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Abstract In this paper, we consider semi-continuous
dynamical systems with linear impulsive conditions,
which have a convex order one periodic solution of uni-
lateral asymptotic type. By constructing a sequence of
switched systems and using the square approximation
of the order one periodic solution, some stability crite-
ria of the order oneperiodic solution are obtained.Com-
pared with the continuous dynamical system, these cri-
teria are very similar and also easily to be applied in
the research of practical problems.

Keywords Order one periodic solution · Square
approximation · Successor function · Orbitally stable

1 Introduction

Impulsive semi-dynamical systems have played an
important role in describing the sudden change during
the process of continuous development. These systems
consist of two parts: differential equations that describe
continuous variation of state and impulsive conditions
that describe the discontinuity points of the solution
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at the moments of impulse. The theoretic research of
this kind of system is of great importance. In recent
decades, more and more attentions have been attracted
and considerable work has been done [1–13].

However, for the stability of the solution of an impul-
sive semi-dynamical system, there is still very lim-
ited results. Besides the famous Analogue of Poincaré
Criterion [13,14] which has been popularly used,
researchers have been attempting to obtain more avail-
able methods. Tian et al. [15] studied the stability of
the positive order one periodic solution for a solv-
able semi-continuous dynamical system by using geo-
metric approach. E. M. Bonotto et al. and his part-
ners considered Lyapunov stability of closed sets and
Poisson stability in impulsive semi-dynamical systems
[4,5] and also got a different version of the Poincaré–
Bendixson theorem [3]. Successor functions are also
directly applied to analyze the stability of the order one
periodic solution [10,11,16,17]. Furthermore, several
researchers havemade attempts to generalize the stabil-
ity theory of continuous dynamical systems into impul-
sive semi-dynamical systems [18–21]. Although there
are so many researchers taking part in this work, there
is still little result that can be easily applied to show the
stability of a solution for impulsive semi-dynamical
systems. Even the well-known Analogue of Poincaré
Criterion is limited to use because the stability is closely
related to the initial value of the periodic solution. Pre-
viously, researchers [18–21] mainly focused on get-
ting related stability results for some specific impul-
sive semi-dynamical systems. However, to the best of
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our knowledge, there were no general stability crite-
ria for the order one periodic solutions of impulsive
semi-dynamical systems. The purpose of this paper is
to establish the stability theory for order one periodic
solutions of impulsive semi-dynamical systems.

In this paper, we mainly discuss the stability of a
convex order one periodic solution of unilateral asymp-
totic type. The paper is organized as follows. In Sect. 2,
some notation and definitions of the semi-continuous
dynamical systems are given. In Sect. 3, wemainly dis-
cuss the stability of the order one periodic solution by
using the square approximation of switched systems.
An applied example is given in Sect. 4 and the paper
ends with a brief conclusion.

2 Preliminaries

In this section, some notation and definitions of semi-
continuous dynamical systems are given. They will be
used in the following discussions.

Definition 2.1 ([10]) Consider the state-dependent
impulsive differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= P(x, y),

dy

dt
= Q(x, y),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(x, y) /∈ M{x, y},

�x = α(x, y),

�y = β(x, y),

⎫
⎬

⎭
(x, y) ∈ M{x, y}.

(1)

The dynamical system consisting of the solution map-
pings of the system (1) is defined as a semi-continuous
dynamical system which is denoted by (�, f, ϕ, M).
The initial point P is required not in the set M{x, y},
that is, P ∈ � = R2+ \ M{x, y}, and ϕ is a continu-
ous mapping that satisfies ϕ(M) = N . We call ϕ the
impulse mapping. M{x, y} and N {x, y} stand straight
lines or curves in R2+, and we call M{x, y} and N {x, y}
the impulse set and phase set, respectively.

Definition 2.2 ([10]) Let f (P, t) : � → � be the
solution mapping of system (1). If there exists a point
A ∈ N {x, y} and a T such that f (A, T ) = B ∈
M{x, y} and ϕ(B) = ϕ( f (A, T )) = A ∈ N {x, y},
then f (A, t) is called an order one periodic solution of

system (1) with period T ( see Fig.1, denoted by ˜AB).
The orbit of the order one periodic solution is called an
order one cycle ( see Fig.1, denoted by ˜AB ∪ BA).

