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Abstract The paper discusses a dynamicmodel of the
system consisting of an on-board hoisting winch on a
moving vessel, cable, and load. The model account-
ing for large rope sag and hydrodynamic drag force
was used to solve the problem of dynamic optimisa-
tion. The essence of which is what angle of rotation
should be selected for the hoisting winch to ensure that
the load during the defined movement of the vessel
shall remain at the set distance from the seabed, which
may be undulating. To solve this problem, the nonlinear
optimisation methods were used. The presented calcu-
lation results show the efficiency of the developed 3D
systemmodel and its possible application to solve other
similar optimisation problems.

Keywords Application ·Dynamicmodel ·Nonlinear
optimisation · Load positioning

1 Introduction

In contemporaryoffshore engineering systems, increas-
ingly complicated devices are used that enable opera-
tion at great depths and in difficult conditions. To simu-
late operation of such devices, complex dynamicsmod-
els, applied in commercial software packages (Rifflex,
Orcaflex, Proteus), are required. The models of cables
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or raisers, which frequently occur in the offshore engi-
neering systems, have to account for their large sags
or bowing, variable configuration, and loads caused by
water impact (wavy motion, buoyancy force, the pres-
ence of sea currents, hydrodynamic drag, volume of
associated water, etc.). To divide the flexible structure
into discrete elements, the following methods are used:
finite element method [1,2], lumped mass method [3],
segment method [4–6]. Generally speaking, for mod-
elling of flexible structure in the offshore engineering
systems the methods used include those developed,
inter alia, in the analysis ofmultibody system dynamics
with recognition of flexibility. A broad review of meth-
ods used is presented in the paper [7]. For modelling
of flexible structures the rigid finite element method
(RFEM) is also used [8–10]. The modification of that
method is presented in this paper. A similar approach
was applied in the study [11] where the flexible seg-
ment model was presented. The model developed there
assumes, however, dependency of coordinates of ith
element on the coordinates of preceding elements. This
assumption is redundant in the proposed RFEM modi-
fication due to the formulation of appropriate equations
of geometric bonds. The issue ofmethod selection used
for dividing susceptiblemembers such as cables or rais-
ers, into discrete elements, gains special importance
in solving the problem of controlling the propulsion
drives of marine equipment. The numerically effective
model of the system dynamics, reflecting its character-
isticswith acceptable accuracy, enables the formulation
and even solution of appropriate optimisation tasks or

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-2593-0&domain=pdf


1638 Ł. Drąg

their sequence for a specific set of control parameters.
The results may then be provided as inputs for artificial
neural networks and consequently used for control. The
questions of dynamic optimisation of cables and raisers
are quite rarely presented in the literature. This problem
for cranes operated in marine conditions is discussed in
papers [12,13]. In the above papers, as in many others,
the cable ismodelled as an elastic and damping element
without mass. Such a simplification is not used in the
aforementioned commercial software packages. That
method was also applied to partition the raiser into dis-
crete elements [14]. Also the monograph [15] formu-
lated the problem of dynamic optimisation involving
the compensation of wave motion during pipe laying
using a drummethod with the application of rigid finite
element method (RFEM).

This paper presents a 3D model of the elastic ele-
ment with bending and possibly torsional compliance,
enabling the mapping of large cable and raiser sags.
The model developed through the application of own
modification of RFEM eliminates translation rigidity
from further consideration (shearing in both directions
and longitudinally one) and optionally torsion. The for-
mulation of the rigid finite element method presented
in this paper differs considerably from the previous for-
mulations. The motion of each rigid finite element (rfe)
is described by three displacements, two rotation angles
reflecting bending, andone rotation angle reflecting tor-
sion (when necessary). Thus, each rfe has either five or
six degrees of freedom. The elements are connected by
means of three geometrical constraint equations due to
the necessary continuity of displacements at the points
connecting the elements. Such an approach has already
been applied by the author but for planar systems with
consideration of bending [16,17] or bending and lon-
gitudinal flexibilities. In the formulation presented in
[16], each rfe has four degrees of freedom: two transla-
tions, bending rotation, and elongation, while the ele-
ments with three degrees of freedom (two translations
and bending) are used in [17]. Constraint equations are
formulated for both the planar and spatialmodels; how-
ever, there are 2*(n+1) constraint equations in planar
models (2D) described in [16,17], while for the spatial
models (3D) considered in this paper, 3*(n+1) con-
straint equations have yet to be formulated. In both for-
mulations, n+1 is the number of rigid finite elements
into which the flexible link is divided.

