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The calculus of fractional order started more than three
centuries ago. It was firstly mentioned by Leibniz,
and represents a generalization of the classical integer-
order differential and integral calculus. In the last sixty
years, fractional calculus had played a very impor-
tant role in various fields such as physics, chemistry,
mechanics, electricity, biology, economy and control
theory. Moreover, it has been found that the dynami-
cal behavior of many complex systems can be prop-
erly described by fractional-order models. Such tool
has been extensively applied in many fields which has
seen an overwhelming growth in the last three decades.

The Special Issue on Fractional Dynamics and
Its Applications of the journal Nonlinear Dynamics
includes a collection of 19 papers, encompassing the
most important areas of current research on fractional
dynamics. The papers of the present special issue can
be categorized as follows:
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• dynamical analysis of fractional differential equa-
tions and systems;

• fractional-order control theory;
• modeling with fractional calculus and applications.

Various aspects of the fractional generalization of
the field theory have been actively studied. In [1],
Tarasov considers non-relativistic field equations with
the Riesz fractional derivatives of non-integer order.
A connection of these equations with microscopic (lat-
tice)models is discussed.Byusing the backgroundfield
and the mean field methods, the author obtains correc-
tions to linear and equilibrium solutions caused by the
weak nonlinearity.

C̆ermák and Kisela in [2] formulate explicit neces-
sary and sufficient conditions for the local asymptotic
stability of equilibrium points of a kind of fractional
differential equation involving two Caputo derivatives.
Then, using the recent developments on linearization
methods in fractional dynamical systems, they extend
the results to the original nonlinear equation.

Meerschaert et al. [3] study a fractional wave equa-
tion, replacing the second time derivative by a Caputo
derivative of order between one and two. The authors
show that the fractional wave equation governs a sto-
chastic model for wave propagation, with deterministic
time replaced by the inverse of a stable subordinator,
whose index is one-half the order of the fractional time
derivative.

The discrete dynamic behavior and its applications
have received considerable attention in various applied
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areas, such as synchronization control, secure commu-
nication, biomolecular network evolution, and so on. In
[4], Wu and Baleanu report the delayed logistic equa-
tion discretized by means of the discrete fractional cal-
culus approach and the related discrete chaos. The Lya-
punov exponent together with the discrete attractors
and the bifurcation diagrams are given.

Piezoelectric materials play a significant role in har-
vesting ambient vibration energy. Due to their inher-
ent characteristics and electromechanical interaction,
the system damping for piezoelectric energy harvesting
can be adequately characterized by fractional calculus.
Cao et al. [5] introduce a fractional model for mag-
netically coupling broadband energy harvesters under
low-frequency excitation and investigate their nonlin-
ear dynamic characteristics.

Based on the features of digital image encryption
and high-dimensional chaotic sequences, Zhao et al.
[6] propose a symmetric digital image encryption algo-
rithm by a new improper fractional-order chaotic sys-
tem.

Control and synchronization of fractional-order
chaotic systems have attracted the attention of many
scholars, and several techniques have been used in the
scope of chaotic systems. Chaos control and synchro-
nization of second-order non-autonomous fractional
complex chaotic systems are discussed by Aghababa
in [7].

Wang et al. [8] study the compactness and Rδ-
structure of the set of trajectories on a closed domain
for the fractional evolution inclusion. Moreover, the
authors discuss the Rδ-structure of the set of trajectories
to the control problem corresponding to the inclusion.

Although a considerable amount of research has
been carried out in the field of fractional-order con-
trollers, the majority of the results deal with stable
processes. Limited research has been reported regard-
ing unstable processes. Muresan et al. [9] propose
a methodology for designing and tuning fractional-
order controllers for a class of unstable second-order
processes. The design is carried out using the stability
analysis of fractional-order systems, by means of Rie-
mann surfaces and a proper mapping in the w-plane.
The resulting fractional-order controllers are imple-
mented with a graphical programming on industrial
equipment and are validated experimentally using a
laboratory scale magnetic levitation unit.