Definition 2.3 Suppose � = f (P, t) is an order one
periodic solution of system (1). If for any ε > 0, there
must exist δ > 0 and t0 ≥ 0, such that for any point
P1 ∈ U (P, δ) ∩ N {x, y}, we have ρ( f (P1, t), �) < ε

for t > t0 , then we call the order one periodic solution
� is orbitally stable.

Definition 2.4 ([10]) Suppose that both the impulse
set M and phase set N of system (1) are straight lines,
then a coordinate system can be defined in the phase
set N . Consider point A ∈ N , and its coordinate is
a. Assume the trajectory starting from point A inter-
sects the impulse set M at a point A′, and point A′ is
mapped to point A1 ∈ N after impulsive effect. Denote
the coordinate of A1 by a1, then we call point A1 the
successor point of point A and call F(A) = a1 − a the
successor function of point A.

Lemma 2.1 ([10]) The successor function F(A) is
continuous on N.

Lemma 2.2 ([10]) If there are two points A ∈ N , B ∈
N such that F(A)F(B) < 0, then there exists a point
C ∈ N between A and B such that F(C) = 0.

For order one circles (denoted by˜AB∪ BA for con-
venience of description ), suppose the trajectory˜AB is
not tangent to the impulse set M , that is to say, point
B is not a point of tangency. For any point D̄ in the
phase set N near point A, we are interested in the posi-
tion of its successor point Ē . According to the position
relationship of points D̄ , Ē and the order one periodic
solution ˜AB, all of order one cycles can be classified
into the following three types:

Type 1 the order one circle ˜AB ∪ BA is convex,
and points D̄ , Ē are at the same side of ˜AB. We call
this type of order one periodic solution a convex order
one periodic solution of unilateral asymptotic type (see
Fig. 1a);

Type 2 the order one circle˜AB ∪ BA is not convex,
but points D̄ , Ē are still at the same side of ˜AB (see
Fig. 1b);

Type 3 points D̄ , Ē are at different sides of˜AB (see
Fig. 1c).

Theorem 2.5 Consider the order one periodic solu-
tion ˜AB of type 1, suppose any point D in the ε-
neighborhood of point A, there must exist a point D̄ in
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Fig. 1 Three types of order
one periodic solutions

(a) (b) (c)

the phase set N such that the trajectory through point
D̄ passes through point D. If for any point D whose
corresponding point D̄ is above point A and the suc-
cessor function of D̄ satisfies F(D̄) < 0, then the order
one periodic solution ˜AB is unidirectional stable.

In the next section, we mainly discuss the stability
of an order one periodic solution of the type 1 for a
kind of semi-continuous dynamical system with linear
impulse functions.

3 Main results

Consider the following dynamical system with impul-
sive state feedback control where the impulse functions
are linear:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t)
dt = P(x, y),

dy(t)
dt = Q(x, y),

⎫
⎬

⎭
x < h,

�x(t) = −αx, �y(t) = −βy(t),
}

x = h.

(2)

Suppose ˜AB is a convex order one periodic solution
of unilateral asymptotic type with period T of system
(2) (see Fig. 2a). We denote it by � and suppose˜AB is
not tangent to the impulse set x = h. For any point D
in the ε−neighborhood of A, there must exist a point
D̄ in the phase set N such that the trajectory through
D̄ passes through point D. If for any point D, both of
whose corresponding points D̄ and Ē are above point
A and F(D̄) < 0, then the order one periodic solution
� is unidirectional stable by Theorem 2.5 (see Fig. 2b).

What we need to do in the following is to find a method
to verify that the successor function F(D̄) < 0.

So far, however, there is still no available method
for the calculation of the successor function of order
one periodic solutions. In this paper, with the aid of
square approximation of the order one periodic solu-
tion and the stability analysis of hybrid limit cycles of
a kind of switched system, we will give a computing
method for the successor function of order one periodic
solutions which is similar to the method for continuous
dynamical systems.

For the order one periodic solution ˜AB of system
(2), we denote A by A(xa, ya) and B by B(xb, yb).
Since point B is mapped to point A by the impulsive
mapping, the time spent by this behavior is 0. In order
to use the square approximation of the order one peri-
odic solution, we assume that the time spent by the
impulsive mapping is T/n ( see Fig. 2c) and construct
the following systems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)

dt
= P(x, y),

dy(t)

dt
= Q(x, y)

(3)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)

dt
= −αnh

T � P1(x, y),

dy(t)

dt
= n(ya−yb)

T � Q1(x, y), n = 1, 2, . . . .