Thus, the models of spatial slender systems pre-
sented in this paper are generalisations of the planar

models presented in [16,17]. Similarly to the approach
from [17], the longitudinal flexibility is omitted, which
enables the equations of motion to be integrated using
relatively large integration step. So, the presentedmod-
ification of RFEM is characterised by high numerical
efficiency, which enables its use for dividing the cable
into discrete elements while solving a dynamic opti-
misation problem. The dynamic optimisation problem
considered further in this paper is shown in Fig. 1.

It involves determination of the angle of rotation of
a hoisting winch ϕ(t), which shall ensure that the load
is at a constant distance from the surface of the sea
bottom.

2 Susceptible element model

Figure 2a shows elastic beam element of constant cross
section, which during primary division was partitioned
into n equal sections (Fig. 2b) with the length of:

� = L

n
(1)

During secondary division, in the middle of these sec-
tions spring damping elements were placed (sde) ⊗ as
shown in Fig. 2c.

Parts of unit located between unit ends and sde, and
between sde, are hereinafter regarded as rigid elements
(rfe). Their number is n + 1 (numbered from 0 to n).
As a result of that division, the unit is replaced with
the n + 1 system of rigid solids (rfe) assuming mass
properties of the unit and n non-dimensional spring
damping elements (sde) without mass assuming unit’s
elastic (bending) properties.

The operational procedure when the unit is of vari-
able section or concentrated loads are attached is
described in detail in papers [9,18].

The movement of each rfe is defined by the vector
components:

qi =

⎡
⎢⎢⎢⎢⎢⎢⎣

xi
yi
zi
ψi

θi
ϕi

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

qi,1
qi,2
qi,3
qi,4
qi,5
qi,6

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2)

where xi , yi , zi are coordinates of point Ai and ψi , θi ,

ϕi are Euler’s angles Z ′Y ′X ′, presented in Fig. 3, that
are rotations around system axis {i}′ combined with rfe
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Fig. 1 Selection of angle of
rotation of a hoisting winch

Fig. 2 Division of an
elastic unit to spring
damping elements (sde) and
rigid finite elements (rfe), a
unit length, b primary
division, c secondary
division

Fig. 3 Rigid finite element
and its global coordinates

123



1640 Ł. Drąg

i . Such angles are used in aviation mechanics and are
called heading, attitude, and bank [19].

While applying homogeneous transformations, the
coordinates of the point defined in the local coordinate
system {i}′ combined with rfe i may be expressed in
the inertial system according to the following formula:

ri = Bir′
i , (3)

where

r′
i = [

x ′ y′ z′ 1
]T
—coordinates of the point in the

local system {i}′,
ri = [

x y z 1
]T
—coordinates of the point in the

global system {},
Bi =

[
Ri ri
0 1

]
—homogeneous transformation

matrix.

Ri =
⎡
⎣
cψi −sψi 0
sψi cψi 0
0 0 1

⎤
⎦
⎡
⎣

cθi 0 sθi
0 1 0

−sθi 0 cθi

⎤
⎦

×
⎡
⎣
1 0 0
0 cϕi −sϕi
0 sϕi cϕi

⎤
⎦ ,

ri =
⎡
⎣
xi
yi
zi

⎤
⎦ , cψi = cosψi , sψi = sinψi ,

cθi = cos θi , sθi = sin θi , cϕi = cosϕi ,

sϕi = sin ϕi .

Elements ofBi matrix are defined unequivocally by the
components of the vector qi . The kinetic energy of rfe
i can be defined with following dependence [9]:

Ei = 1

2
tr{ḂiHi ḂT

i }, (4)

where Hi = ∫
mi

r′
ir′T

i dmi .
It should be noted that elements of Hi matrix are

constant. Under the assumption that axes y′, z′ of the
{i}′ system are main axes, whereas x ′

i axis is symmet-
rical axis, the Hi matrix referred to in (4) shall assume
the following form:

Hi =

⎡
⎢⎢⎢⎣

hi,x 0 0 miai

0 hi,y 0 0

0 0 hi,z 0

miai 0 0 mi

⎤
⎥⎥⎥⎦ , (5)

where hi,x = ∫
mi

x ′2
i dmi , hi,y = ∫

mi
y′2
i dmi , hi,z =∫

mi
z′2i dmi ,mi—mass of the ith sde element.

Following the procedure referred to in (17), the
Lagrange operators from kinetic energy of rfe i may
be presented as follows:

εqi (Ei ) = d∂Ei

dt∂q̇i
− ∂Ei

∂qi
= Ai q̈i + hi , (6)

where ai, jk = tr{Bi, jHiBT
i,k} j, k = 1, ...,m,

hi, j =
m∑

k=1

m∑
l=1

q̇i,k q̇i,l tr{Bi,kHiBT
i,kl} j = 1, ...,m,

m = 6—number of generalised coordinates describing
movement of rfe i .

