k=1}^{n}{x^{*}_{k}x^{*}_{k-1}}=0, \quad \forall \; 1\le j \le n,\nonumber \\ \end{aligned}$$
(19)

which can be rewritten as

$$\begin{aligned} x^{*}_{j}=\frac{\sum _{k=1}^{n}{x^{*}_{k}x^{*}_{k-1}}-a(Q-1)}{Q}, \quad \forall \; 1\le j \le n.\nonumber \\ \end{aligned}$$
(20)

From (20) we see that all components must be equal and so (19) becomes the quadratic equation

$$\begin{aligned} a(Q-1)+Qx^{*}_{j}-n(x^{*}_{j})^{2}=0, \end{aligned}$$
(21)

which has the same two solutions for all \(j\in \{1,\dots ,n\}\):

$$\begin{aligned} x^{*}_{\pm ,1}=\dfrac{Q\pm \sqrt{Q^{2}-4na(1-Q)}}{2n}. \end{aligned}$$

It is easy to verify that if the discriminant in (21) is not negative (that is \(Q^{2}/(1-Q) \ge 4na\)), then such fixed points are contained in S because \(0<x^{*}_{\pm ,1}< 1/n\) and so \(\sum _{j=1}^{n}{x^{*}_{\pm ,1}}=nx^{*}_{\pm ,1}<1\). If \(Q^{2}/(1-Q) < 4na\), then the components are complex and the only fixed point that remains in S is the origin.

Appendix 2: Computation of G(y)

By the definition of F in (4), the j-th component of the vector field G defined in (10) can be written as

$$\begin{aligned} \begin{array}{rl} G_j(y)&{}=\left( C^{-1}f\left( C\,y+x_{+}^{*}\right) \right) _j\\ &{}=\sum \limits _{k=1}^{4} C^{-1}_{jk} \left( \sum \limits _{l=1}^{4}C_{kl}y_l+x^{*}_{+,1}\right) F_{k}\\ &{}=\sum \limits _{k,l=1}^{4} C^{-1}_{jk} C_{kl} y_l F_{k}+ \sum \limits _{k=1}^{4} C^{-1}_{jk} x^{*}_{+,1}F_{k}, \end{array} \end{aligned}$$
(22)

where \(F_k\) stands for \(F_k(C\,y+x_{+}^{*})\), \(x_{+}^{*}=(x^{*}_{+,1},x^{*}_{+,1},x^{*}_{+,1},x^{*}_{+,1})\), the notation \(A_{jk}\) denotes the entry of a matrix A located in the jth row and k-th column, C is defined in (9) and

$$\begin{aligned} C^{-1}=\displaystyle \frac{1}{4}\left( \begin{array}{cccc}2&{}0&{}-2&{}0\\ 0&{}2&{}0&{}-2\\ 1&{}-1&{}1&{}-1\\ 1&{}1&{}1&{}1\end{array}\right) . \end{aligned}$$

Next, we reduce the expression of the components of \(F(C\,y+x_{+}^{*})\) as:

$$\begin{aligned} \begin{array}{rcl} F_{j}(C\,y+x_{+}^{*})&{}=&{}a(Q-1)+Q\,(C\,y+x_{+}^{*})_{j-1}\\ &{} &{}-\sum \limits _{k=1}^{4}(C\,y+x_{+}^{*})_{k}(C\,y+x_{+}^{*})_{k-1}\\ &{}=&{}a(Q-1)+Q\,(C\,y)_{j-1}+Q\,x^{*}_{+,1}\\ &{} &{}-\sum \limits _{k=1}^{4}(C\,y)_{k}(C\,y)_{k-1}\\ &{} &{}-\sum \limits _{k=1}^{4} x^{*}_{+,1}((Cy)_{k}+(Cy)_{k-1}) -4\,{x^{*}_{+,1}}^2\\ &{}=&{}Q\,(C\,y)_{j-1} -\sum \limits _{k=1}^{4}(C\,y)_{k}(C\,y)_{k-1}\\ &{} &{}-\sum \limits _{k=1}^{4} x^{*}_{+,1}((C\,y)_{k}+(C\,y)_{k-1}), \end{array} \end{aligned}$$
(23)

subscripts j and k indicate components of vectors and in the last step we have used Eq. (6), and \((C\,y)_{0}:=(C\,y)_{4}\). Note that the last expression in the expansion of \(F_j\) only contains one term that depends on j, \(Q\,(C\,y)_{j-1}\), which can be computed directly from the definition of C in (9). The other two terms are the same for every \(j\in \{1,2,3,4\}\) and can be further simplified:

  • The linear term \(-\sum \limits _{k=1}^{4} x^{*}_{+,1}((C\,y)_{k}+(C\,y)_{k-1})\), thanks to the cyclic structure of the variables, satisfies \(\sum \limits _{k=1}^{4} ((C\,y)_{k}+(C\,y)_{k-1})=2\sum \limits _{k=1}^{4} (C\,y)_{k}\). Moreover, since \(\sum \limits _{k=1}^{4} C_{km}=0\) for \(m=1,2,3\) and \(\sum \limits _{k=1}^{4} C_{k4}=4\), then

    $$\begin{aligned} \sum \limits _{k=1}^{4} (C\,y)_{k}=\sum \limits _{k=1}^{4} \sum \limits _{m=1}^{4} C_{km} y_m= \sum \limits _{m=1}^{4} y_m \sum \limits _{k=1}^{4} C_{km}=4\,y_4. \end{aligned}$$

    We conclude that

    $$\begin{aligned} -\sum \limits _{k=1}^{4} x^{*}_{+,1}((C\,y)_{k}+(C\,y)_{k-1})=-8\,x^{*}_{+,1}\,y_4. \end{aligned}$$
  • For the quadratic term \(-\sum \limits _{k=1}^{4}(C\,y)_{k}(C\,y)_{k-1}\), if we call \(C_k\) the k-th row of matrix C, then it is easy to prove that

    $$\begin{aligned} \sum \limits _{k=1}^4 (C y)_{k} (C y)_{k-1}=y^{\top }\, M\, y,\end{aligned}$$

    where \(M:=\sum \limits _{k=1}^4 C_{k}^{\top } C_{k-1}\), assuming that \(C_0:=C_4\). A straightforward computation gives \(M=\left( \begin{array}{cccc} 0&{}-2&{}0&{}0\\ 2&{}0&{}0&{}0\\ 0&{}0&{}-4&{}0\\ 0&{}0&{}0&{}4\\ \end{array}\right) ,\) and so

    $$\begin{aligned} -\sum \limits _{k=1}^4 (C y)_{k} (C y)_{k-1}=4\,y_3^2-4\,y_4^2. \end{aligned}$$

Gathering the simplified expressions for the three terms from (23), we get:

$$\begin{aligned} F_{j}(C\,y+x_{+}^{*})=Q\,(C\,y)_{j-1}-8\,x^{*}_{+,1}\,y_4+4\,y_3^{2}-4\,y_4^{2}. \end{aligned}$$

We split this expression into \(F_{j}(C\,y+x_{+}^{*})=:F_{j}[1]+F[2]\), for each \(j=1,2,3,4\), according to the degree (notice that the quadratic term does not depend on j), where

$$\begin{aligned} \begin{array}{rl} F_{j}[1]&{}=Q\,(C\,y)_{j-1}-8\,x^{*}_{+,1}\,y_4,\\ F[2]&{}=4\,y_3^{2}-4\,y_4^{2}. \end{array} \end{aligned}$$

We plug the above expression for \(F_{j}\) into the expression of \(G_j\) obtained in (22):

$$\begin{aligned} G_j= & {} \sum \limits _{k,l=1}^{4} C^{-1}_{jk} C_{kl} y_l (F_{k}[1]+F[2])\\&+\sum \limits _{k=1}^{4} C^{-1}_{jk} x^{*}_{+,1}(F_{k}[1]+F[2]). \end{aligned}$$

The terms of order 1, 2 and 3 in y are then:

$$\begin{aligned} \begin{array}{rcl} G_j[1]&{}=&{}\sum \limits _{k=1}^{4} C^{-1}_{jk} x^{*}_{+,1}\, F_{k}[1],\\ G_j[2]&{}=&{}\sum \limits _{k,l=1}^{4} C^{-1}_{jk} C_{kl} y_l \,F_{k}[1]\\ &{} &{}+\sum \limits _{k=1}^{4} C^{-1}_{jk} x^{*}_{+,1}\,F[2],\\ G_j[3]&{}=&{}\sum \limits _{k,l=1}^{4} C^{-1}_{jk} C_{kl} y_l\, F[2], \end{array} \end{aligned}$$

which, after substitution of \(F_{k}[1]\) and F[2], become:

$$\begin{aligned} \begin{array}{rcl} G_j[1]&{}=&{}\sum \limits _{k=1}^{4} C^{-1}_{jk} x^{*}_{+,1}\, (Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4),\\ G_j[2]&{}=&{}\sum \limits _{k,l=1}^{4} C^{-1}_{jk} C_{kl} y_l \,(Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4)\\ &{} &{}+ x^{*}_{+,1}(4\,y_3^{2}-4\,y_4^{2}) \sum \limits _{k=1}^{4} C^{-1}_{jk},\\ G_j[3]&{}=&{}(4\,y_3^{2}-4\,y_4^{2})\,\sum \limits _{k,l=1}^{4} C^{-1}_{jk} C_{kl} y_l. \end{array} \end{aligned}$$
(24)