(4)
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Fig. 2 The order one
periodic solution of system
(2) and its square
approximation

(a) (b) (c)

These two systems motivate us to consider an approx-
imation of switched systems for the semi-continuous
dynamical system (2). Hence, in order to study the sta-
bility of the order one periodic solution ˜AB of sys-
tem (2), we formulate the following hybrid system
(switched system whose switching law is determined
by states):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= P(x, y),

dy(t)

dt
= Q(x, y),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

initial values in the phase set x = (1 − α)h,

dx(t)

dt
= −αnh

T � P1(x, y),

dy(t)

dt
= n(ya−yb)

T � Q1(x, y),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

initial values in the pulse set x = h.

(5)

For simplicity, we introduce the following denota-
tions

Z(x, y), X1(P(x, y), Q(x, y)), X2(P1(x, y), Q1(x, y)),

then the system (5) can be rewritten as

d

dt
[Z(x, y)] = c1X

1 + c2X
2, (6)

or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)

dt
= Z1(x, y) = c1P(x, y) + c2P1(x, y),

dy(t)

dt
= Z2(x, y) = c1Q(x, y) + c2Q1(x, y),

(7)

where c1 = 0, c2 = 1 if initial values are in the pulse
set x = h and c1 = 1, c2 = 0 if initial values are in the
phase set x = (1 − α)h.

For system (2), we assume the closed curve con-
sisting of curve ˜AB and line segment BA is an order
one periodic circle. Arbitrarily choose a point S0 in the

phase set x = (1 − α)h which is near point A, then
there exists a range of points:

{S1, S2, . . . , Sk, Sk+1, . . .},
where S1 is the successor point of S0, S2 is the successor
point of S1, and so on (see Fig. 3a).

Establish a coordinate system at the phase set such
that the coordinate of A is 0. Let s0, s1, . . . , sk, sk+1, . . .

be the coordinates of points S0, S1, . . . , Sk, Sk+1, . . . ,

respectively.

Lemma 3.1 For any point S0 in the phase set which is
near point A, if the point range Sk → A, k → ∞,
i.e., the sequence sk → 0, k → ∞, then the order
one periodic solution is asymptotically stable (unidi-
rectional).
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Fig. 3 The successor points
of systems (2) and (7)

(a) (b)

Lemma 3.2 (Königs) Assume s̄ = f (s) is a continu-
ous transform of line segment L to itself and s = 0 is
a fixed point. If the part of the curve s̄ = f (s) which is
near the origin of the plane (s, s̄) lies in the interior of
the area

| s̄
s
| ≤ 1 − ε(≥1 + ε), ε > 0,

then the fixed point s = 0 is stable (unstable).

Proof We just prove the stability when | s̄s | ≤ 1 − ε,
otherwise, the discussion is similar.

Select η > 0 small enough such that for any s in the
noncentral neighborhood U 0(0, η) of the fixed point
s = 0 satisfies

| s̄
s
| ≤ 1 − ε = δ < 1,

then we have s̄ ≤ δ|s| < |s|.
For arbitrary point range {sk} ⊂ U 0(0, η) which are

obtained by the transform starting from point s0, we
can easily get |s1| < δ|s0|, |s2| < δ|s1|, · · · , then we
have |sn| ≤ δn|s0| and |sn| → 0 when n → ∞, which
means the fixed point s = 0 is stable. The proof is
completed. �

Corollary 1 Assume that function s̄ = f (s) is deriv-
able at s = 0, then the fixed point s = 0 is stable
(unstable) if | ds̄ds |s=0 < 1(>1).

Lemma 3.3 Assume H(x, y) has continuous partial
derivatives with respect to x and y on R2, x and y are

Fig. 4 The periodic solution of the switch system (7)

functions of t , S is a closed curve that starts from point
A in the direction as indicated by the arrow (see Fig. 4)
and the period is T , then
∮

S

[
d

dt
H(x, y)

]

dt =
∫ T

0

[
d

dt
H(x, y)

]

dt = 0.