The calculation of Ai matrix elements and hi vec-
tor using formulae referred to in (6) is very time-
consuming in terms of computer processing time. Once
derivatives of Bi matrix have been calculated, it would
be desirable to calculate products and traces ofmatrices
present in formulae of ai, jk and hi, j . The high number
of elements present in (5) is at the same time equal to
nil. Therefore, in this paper a similar method was used
to that referred to in [9]: products and traces ofmatrices,
referred to in (5), were calculated analytically.

Individual rigid finite elements are combined to
form a kinematic chain by means of geometric bonds
(Fig. 4a). Forces present in links are shown in Fig. 4b.

To account for reactions in the links of rigid finite
elements (rfe), it is necessary to introduce generalised
forces. Generalised forces imposed on rfe i , originating
from Fi and from Fi+1, might be presented as follows:

Q(Ai )
i =

(
∂ri
∂qi

)T

Fi , (7a)

Q(Ai+1)

i =
(

∂ri+1

∂qi

)T

· (−Fi+1) . (7b)

Since

ri =
⎡
⎣
xi
yi
zi

⎤
⎦ , (8a)

ri+1 = Ri

⎡
⎢⎣
li
0

0

⎤
⎥⎦+

⎡
⎣
xi
yi
zi

⎤
⎦ , (8b)

then

∂ri
∂qi

=
⎡
⎢⎣
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎤
⎥⎦ = D, (9a)
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Fig. 4 Combination of
rigid finite elements (rfe)
into kinematic chain, a rigid
finite elements (rfe) and
spring damping elements
(sde), b forces in links

∂ri+1

∂qi
=
⎡
⎢⎣
1 0 0 −li sψi cθi −li sψi cθi 0

0 1 0 li cψi cθi li sψi sθi 0

0 0 1 0 −cθi 0

⎤
⎥⎦=Di .

(9b)

Finally, the generalised forces caused by forces affect-
ing rigid finite elements rfe i reactions in Ai and Ai+1

may be noted as:

Q(F)
0 = Q(A0)

0 = −D
T
0 F1, (10a)

Q(F)
i = Q(Ai )

i + Q(Ai+1)

i

= D
T

Fi − D
T
i Fi+1, for i = 1, . . . , n. (10b)

Equations of bonds ri = ri−1+Ri−1

[
li−1
0
0

]
connected

with the rigid finite elements (rfe i) link with i−1, after
their double differentiation, shall assume the following
form:

Dq̈i − Di−1q̈i−1 = Gi for i = 1, 2, ..., n, (11)

where

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−li−1
(
ψ̇2
i−1cψi−1cθi−1 − 2ψ̇i−1

×θ̇i−1sψi−1sθi−1 + θ̇2i−1cψi−1cθi−1
)

−li−1
(
ψ̇2
i−1sψi−1cθi−1 − 2ψ̇i−1

×θ̇i−1cψi−1sθi−1 + θ̇2i−1sψi−1cθi−1
)

li−1θ̇
2
i−1sθi−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Given that movement of point An+1, rn+1 = rn+1(t) is
known, the additional equation of bonds may be noted
in acceleration-related form as:

− Dn q̈n = Gn+1, (12)

where

Gn+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−lnbig(ψ̇2
n cψncθn

−2ψ̇n θ̇nsψnsθn + θ̇2n cψncθn
)

−ln
(
ψ̇2
n sψncθn

−2ψ̇n θ̇ncψnsθn + θ̇2n sψncθn
)

ln θ̇2n sθn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ r̈n+1.

It should be noted here that given that the hoisting
winch drum rotates, the cable can reel/unreel on the
drum. As a consequence, the length ln of the rfe n
changes and the variable figure of n, being the num-
ber of elements into which the cable was divided.

The potential energy of terrestrial gravity forces of
rigid finite elements (rfe i)may be presented as follows:

Vg,i = mi g · yCi , (13)

where g—acceleration of gravity, yCi—y coordinate
of mass centre Ci .

Using the denotations in Fig. 2, the following calcu-
lation can be made:

∂Vg,i
∂qi

= mig

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

ai cψi cθi
−ai sψi sθi

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

When flexural (bending) and torsional compliance are
considered for discrete element, the moments caused
by elastic strain of spring damping elements (sde) ⊗
must be introduced to element motion equations. Sde
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Fig. 5 Spring damping element i , a moments generated by bending, b angles of relative strain

i generates moments M ′
i,ψ , M

′
i,θ , and M ′

i,ϕ shown in
Fig. 5a.