We develop each term separately, just substituting the entries of \(C^{-1}\) and C, respectively, in the following two steps:

$$\begin{aligned} G[1]= & {} x^{*}_{+,1}\, \left( \begin{array}{c} Q\frac{1}{2} ((Cy)_{4}-(Cy)_{2})\\ Q\frac{1}{2} ((Cy)_{1}-(Cy)_{3})\\ Q\frac{1}{4} ((Cy)_{4}-(Cy)_{1}+(Cy)_{2}-(Cy)_{3})\\ Q\frac{1}{4} ((Cy)_{4}+(Cy)_{1}+(Cy)_{2}+(Cy)_{3})-8\,x^{*}_{+,1}\,y_4\\ \end{array}\right) \\= & {} Q\,x^{*}_{+,1}\, \left( \begin{array}{c} -y_2\\ y_1\\ -y_3\\ y_4\\ \end{array}\right) +\left( \begin{array}{c} 0\\ 0\\ 0\\ -8\,{x^{*}_{+,1}}^{2}\,y_4\\ \end{array}\right) . \end{aligned}$$

This gives the linear term provided in (11), just recalling the definitions of \(\kappa =Q\,x^{*}_{+,1}\) and \(c=-(Q\,x^{*}_{+,1}-8\,{x^{*}_{+,1}}^{2})=-Q\,x^{*}_{+,1}+2\,Q\,x^{*}_{+,1}+2\,a(Q-1)=\kappa -2\,a\,(1-Q)\). The quadratic terms are given by the two terms of \(G_j[2]\) in (24), for \(j=1,2,3,4\). On the one hand, one term only influences the fourth component:

$$\begin{aligned}&x^{*}_{+,1}(4\,y_3^{2}-4\,y_4^{2}) \sum \limits _{k=1}^{4} C^{-1}_{jk}\\&\quad = \left\{ \begin{array}{l} 0 \quad \text{ if } j=1,2,3;\\ x^{*}_{+,1}(4\,y_3^{2}-4\,y_4^{2})\quad \text{ if } j=4. \end{array}\right. \end{aligned}$$

On the other hand, the term \(\sum \limits _{k,l=1}^{4} C^{-1}_{jk} C_{kl} y_l \,(Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4)\) requires more detailed computations. For \(j=1\),

$$\begin{aligned}&\sum \limits _{k,l=1}^{4} C^{-1}_{1k} C_{kl} y_l \,(Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4)\\&\quad =\sum \limits _{k=1,3}(-1)^{\frac{k-1}{2}}\frac{1}{2}\sum \limits _{l=1}^{4} C_{kl} y_l \,(Q\,(C\,y)_{k-1}{-}8\,x^{*}_{+,1}\,y_4)\\&\quad =\frac{1}{2}(y_1+y_3+y_4)(Q(-y_2-y_3+y_4)-8 x^{*}_{+,1}y_4)\\&\qquad -\frac{1}{2}(-y_1+y_3+y_4)(Q(y_2-y_3+y_4)-8 x^{*}_{+,1}y_4)\\&\quad =Q(-y_1y_3+y_1y_4-y_2y_3-y_2y_4)-8 x^{*}_{+,1}y_1 y_4, \end{aligned}$$

which coincides with the first component of G[2] in (11). Similarly, for \(j=2\):

$$\begin{aligned}&\sum \limits _{k,l=1}^{4} C^{-1}_{2k} C_{kl} y_l \,(Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4)\\&\quad =\sum \limits _{k=2,4} (-1)^{\frac{k-2}{2}}\frac{1}{2} \sum \limits _{l=1}^{4} C_{kl} y_l \,(Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4)\\\\&\quad =\frac{1}{2}(y_2-y_3+y_4)(Q(y_1+y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\qquad -\frac{1}{2}(-y_2-y_3+y_4)(Q(-y_1+y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\quad =Q(-y_1y_3+y_1y_4+y_2y_3+y_2y_4)-8 x^{*}_{+,1}y_2 y_4, \end{aligned}$$