Proof According to the derivation rule of the multi-
variable function, we have d

dt H(x, y) = ∂H
∂x

dx
dt +

∂H
∂y

dy
dt , then the left of the above equation can be rewrit-

ten as
∮

S

[
d

dt
H(x, y)

]

dt =
∮

S

[
∂H

∂x

dx

dt
+ ∂H

∂y

dy

dt

]

dt

=
∮

S

[
∂H

∂x
dx + ∂H

∂y
dy

]

.
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Let P(x, y) = ∂H
∂x , Q(x, y) = ∂H

∂y . Since the nec-
essary and sufficient condition of line integral indepen-
dent of the path is

∂P

∂y
= ∂2H

∂x∂y
= ∂2H

∂y∂x
= ∂Q

∂x
, (8)

if the two second order mixed partial derivatives ∂2H
∂x∂y

and ∂2H
∂y∂x are continuous in the area of interest, then

they must be equal and we can easily get
∮

S

[
d

dt
H(x, y)

]

dt =
∫ T

0

[
d

dt
H(x, y)

]

dt = 0.

The proof is completed. �

In Fig. 2, we see the periodic solution �n whose

period is (1 + 1
n )T (see Fig. 2c) as the square approx-

imation of the order one periodic solution � whose
period is T (see Fig. 2a), then for any continuously
differentiable function D(x(t), y(t)), we have the fol-
lowing result

Lemma 3.4 Assume continuous periodic solutions �n

is the square approximation of the order one periodic
solution � of unilateral asymptotic type, then
∫

�

D(x(t), y(t))dt = lim
n→∞

∮

�n

D(x(t), y(t))dt.

For the order one periodic solution ˜AB of system
(2), we have given the successor point of any point near
A on the phase set. Correspondingly, we also consider
the periodic solution �n = ˜AB ∪ BA of the switched
system (7) and give the successor point of any point a
near A ( see Fig. 3b).

Arbitrarily choose a point a in the phase set which
is near point A, then there exists a range of points:

{a+
1 , a+

2 , . . . , a+
k , a+

k+1, . . .},
where A is the successor point of A, a+

1 is the successor
point of a, a+

2 is the successor point of a+
1 , and so on

(see Fig. 3b).
In order to get the explicit expression of the succes-

sor function of the point near the order one periodic
solution �, we firstly give the expression of the suc-
cessor function of the point near the square approxi-
mate periodic solution �n . Here, calculation methods
to solve the successor function for continuous systems
are supposed to be applied. To this end, we transform

Fig. 5 The curvilinear coordinate system of the switch system

the successor point in the rectangular coordinate system
into the successor point in the curvilinear coordinate
system.

We still denote the convex order one periodic solu-
tion of unilateral asymptotic type of system (2) by
� = ˜AB and the periodic solution of the square approx-
imate switched system (7) by �n = ˜AB ∪ BA ( see
Fig. 5 ). We want to calculate the successor function
F(Sk) of any point Sk near point A. For this purpose,
we firstly establish coordinate system at the phase set
N , and the coordinate of any point in the phase set is its
coordinate on y axis. Suppose the coordinate of point
Sk is ySk , the trajectory passing through point Sk inter-
sects the pulse set at a point b. Point c is the phase point
of point b and its coordinate is yc, then the successor
function of point Sk is F(Sk) = yc − ySk < 0 (see
Fig. 5).

According to Theory 2.5, the necessary and suffi-
cient condition for the unidirectional stability of the
order one periodic solution is: for any point Sk above
point A,

F(Sk) = yc − ySk < 0

is satisfied.
So what we need to do is finding a method to calcu-

late the value of F(Sk).
Along the direction of the trajectory of˜AB, we intro-

duce the curvilinear coordinates (s, n), where s is the
arc length starting from point A, and its increasing
direction is consistent with the increasing direction of
time t; n is the length of the normal, and its positive
direction is to the left side when traveling along the
periodic orbit ( see Fig. 5 ). The trajectory through point
Sk intersects n axis at point a and intersects impulse set
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Stability of a convex order one periodic solution of unilateral asymptotic type 89

M at b, while the trajectory through point c intersects
n axis at point d. We define the successor function of
point Sk in the curvilinear coordinate system is

F⊕
1 (Sk) = nd − na < 0.