Generally, it is assumed [9] that moments M ′
i,ψ ,

M ′
i,θ i M ′

i,ϕ can be nonlinear functions of angles �ψi ,
�θi i �ϕi :

M ′
i,ψ = M ′

i,ψ (�ψi ) , (15a)

M ′
i,θ = M ′

i,θ (�θi ) , (15b)

M ′
i,ϕ = M ′

i,ϕ (�ϕi ) . (15c)

In the case of linear physical relationships, it can be
assumed that:

M ′
i,ψ = ki,ψ�ψi , (16a)

M ′
i,θ = ki,θ�θi , (16b)

M ′
i,ϕ = ki,ϕ�ϕi , (16c)

where ki,ψ , ki,θ , ki,ϕ are flexural and torsional rigidity
factors.

Angles �ψi , �θi , and �ϕi can be calculated based
on the following formula:

Ri
� = RT

i−1Ri . (17)

If moments M ′
i,ψ , M

′
i,θ , and M ′

i,ϕ are known, then their
effect causes the occurrence of appropriate generalised
forces in the motion equations.

According to Fig. 5a, rigid finite elements (rfe
i − 1) shall be affected by the moments M ′

i,ψ , M
′
i,θ

and M ′
i,ϕ , and rigid finite elements (rfe i) by -M ′

i,ψ ,
-M ′

i,θ , -M ′
i,ϕ . So spring damping element (sde) ⊗

of i number shall lead to occurrence of generalised
forces:

A. In rfe i − 1 motion equations

Qi−1,Mi

(
M ′

i,ψ , M ′
i,θ , M

′
i,ϕ

)

=
[
0 0 0 M ′

i,ψ M ′
i,θ M ′

i,ϕ

]
(18a)

B. In rfe i motion equations

Qi,Mi

(
M ′

i,ψ , M ′
i,θ , M

′
i,ϕ

)

= −
[
0 0 0 M ′′

i,ψ M ′′
i,θ M ′′

i,ϕ

]T T

(18b)

Figures M ′′
i,ψ , M

′′
i,θ , and M ′′

i,ϕ may be roughly assumed
to be equal toM ′

i,ψ ,M
′
i,θ , andM

′
i,ϕ , or can be calculated

precisely using the following formula:

M′′
i = RT

i Ri−1M′
i (19)

The motion equations of rfe 0, …, n (so far without
taking into account the impact of aquatic environment)
can be presented as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0q̈0 + D
T
0 F1 = −h0 − ∂Vg,0

∂q0
+ Q0,M1 = f0

...

Ai q̈i − D
T

Fi + D
T
i Fi+1

= −hi − ∂Vg,i
∂qi

+ Qi,Mi + Qi,Mi+1 = f i
...

An q̈n − D
T

Fn + D
T
n Fn+1

= −hn − ∂Vg,n
∂q0

+ Qn,Mn = fn

(20)

This is a system of 5·(n+1) differentiation ordinary
equations of second order with 5·(n+1) unknowns,
which are components of the vectors q0 ÷ qn , and
3·(n+1) unknowns, which are components of reaction
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Application of dynamic optimisation to the trajectory of a cable-suspended load 1643

vectorsF1÷Fn+1. The above equations have to be sup-
plemented with 3·(n+1) bond equations (11) and (12):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dq̈1 − D0q̈0 = G0
...

Dq̈i − Di−1q̈i−1 = Gi
...

Dq̈n − Dn−1q̈n−1 = Gn

−Dn q̈n = Gn+1

. (21)

(22)

Before the presentation of the method how to solve
the system of equations (20) and (21) the water impact
forces were introduced into the system.

3 Consideration of aquatic environment impact

The aquatic environment impact forces, for examined
flexible elements, of large length and small cross sec-
tion, can be introduced using Morison equations [20].
If forces caused by flow inside the element are dis-
regarded, then consideration of aquatic environment
impact requires taking into account the following:

– buoyancy force
– viscous resistance forces
– force of inertia.

Below a method is presented for introducing the above
forces into the element motion equations.

3.1 Buoyancy force

If ith rigid finite element (rfe) is fully immersed in
water, then the buoyancy force (Fig. 6) can be calcu-
lated as:

fw,i =
li∫

0

⎡
⎢⎣

0
gρwCi

0

⎤
⎥⎦dξ =

⎡
⎢⎣

0
liρwCi

0

⎤
⎥⎦ , (23)

where ρw is water specific gravity and Ci is cross-
sectional area for rigid finite element (rfe i).