Fractional-order models have been widely used in
modeling and identification of thermal systems. A gen-

eral model in this category is considered as the model
of thermal systems, and a fractional-order controller
is proposed for controlling such systems by Badri and
Tavazoei [10] . The proposed controller is a generaliza-
tion of the traditional PI algorithms. The parameters of
this controller can be obtained by using a recently intro-
duced tuning method that can simultaneously ensure
the following three requirements: desired phase mar-
gin, desired gain crossover frequency, and phase flat-
ness of the Bode plot at this frequency.

Shahiri et al. [11] investigate robust control of non-
linear proton exchange membrane fuel cells against
uncertainty using fractional complex-order control.

In [12], Boroujeni and Momeni introduce an itera-
tivemethod to design optimal non-fragile H∞ observer
for Lipschitz nonlinear fractional-order systems. It is
shown that not only the iterative method is success-
ful in finding the proper boundary condition, but also
the performance of the proposed observer satisfies both
non-fragility and robustness to external disturbances
with an acceptable accuracy.

Almeida and Torres [13] present a discrete method
for solving fractional optimal control problems, where
the dynamic control system depends on integer-order
and Caputo fractional derivatives. Their approach con-
sists in approximating the initial fractional-order prob-
lemby a newone that involves integer-order derivatives
only. The latter problem is discretized, by application
of finite differences, and then solved numerically.

Saidi et al. [14] discuss robust proportional, inte-
gral and derivative (PID) controller of fractional-
order design via numerical optimization. Three new
frequency-domain design methods are proposed. Sev-
eral numerical examples are presented to show the
efficiency of each proposed method and discuss the
obtained results. Also, an application to the liquid car-
bon monoxide level control is presented.

Inspired in dynamic systems theory and Brewer’s
contributions to applying it to economics,Machado and
Mata [15] establish a bondgraphmodel. Twomain vari-
ables, a set of inter-connectivities based on nodes and
links (bonds) and a fractional-order dynamical perspec-
tive, prove to be a goodmacro-economic representation
of countries’ potential performance in nowadays glob-
alization. Several experiments analyzed the influence
of the memory effects and characterized the dynamical
behavior in light of the fractional approach.

Fractional tumor development is considered by
Iomin [16] in the framework of one-dimensional con-
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tinuous time random walks (CTRW) in the presence
of chemotherapy. The chemotherapy influence on the
CTRW is studied by means of observations of both
stationary solutions due to proliferation and fractional
evolution in time.

In [17], Coffey et al. emphasize the rectifying effect
of a strong bias field superimposed on a strong ac field
on the electric polarization (or magnetization) of an
assembly of noninteracting dipolar particles. Further-
more, they suggest that experiments should be designed
so as to detect the frequency-dependent dc nonlinear
response introduced by the bias field. The results can
explain the anomalous nonlinear relaxation of complex
dipolar systems, where the relaxation process is char-
acterized by a broad distribution of relaxation times.
The advantage of having kinetic equations incorporat-
ing the anomalous relaxation becomes clearly visible
as it enables to study the effect of the nonlinear anom-
alous behavior on fundamental parameters associated
with the fractional diffusion.

Multimedia streaming of three-dimensional (3D)
stereoscopic videos over last-generation networks sub-
ject to bandwidth limitations is an open problem. Nig-
matullin et al. [18] propose a fractional exponential
reduction moments approach based on the statistics
of the so-called fractional moments. Each random
sequence of frames in 3D videos can be analyzed and
reduced to a finite set of parameters that allow fit-
ting to the sequence by exponential functions, followed
by a characterization and classification of the video
with a kind of fingerprint. The approach allows com-
paring real streams and numerical data output from
fractional dynamical models by means of the reduced
parameters.

In [19], Muthukumar et al. construct a fractional-
order dynamical system that exhibits chaotic and
reverse chaotic attractors. This is achieved by chang-
ing the sign of the one parameter which involves in the
existence of the phase reversal function. A newmethod
of fast projective synchronization of fractional-order
dynamical systems is introduced. An affine cipher is
proposed for secure communication based on the solu-
tions of the synchronized fractional-order chaotic sys-
temswith the support of the sender’s and receiver’s date
of birth.

This selection of high-quality works represents the
state of the art in the application of fractional calculus in
several distinct research areas. The guest editors hope

that these findings will support readers in opening new
horizons.
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