According to Theory 2.5, the necessary and suffi-
cient condition for the unidirectional stability of the
order one periodic solution is: for any point Sk above
point A,

F(Sk) = yc − ySk < 0 ⇔ F⊕
1 (Sk) = nd − na < 0

is satisfied.
In order to study the stability of the convex order

one periodic solution of unilateral asymptotic type, we
assume P(x, y) and Q(x, y) in system (2) have deriva-
tives of any order. Suppose the equations of orbital
curve ˜AB are x = f (t), y = g(t), t ∈ [0, T ], which
is also consistent with that the period of the order one
periodic solution � is T . For the curvilinear coordinate
system (s, n) , take arc length s as a parameter, the
equations of the orbital curve ˜AB are

x = ϕ(s), y = ψ(s).

For the switched system (7), the orbital curve seg-
ment BA is the orbital curve of system (4), and its
equations are

x = ϕ1(s), y = ψ1(s),

so the equations of the periodic solution �n is

⎧
⎨

⎩

x = �(s) = c1ϕ(s) + c2ϕ1(s),

y = �(s) = c1ψ(s) + c2ψ1(s),
(9)

where c1 = 0, c2 = 1 if initial values are in the pulse
set x = h and c1 = 1, c2 = 0 if initial values are in the
phase set x = (1 − α)h.

Assume that the curvilinear coordinate of A is
(�(s),�(s)) (here, �(s) and �(s) are not smooth at
points A and B, so we needmake a smoothing approxi-
mation for�(s) and�(s) at points A and B by drawing
new curve in a small enough neighborhood of points A
and B, see Fig. 4 ), then for point a , the relationship
between its rectangular coordinates (x, y) and curvi-
linear coordinates (s, n) is:

x = �(s) − n� ′(s), y = �(s) + n�′(s).
Let Z10(x, y), Z20(x, y) represent the value of

Z1(x, y), Z2(x, y) at periodic solution �n , that is,

Z10(x, y) = Z1(�(s),�(s)), Z20(x, y) = Z2(�(s),�(s)).

According to system (7), we can easily get

dy

dx
= � ′(s) + �′(s) dnds + n�′′(s)

�′(s) − � ′(s) dnds − n� ′′(s)

= Z2(�(s) − n� ′(s),�(s) + n�′(s))
Z1(�(s) − n� ′(s),�(s) + n�′(s))

and

dn

ds
= Z2�

′ − Z1�
′ − n(Z1�

′′ + Z2�
′′)

Z1�′ + Z2� ′ = F(s, n).

(10)

Suppose Z1, Z2 have continuous partial derivatives,
then F(s, n) has continuous first-order partial deriva-
tive with respect to n and (10) can be rewritten as

dn

ds
= F ′

n(s, n)|n=0 + o(n). (11)

After simple calculations, we have
F ′
n(s, n)|n=0

= Z10
Z2
10Z2y0 − Z10Z20(Z1y0 + Z2x0) + Z2

20Z1x0

(Z2
10 + Z2

20)
3
2

= H(s)

(12)

where Z1x0, Z1y0, Z2x0 and Z2y0 denote partial deriva-
tives of Z1 and Z2 when n = 0, respectively. H(s)
denotes the curvature of the curvilinear trajectory at
point A, so the approximate equation of (10) is
dn

ds
= H(s)n,

and by simple calculations, we can get

n = n0 exp

(∫ s

0
H(s′)ds′

)

, n0 = n(0). (13)

Theorem 3.1 Assume that γ is the length of the peri-
odic curve �n = ˜AB ∪ BA of system (7), then the
periodic solution �n is stable provided

∫ γ

0
H(s)ds < 0. (14)

Proof Consider the trajectory abcd (see Fig. 5), the
coordinates of a and b in the coordinate system (s, n)

is denoted by n0 and n, respectively. According to (13),
if

∫ γ

0 H(s)ds < 0, then we have |n(γ )| < |n0|. By
Lemmas 3.1 and 3.2, the periodic solution�n is stable.
The proof is completed. �


123



90 M. Huang et al.

Corollary 2 (Dilibereto) Along the periodic solution
�n, if H(s) < 0, then the periodic solution�n is stable.