Meanwhile, the generalised force will be added in
the motion equations for ith element:

Qw,i = gρwCi

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

ai cψi cθi

−ai sψi sθi
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

Fig. 6 Buoyancy force and hydrodynamic resistance

3.2 Viscous resistance forces

The circular unit section which is dξ in length is
affected by the hydrodynamic resistance force [21]
(Fig. 6):

df ′
H,i = SH,i (qi , q̇i,ξ )dξ, (25)

where D′
x ,D

′
yz—longitudinal and lateral resistance fac-

tors,

V′ =
⎡
⎣

V ′
x

V ′
y

V ′
z

⎤
⎦ is relative velocity vector for dξ

element in the coordinate system for rigid finite ele-
ment rfe {i}′,
V ′
yz =

[
V ′2

y + V ′2
z

] 1
2
.

The generalised force that occurred due to the effect
of dfH,i force corresponding to coordinate qi,k is pre-
sented by the following dependence:

QH,i,k =
∫ li

0
dQH,i,l

= tr

{
Ri

∫ li

0
SH,i (qi , q̇i , ξ)

(
∂r

∂qi,k

)T

dξ

}

(26)

The integrals present in (26) may be calculated using
Gauss formulae. The generalised forces generated by
water resistance shall occur on the right-hand side of
rigid finite elements (rfe) motion equations:

QH,i = [
QH,i,1, QH,i,2, QH,i,3, QH,i,4, QH,i,5, QH,i,6

]T
.

(27)

3.3 Force of inertia

When applying the Morison equation, it may be
assumed that the force of inertia influencing ith rfe ele-

123



1644 Ł. Drąg

ment, which is dξ long, is defined in the inertial system
as:

dfI,i = [CMCiρwaw − (CM − 1)Ciρwa] dξ

= dfwI,i + dfaI,i (28)

where

dfwI,i = ewI awdξ, ewI = CMCiρw,

dfaI,i = eaIadξ, eaI = −(CM − 1)Ciρw,

CM—coefficient,
aw—water acceleration,
a—acceleration of rigid finite element (rfe i) with

the length of dξ .
The first component in (28) shows forces caused by

water movement (acceleration), and the second one by
movement (acceleration) of the rigid finite element dξ

rfe i .
After dfI,i integration over the length of element li ,

it may be stated that generalised forces caused by water
acceleration are as follows:

Qw
I,i = [

Qw
I,i,1, Qw

I,i,2, Qw
I,i,3, Qw

I,i,4, Qw
I,i,5, Qw

I,i,6

]T
(29)

The generalised forces caused by effect of forces dfaI,i
can be calculated as:

Qa
I,i,k =

∫ li

0
tr

{
dfaI,i

∂r
∂qi,k

}
, (30)

and after the following transformations:

Qa
I,i,k = tr

{
B̈iPi,aBT

i,k

}
. (31)

where Pi,a =

⎡
⎢⎢⎣

1
3 l

3
i 0 0 1

2 l
2
i

0 0 0 0
0 0 0 0
1
2 l

2
i 0 0 li

⎤
⎥⎥⎦.

The generalised forces, referred to in (31), may be
presented as follows:

Qa
I,i,k = AI,i q̈i + hI,i . (32)

where AI,i, jk = tr
{

Bi, jPi,aBT
i,k

}
,

hI,i, j =
m∑

k=1

m∑
i=1

q̇i,k q̇i,k tr
{

Bi,kPi,aBT
i,kl

}
.

Taking into consideration the generalised forces orig-
inating in the aquatic environment, one can record
movement rfe 0 ÷ n in the following manner:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M0q̈0 + D
T
0 F1 = f0

...

Mi q̈i − D
T

Fi + D
T
i Fi+1 = fi

...

Mn q̈n − D
T
n Fn+1 = fn

, (33)

where Mi = Ai − AI,i ,

fi = f i + Qw,i + QM,i + Qw
I,i + Qa

I,i .

The equations of bonds (21) remain unchanged.
Fourth-order Runge–Kutta method was applied for

integration of motion equations (33) with the constant
time step of numerical integration. Since bond equa-
tions were transformed into acceleration-related form,
to stabilise them, the Baumgart method was used [22].

4 Model validation

Before proceeding to solving the optimisation prob-
lem, the cable model was validated from the perspec-
tives of static and dynamic calculations. A comparison
was made of the results obtained using the model with
accurate solution for catenary line, disregarding the
rigidity of flexible cable, and the results generated by
the Abaqus commercial software package. The impact
of torsion on the results of numerical simulations and
computation time was also examined.