which coincides with the second component of G[2] in (11). For \(j=3\):

$$\begin{aligned}&\sum \limits _{k,l=1}^{4} C^{-1}_{3k} C_{kl} y_l \,(Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4)\\\\&\quad =\sum \limits _{k=1}^{4} (-1)^{k-1}\frac{1}{4} \sum \limits _{l=1}^{4} C_{kl} y_l \,(Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4)\\\\&\quad =\frac{1}{4}(y_1+y_3+y_4)(Q(-y_2-y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\qquad -\frac{1}{4}(y_2-y_3+y_4)(Q(y_1+y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\qquad +\frac{1}{4}(-y_1+y_3+y_4)(Q(y_2-y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\qquad -\frac{1}{4}(-y_2-y_3+y_4)(Q(-y_1+y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\quad =Q(-y_1y_2)-8 x^{*}_{+,1}y_3 y_4, \end{aligned}$$

which coincides with the third component of G[2] in (11). For \(j=4\):

$$\begin{aligned}&\sum \limits _{k,l=1}^{4} C^{-1}_{4k} C_{kl} y_l \,(Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4)\\\\&\quad =\sum \limits _{k=1}^{4} \frac{1}{4} \sum \limits _{l=1}^{4} C_{kl} y_l \,(Q\,(C\,y)_{k-1}-8\,x^{*}_{+,1}\,y_4)\\\\&\quad =\frac{1}{4}(y_1+y_3+y_4)(Q(-y_2-y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\qquad +\frac{1}{4}(y_2-y_3+y_4)(Q(y_1+y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\qquad +\frac{1}{4}(-y_1+y_3+y_4)(Q(y_2-y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\qquad +\frac{1}{4}(-y_2-y_3+y_4)(Q(-y_1+y_3+y_4)-8 x^{*}_{+,1}y_4)\\\\&\quad =Q(-y_3^2+y_4^2)-8 x^{*}_{+,1}y_4^2, \end{aligned}$$

which, after adding the expression \(x^{*}_{+,1}(4\,y_3^{2}-4\,y_4^{2})\) obtained above, coincides with the last component of G[2] in (11).

Finally, similar computations lead to:

$$\begin{aligned} G_1[3]= & {} (4\,y_3^{2}-4\,y_4^{2})\,\sum \limits _{k=1,3}(-1)^{\frac{k-1}{2}}\frac{1}{2}\sum \limits _{l=1}^{4} C_{kl} y_l\\= & {} (4\,y_3^{2}-4\,y_4^{2})\left( \frac{1}{2} (y_1+y_3+y_4)\right. \\&\left. -\frac{1}{2} (-y_1+y_3+y_4)\right) \\= & {} (4\,y_3^{2}-4\,y_4^{2})\,y_1;\\ G_2[3]= & {} (4\,y_3^{2}-4\,y_4^{2})\,\sum \limits _{k=2,4}(-1)^{\frac{k-2}{2}}\frac{1}{2}\sum \limits _{l=1}^{4} C_{kl} y_l\\= & {} (4\,y_3^{2}-4\,y_4^{2})\left( \frac{1}{2} (y_2-y_3+y_4)\right. \\&\left. -\frac{1}{2} (-y_2-y_3+y_4)\right) \\= & {} (4\,y_3^{2}-4\,y_4^{2})\,y_2;\\ G_3[3]= & {} (4\,y_3^{2}-4\,y_4^{2})\,\sum \limits _{k=1}^{4}(-1)^{{k-1}}\frac{1}{4}\sum \limits _{l=1}^{4} C_{kl} y_l\\= & {} (4\,y_3^{2}-4\,y_4^{2})\,y_3;\\ G_4[3]= & {} (4\,y_3^{2}-4\,y_4^{2})\,\sum \limits _{k=1}^{4} \frac{1}{4} \sum \limits _{l=1}^{4} C_{kl} y_l\\= & {} (4\,y_3^{2}-4\,y_4^{2})\,y_4, \end{aligned}$$

as in (11) (notice that, in the last two steps, for the sake of the presentation, we do not display the full expansion in terms of the \(C_{kl}\) elements). This completes the computation to obtain the expressions in (11) from (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farré, G., Sardanyés, J., Guillamon, A. et al. Coexistence stability in a four-member hypercycle with error tail through center manifold analysis. Nonlinear Dyn 90, 1873–1883 (2017). https://doi.org/10.1007/s11071-017-3769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3769-6

Keywords

Navigation