Let ds =
√

Z2
10 + Z2

20dt , then the left of the
inequality (14) can be rewritten as
∫ γ

0
H(s)ds

=
∫ T+ T

n

0

1

Z2
10 + Z2

20
[Z2

10Z2y0

−Z10Z20(Z1y0 + Z2x0) + Z2
20Z1x0]dt

=
∫ T+ T

n

0
[Z1x0 + Z2y0

− Z2
10Z1y0 + Z10Z20(Z1y0 + Z2x0)+Z2

20Z1x0

Z2
10 + Z2

20

]

dt

=
∫ T+ T

n

0
(Z1x0 + Z2y0)dt− 1

2

∮

�n

d(Z2
10 + Z2

20)

Z2
10+Z2

20
dt

=
∫ T+ T

n

0
(Z1x0 + Z2y0)dt.

Theorem 3.2 If the integral along the periodic solu-
tion �n of system (7) satisfies

∫ T+ T
n

0
(Z1x0 + Z2y0)dt < 0,

then �n is orbital asymptotical stable.

Furthermore, according to (3) and (4), we have

Z1x0 = ∂Z1

∂x
= ∂P

∂x
, Z2y0 = ∂Z2

∂y
= ∂Q

∂y
,

then we can easily get

∫ T+ T
n

0
(Z1x0 + Z2y0)dt =

∫ T+ T
n

0

(
∂P

∂x
+ ∂Q

∂y

)

dt.

Theorem 3.3 If the integral along the periodic solu-
tion �n of system (7) satisfies

∫ T+ T
n

0

(
∂P

∂x
+ ∂Q

∂y

)

dt < 0,

then �n is orbital asymptotical stable.

Since

�n → �,
T

n
→ 0, T + T

n
→ T, n → ∞,

by Lemma 3.4 we can get

Theorem 3.4 If the semi-continuous dynamical sys-
tem (2) has a convex order one periodic solution � =
˜AB of unilateral asymptotic type with period T , and
the integral along the periodic solution � satisfies
∫ T

0

(
∂P

∂x
+ ∂Q

∂y

)

dt < 0,

then the order one periodic solution � is orbital stable
(but not necessarily orbital asymptotical stable ).

Corollary 3 If the semi-continuous dynamical system
(2) has a convex order one periodic solution � = ˜AB
of unilateral asymptotic type with period T , and the
region G that contains the periodic solution � satisfies

∂P

∂x
+ ∂Q

∂y
< 0,

then the order one periodic solution � is orbital stable.

4 Applied example

In this example, a cooperative system with state feed-
back impulsive harvesting is presented. Let x(t) and
y(t) be the densities of two different populations at time
t , respectively. There is an adjustable constant thresh-
old value h for the density of the first population, and
it will be harvested with proportion α when its density
x reaches h. Then the system is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = x(t)(r1 − ax(t) + by(t)),

dy(t)
dt = y(t)(r2 + cx(t) − dy(t)),

⎫
⎬

⎭
x < h,

x(t+) = (1 − α)x(t), y(t+) = y(t),
}

x = h,

x(0) = x0 < h, y(0) = y0
(15)

where r1 and r2 are intrinsic growth rates, a and d
are density dependent coefficients and the population
interaction is governed by b and c.

Without impulsive effect, we can easily get the equi-
libria of the ordinary differential system that consists of
the first two equations of system (15). There are always
three boundary equilibria: an unstable node O(0, 0)
and two saddle points A(r1/a, 0) and B(0, r2/d). If
ad − bc > 0, there is another interior node (x∗, y∗)
that is globally stable in the first quadrant, where
x∗ = r1d+r2b

ad−bc , y∗ = ar2+cr1
ad−bc .
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Fig. 6 Existence of order
one periodic solution of
system (15) when
ad − bc ≤ 0 and when
ad − bc > 0 and
h < r1d+r2b

ad−bc

(a) (b)

We assume h ≤ r1d+r2b
ad−bc when ad − bc > 0. In fact,

if h > r1d+r2b
ad−bc , the population level of x will not be

in a high state to be harvested because it will tend to
r1d+r2b
ad−bc eventually without human intervention.
To discuss the existence of the order one periodic

solution of system (15), we firstly build coordinate sys-
tem on the phase set x = (1 − α)h. For any point
M(xM, yM) in the phase set, let its coordinate be yM .
Then we have the following result

Theorem 4.1 Assume that ad−bc ≤ 0 (or ad−bc >

0, h ≤ r1d+r2b
ad−bc ), then system (15) has a positive order

one periodic solution.