4.1 Static problem

For static calculations, own results were benchmarked
against results obtained analytically. Exact values of x ,
z coordinates and force T in the cables were calculated
using the following formula [3]:

x(s) = Hs

E A
+ H

w

[
arcsinh

V − wL + ws

H

− arcsinh
V − wL

H

]
, (34a)

z(s) = s

E A

(
V − wL + ws

2

)

+ H

w

⎧⎪⎨
⎪⎩

[
1 +

(
V − wL + ws

H

)2
] 1

2

−
[
1 +

(
V − wL

H

)2
] 1

2
⎫⎪⎬
⎪⎭

, (34b)
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Fig. 7 Catenary line a assumed designations, b analytical solution and suggested method

T (s) =
[
H2 + (V − wL + ws)2

] 1
2
, (34c)

where w = ρAg—weight of cable unit length.
The numerical computations were made for the

cable with the length of L = 300 m, fixed cross section
A = 0.072/4 m2, Young modulus E = 1011N/m2,
density ρ = 6.5 · 103 kg/m3, and loading with forces:
H = 20000 N, V = 50000 N (Fig. 7a). The com-
parison of the curves z(x) obtained for the analytical
solution and for the proposed model, for the line divi-
sion n = 15 elements, is presented in Fig. 7b. As can be
seen, the proposed method correctly reflects the shape
of the rope chain.

The values of relative percentage error εγ were cal-
culated using the following formula:

εγ =
∣∣∣∣∣
f cγ (si ) − f aγ

f aγ

∣∣∣∣∣× 100% (35)

where f cγ —approximate value using the presented
method, f aγ —value calculated using formulae (34a)

and (34b), for si = ∑i
j=0 l j and i = 0...n, γ ∈ {x, z}.

Maximum relative percentage error εmax
γ was calcu-

lated using the following formula:

εmax
γ = max

1≤i≤n
εγ (si ) (36)

The analysis of the values of errors shown in Fig. 8a
showed that themaximumdifferences in displacements
in x , z directions did not exceed 0.5%. The highest
values of errors εx , εz are present at points where rope
chain was characterised by the biggest curvature. The

division of the rope chain into a higher number of ele-
ments reduces computational error (Fig. 8b).

4.2 Dynamics problem

In order to validate the dynamics model for large
sags, the computational results were compared with
the results obtained usingAbaqus commercial software
package. The calculations made using the commercial
software package considered rope chain division into
n=100 elements with the same characteristics as under
static problem section. Then, load was applied to the
system as follows: end E of rope was subject to effect
of forces F = [

Fx , Fy, Fz
]T (Fig. 9). The curves of Fx

and Fy forces are presented in Fig. 9b, and the compo-
nent Fz = −3000 N was assumed to be constant.

Numerical simulations were started in the position
of free sag of rope. Total analytical time was 100s.
Figure 10 shows the trajectory of E point in the xy
plane.

Similarly to the static problem, very high confor-
mity was attained between ownmodel results and those
obtained from commercial package. Maximum rela-
tive error for displacement towards x and y for the
rope divided into n = 100 elements is less than 0.5%.
The total simulation time using fourth-order Runge–
Kutta method after the adoption of integration step
h = 2 · 10 − 4 s was 5242s. The fact that obtained
results are highly compliant with those of Abaqus com-
mercial software package proves that the rope model
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Fig. 8 Relative percentage errors a εx , εz , b εmax
x ,εmax

z

Fig. 9 Analysed system a
forces applied at the end of
rope, b curves of Fx and Fy
forces

proposed in this paper may be used in the dynamic
optimisation.

The impact of torsion on the E point trajectory and
calculation time was examined. An important advan-
tage of the model presented earlier is that omission of
torsion requires only the omission of ϕi (q1,6) coordi-
nate in the formula (2) and then reduction of matrix
and vectors used in Eq. (21) and (33) from 6 × 6 and
6 × 1 to 5 × 5 and 5 × 1. It should be also noted that
omission of shearing would enable drastic reduction
of the integration step. For flexible elements such as a
rope, the torsional rigidity factor is calculated using the
following formula:

ci,ϕ = GI 0i
�

, (37)

where G—modulus of volume rigidity; I 0i —polar
moment of inertia for cross-sectional area; �—length
of initial element as shown in Fig. 1. Given small val-
ues of mass moments of inertia for rigid elements (rfe)
of the rope, high values of ci,ϕ lead to the occurrence
of high frequency of torsional vibrations. Meanwhile,
this necessitates the reduction of the step of integration.
Thus, the eliminationof coordinatesϕi enables increase
in step of integration of system displacement equation,
and thus reduction of calculation time. Table 1 shows
the impact of the length of step of integration on cal-
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Fig. 10 E point trajectory
with a projection to xy
plane

Table 1 Displacement of the rope end E according to the proposed modification of RFEM including torsion and excluding torsion

t (s) Including torsion Excluding torsion

h = 1 × 10−4 h = 1 × 10−4 h = 1 × 10−3 h = 1 × 10−2 h = 2 × 10−2

xE (m) yE (m) xE (m) yE (m) xE (m) yE (m) xE (m) yE (m) xE (m) yE (m)

10 0 44.048 0 44.048 0 44.048 0 44.048 0 44.048

25 96.096 70.383 96.095 70.386 96.095 70.385 96.093 70.384 96.092 70.385

50 117.082 60.097 117.072 60.085 117.072 60.085 117.071 60.084 117.072 60.084

75 95.417 26.443 95.314 26.418 95.314 26.418 95.317 26.417 95.317 26.417

100 117.914 47.198 117.907 47.140 117.907 47.140 117.910 47.140 117.908 47.140

culation results (coordinates xE , yE ) under torsion and
torsion omission scenarios.

It may be seen that the E point trajectory error even
with the step of integration 200 times greater does not
exceed 0.15%. Therefore, the torsion was omitted in
the optimisation problem analysis shown below.

5 Optimisation problem: stabilisation of rope end
at set depth

The system model consists of the drive system drum
and the rope. It was assumed in the optimisation that
vessel displacement at the place where rope hoist-
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Fig. 11 Model of the system used for dynamic optimisation

ing winch is located would be known. Assuming that
R radius of the drum is small, it would enable cal-
culation of coordinates xAn+1 = x A(t), yAn+1 =
yA(t), zAn+1 = zA(t). Because hoisting winch drum
may rotate, the rope’s length varies, which enables
adjustment of load position (height δ). In the exam-
ined problem of dynamic optimisation the course of
ϕ(x A(t), yA(t)) = ϕ(t) drum rotation was selected,
which shall ensure that despite horizontal movement
of the vessel, point A0 shall stay at the same distance
δ from the sea bottom (Fig. 11). The vertical displace-
ments of point Awere omitted. As shown by the results
published in [15], the vertical movement may be com-
pensated by adoption of:

ϕ = ϕ(zA) + ϕ(x A, yA), (38)

where ϕ(zA) = zA
rD
, rD is radius of winch drum.

The objective function was defined as follows:

� =
⎡
⎣ 1

T

T∫

0

(
zA0 + zsb − z(x, y) − δ

)2
dt

⎤
⎦

1
2

, (39)

where z(x, y)—function describing seabed topograph-
ical features, zsb—seabed depth for A0 at t = 0,
zsb = − (

zA0

∣∣
t=0 − δ

)
.

The function describing seabed topographical fea-
tures was defined as follows:

z(x, y) = k exp

(
−
(

(x−x0)

p

)2

−
(

(y−y0)

q

)2
)

,

(40)

where x0, y0, k, p, q are parameters of the function
describing sea bottom profile.

Calculation of the value of � functional involves
integration of motion equations (33) for adopted func-
tions defining x A(t), yA(t). To analyse the problem as
nonlinear optimisation, it was assumed that ϕ(t) func-
tion is defined as third-degree catenation function. The
catenation function ϕi = ϕ(ti ) values are searched in
equidistant points of the 〈0; T 〉 interval:
ti = i × T

p
for i = 1, . . . , p, (41)

where T—motion simulation time, p—number of
subintervals in 〈0; T 〉.

It is assumed that value ϕ0 = ϕ(0) = 0 is known
and that it results from the system initial configuration.
The objective of minimisation of the function referred
to in (39) is to search for such values ϕ1 ÷ ϕp being

components of vector f=
[
ϕ1, ϕ2, ..., ϕp

]T which fulfil
limitationsϕi,min ≤ ϕi ≤ ϕi,max andminimise function
� = �(f) referred to in (39).

To solve the problem of nonlinear optimisation, the
creeping simplex method was used. The motion equa-
tions were integrated assuming the step of integration
h ≤ 0.1 s securing proper stability and accuracy of
solution.

6 Results of numerical simulations

In order to depict displacements towards x axis of E
end of the rope sitting on motionless drum of the on-
board hoisting winch on the vessel moving towards x ,

Table 2 Rope and water parameters

Element Parameter Value Unit

Line Length L 300 m

Young modulus E 1011 N/m2

Density ρ 6500 kg/m3

Diameter d 0.07 m

Number of division n 15 –

Water Density ρw 1025 kg/m3

D′
x coefficient 0.1 –

D′
yz coefficient 1.0 –

CM coefficient 2.0 –

Accelerationaw [000]T m/s2

Distance δ from the seabed 5 m
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Fig. 12 E point trajectory

Fig. 13 Vessel movement—point An+1 in x and y directions a velocity, b vessel trajectory (point An+1)

numerical simulations for data shown in Table 2 were
made. As a result of hydrodynamic resistance having
impact on the rope, the end of rope rises (Fig. 12).
The selection of the angle of rotation of the hoisting
winch drum ϕ(t) in the problem of stabilisation of the
rope end at a set height above seabed shall concern the
compensation of the rope end lifting caused by vessel
movement and elimination of changes caused by set
seabed profile.