Proof Suppose that the isocline r2 + cx − dy = 0
intersects the vertical lines x = (1 − α)h and x = h
at points C((1 − α)h, yC ) and D(h, yD), respectively.
Points E((1 − α)h, yE ) and G((1 − α)h, yG) are on
the phase set x = (1− α)h, where yE = yD and point
G is above and sufficiently close to the point C (see
Fig. 6, where (a) for the case ad − bc ≤ 0 and (b) for
the case ad − bc > 0).

Since r2 + cx − dy = 0 is the horizontal isocline,
variable y decreases above this horizontal isocline in
the vector field and increases in the lower half of the
vector field. Consider the trajectory of system (15)
starting from point E , it must intersect the impulse set
x = h at a point E ′, and after impulsive effect, the point
E ′ is mapped to a point E1 which is in the phase set x =
(1 − α)h. Since yE1 = yE ′ < yD = yE , the successor
function of point E satisfies F(E) = yE1 − yE < 0.
Furthermore, the trajectory starting from point G must
intersect the impulse set x = h at a point G ′, and after
impulsive effect, the pointG ′ ismapped to a pointG1 in
the phase set x = (1−α)h. SinceG is sufficiently close
to pointC , yG ′ > yC and yG1 = yG ′ > yG , the succes-
sor function of pointG satisfies F(G) = yG1−yG > 0.

According to Lemma 2.2, there must exist a point N
between points E and G on the phase set x = (1−α)h
such that F(N ) = 0, that is to say, there must exist an
order one periodic solution passing through point N .
The proof is completed. �

Theorem 4.2 If ad − bc ≤ 0 (or ad − bc > 0, h ≤
r1d+r2b
ad−bc ), then the order one periodic solution of system
(15) is orbital stable.

Proof Obviously, the order one periodic solution of
system (15) we have given in Theorem 4.1 can be clas-
sified into Type 1, that is, it is a convex order one peri-
odic solution of unilateral asymptotic type. Now we
use the results we have obtained in Sect. 3 to show the
orbital stability of the periodic solution.

Since the divergence of the system (15)

∂P

∂x
+ ∂Q

∂y
= r1 + r2 + (c − 2a)x + (b − 2d)y

is not a constant, and we cannot determine it is positive
or negative.

Let B(x, y) = 1
xy , then

∂PB

∂x
+ ∂QB

∂y
= −

(
a

y
+ d

x

)

< 0,

according to the Dulacs theorem, Theorems 3.3 and
3.4, we know the order one periodic solution of system
(15) is orbital stable. The proof is completed. �


5 Conclusion

In this paper, we studied a kind of semi-continuous
dynamical system with linear impulsive conditions.
The focus has been mainly on the stability analy-
sis of the order one periodic solution. To the best
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of our knowledge, the calculation of the succes-
sor function in semi-continuous dynamical systems
is not easy. Because the dissmoothness at the pulse
point, stability criteria of continuous dynamical sys-
tems cannot be applied directly. Although researchers
in the recent years have created several methods to
prove the stability of an order one periodic solution,
these methods always have no generality and applied
only to particular models. Even the famous Analogue
of Poincaré Criterion is not convenient in practical
use for the stability of the order one periodic solu-
tion can only be judged with the aid of the initial
value.

In order to give a general stability criterion of order
one periodic solutions which can be used easily, we
firstly classified all order one periodic solutions into
three types. In this paper, we just studied the type
1, that is, the closed convex order one periodic solu-
tion of unilateral asymptotical type. To make use of
theoretic results of continuous dynamical systems, we
constructed a sequence of switched systems, each of
which has a hybrid limit cycle. These hybrid limit
cycles can form a square approximation for the order
one periodic solution. Similar to the stability analy-
sis in continuous dynamical systems, we got stabil-
ity criteria for these hybrid limit cycles, then obtained
the stability results for the order one periodic solu-
tion by using square approximation. The classification
method of order one cycles is first proposed in this
paper, and for the type 1 order one cycle, we suc-
cessfully generalized the stability criteria of continu-
ous dynamical systems into impulsive semi-dynamical
systems.

Our ultimate goal is to solve the stability of the order
one periodic solution of all the three types, but the cur-
rent method we introduced in this paper is only appli-
cable to closed convex ones of unilateral asymptotical
type. The study of the other two types is under our
future explorations.
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