It should be noted thatwhen hoistingwinch is immo-
bilised, the E line end is displaced along z axis by
approximately 7 m. This is caused by the fact that the
rope length is maintained unchanged, despite the effect
of hydrodynamic resistance.

Total simulation time was T = 210 s. The values of
decision variables in the dynamic optimisation prob-
lemwere selected at equidistant points, dividing 〈0; T 〉
interval into p = 14 subintervals. It was assumed that
motion of point An+1 (vessel) along x and y axes is
described as in Fig. 13a. Thus, the trajectory is the same
as in Fig. 13b.

Two options for seabed profile were examined: A—
flat (k = 0 in formula (40)), B—hill with the height of
k = 15 m; for p = 20, q = 20, x0 = 70, y0 = 20.

Consecutive drawings 14÷ 16 show E point trajec-
tory, before and after optimisation for both examined
options of seabed profile under the assumption that the
rope end is kept at a set distance δ from the seabed.

123



1650 Ł. Drąg

Fig. 14 E point trajectory before and after optimisation in the following planes: a xy, b xz, c yz

The value of objective function after optimisation,
forAandBoptions,was�A = 0.076 and�B = 0.105,
respectively, which means that the average deviation
of the rope end from set distance δ = 5 m above the
seabed was below 0.11 m. The result of optimisation
for examined seabed profiles should be considered as

good, given the height at which E point of rope is raised
as a result of vessel movement (dotted lines in Fig. 14)
(Figs. 15, 16).

The range of angles of the rotation of the hoisting
winch drum ϕ(t) selected during optimisation process
for option A and option B is shown in Fig. 17. In both
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Fig. 15 E point trajectory
before and after
optimisation—option A

Fig. 16 E point trajectory
before and after
optimisation—option B

cases, the angle of drum rotation was selected in such
manner as to eliminate changes caused by the raising
of E end of the rope due to hydrodynamic resistance
and change of seabed profile.

Shape and position of the rope end at selected points
in time depending on seabed profile are presented in
Fig. 18. To describe vessel movement in Fig. 13, it
was noted that rope end rises maximally approx. 12 m
from seabed. Following the application of optimisa-
tion process (selection of the hoisting winch rotation

angle ϕ(t)), the distance is maintained at almost con-
stant level—approximately δ = 5 m above seabed.

The results of dynamicoptimisationpresented above
indicate that through appropriate selection of the hoist-
ing winch drum rotation angle, it is possible to control
rope end position, which will guarantee keeping it at
a set level above seabed. The major factor influencing
the optimisation process time is the number of deci-
sion variables. Therefore, it has been planned to subse-
quently develop an algorithm ensuring the appropriate
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Fig. 17 Course of the hoisting winch drum rotation angle ϕ(t) before and after optimisation a option A, b option B

Fig. 18 Shape and position
of E point of the rope
before and after
optimisation for option B of
sea bottom profile at
selected points of time
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selection of the quantity and distribution of points of
division in the solution of the optimisation problem.

7 Summary

The 3D model presented in the paper concerned with
the dynamics of flexible member with flexural compli-
ance was developed through modification of the rigid
finite element method. An important feature of the
model is a specific selection of generalised (global)
coordinates. Each rigid element (rfe) has 5 or 6 DoF.
Unlike the conventional rigid finite element method
(RFEM) where rigid elements are combined by means
of spring damping elements with 6 rigidity coefficients
(3 translational, 2 flexible, and 1 torsional), in this
paper elastic and damping elements have only 2 or 3
rigidity factors (2 flexural and sometimes 1 torsional).
The identical displacements at rigid finite element links
were ensured by defining bond equations. This enabled
elimination of translational rigidity coefficients of high
values from the system of motion equations. Conse-
quently, computation with a longer step of integration
was possible. The motion equations of the systemwere
supplemented with the parts connected with the impact
of marine environment. The model was validated by
comparison of the statics computations with analytical
solution (in catenary case), and dynamics computations
were comparedwith the solution developed usingMES
commercial software package. In both cases, satisfac-
tory conformity of results was obtained already when
flexible member was divided into n ≥ 10 elements.
High numerical efficiency of the developed model and
computer software enabled their application to solve
the problem of dynamic optimisation. It is expected
that the developed model and computer software shall
be used in simulation of dynamic positioning of risers.
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