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Abstract In this paper, we construct an SIRS epi-
demic model with birth pulse and pulse vaccination
at the different fixed moment. The stability of the
infection-free periodic solution is obtained by using
the Poincaré map. The existence of nontrivial peri-
odic solution bifurcated from the infection-free peri-
odic solution is discussed by means of the bifurcation
theory. It is shown that once a threshold is reached, a
nontrivial periodic solution emerges via a supercritical
bifurcation. Furthermore, some numerical simulations
are given, which are in good accordance with the the-
oretical results.
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1 Introduction

Man has been facing a threat of many diseases, such
as severe acute respiratory syndrome (SARS) affected
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in 2003, because environmental destruction is increas-
ingly aggravated. Therefore, it is urgent for us to reveal
the propagation mechanism of disease and find an
effective prevention measure.

Epidemic models of the impulsive differential equa-
tion have been formulated by many researchers [1–5] in
the past few years. Zeng [1] studied the epidemic model
with the impulsive vaccination and obtained the con-
dition for which infection-free periodic solution was
globally asymptotically stable. Pei [2] investigated two
delayed SIR models with the impulsive vaccination
and a generalized nonlinear incidence. They obtained
the sufficient conditions for the eradication and per-
manence of the disease, respectively. Li [3] formulated
SIR and SVS epidemic models with the vaccination and
obtained the basic reproduction number determining
whether the disease died out or persisted eventually. An
impulsive vaccination strategy of the epidemic model
with the nonlinear incidence rate βS2 I was considered
in [4]. Using the discrete dynamical system determined
by the stroboscopic map, they obtained the infection-
free periodic solution that was globally asymptotically
stable. An SI S epidemic model with the impulsive vac-
cination was investigated in [5], and some results were
obtained for the global stability of the infection-free
periodic solution and the existence of the nontrivial
periodic solution.

In population model, population births are usually
assumed to be continuous and time independent. How-
ever, population growth rate mostly depends on the
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numbers of reproducing offsprings, and these births
are seasonal or occur in regular pulse. Hence, the
continuous reproduction is removed from the model
and replaced with an annual birth pulse [6–9]. In [9],
authors formulated the following the model:

dS
dt

= σ S − βSI + δR,

dI
dt

= βSI − (γ + σ)I,

dR
dt

= γ I − (δ + σ)I,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

t �= nT,

�S = (b − cN )N − pS,

�I = 0,

�R = pS,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t �= nT,

(1.1)

where�S = S(t+)−S(t),�I = I (t+)− I (t),�R =
R(t+)− R(t), c = r(b−d), N = S+ I + R. S(t), I (t)
and R(t) denote the numbers of susceptible, infective,
and removed individual at time t , respectively. σ is
the natural death rate, δ is the rate at which infective
individual loses immunity and returns to the suscep-
tible class, and γ is the natural recovery rate of the
infective population. Susceptible become infectious at
a rate β I , where β is the contact rate. d is the maxi-
mum death rate, r is a parameter reflecting the relative
importance of density-dependent population regulat-
ing through birth and death, and b is the maximum
birth rate. At each vaccination time, a constant fraction
p(0 < p < 1) of susceptible population is vaccinated
under the impulsive vaccination strategy, and T is the
impulsive period. They investigated the existence and
stability of the infection-free periodic solution and the
nontrivial periodic solution [9].

Recently, many impulsive effects are assumed to
occur at the same fixed moment [10–12] for simplic-
ity. Correspondingly, synchronous bifurcation has also
been investigated in [10–12]. In fact, all kinds of impul-
sive effects [13–15] occur at the different fixed moment.
Liu [13] introduced an nonsynchronous pulse into SI
epidemic model and obtained the disease-free peri-
odic solution that was globally asymptotically attrac-
tive. Zhao [14] investigated the inshore–offshore fish-
ing model with the impulsive diffusion and pulsed har-
vesting at the different fixed time. The existence and
stability of both the trivial periodic solution and the
positive periodic solution are obtained in [14]. Zhang
et al. [15] formulated the integrated pest management
of the spraying pesticides and releasing natural enemies
at the different fixed moment, and they investigated the

stability of the pest-eradication periodic solution and
nontrivial periodic solution emerging via a supercriti-
cal bifurcation. From the point of the above paper [10–
15], nonsynchronous bifurcation is investigated only
for two state variables. In this paper, we will investi-
gate the nonsynchronous bifurcation of the three state
variables by the impulsive bifurcation theory.

Motivated by [9–15], we introduce the nonsynchro-
nous pulse into the following model:
dS

dt
= −σ S−βSI +δR,

dI

dt
= βSI −(γ+σ)I,

dR

dt
= γ I − (δ + σ)R,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t �= nT, t �= (n+l−1)T,

�S(t) = bNe−N ,

�I (t) = 0,

�R(t) = 0,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = (n + l − 1)T,

�S = −pS,

�I = 0,

�R = pS,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = nT,

(1.2)

l(0 < l < 1) and b are the positive constants. The
meanings of other parameters are the same as system
(1.1).

2 The stability of the infection-free periodic
solution

Firstly, we give some basic properties about the follow-
ing subsystem of system (1.2)

Ṡ(t) = −σ S + δR,

Ṙ(t) = −(δ + σ)R,

}

t �= (n + l − 1)T, t �= nT,

�S = bNe−N ,

�R = 0,

}

t = (n + l − 1)T,

�S = −pS,

�R = pS,

}

t = nT,

(2.1)

or
Ṅ (t) = −σN ,

Ṙ(t) = −(δ + σ)R,

}

t �= (n + l − 1)T, t �= nT,

�N = bNe−N ,

�R = 0,

}

t = (n + l − 1)T,

�N = 0,

�R = p(N − R),

}

t = nT .

(2.2)
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We can easily obtain the analytical solution of the sys-
tem (2.2) on the interval ((n − 1)T, nT ].

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N (t) =

⎧
⎪⎨

⎪⎩

N ((n − 1)T +)e−σ(t−(n−1)T ), (n − 1)T < t ≤ (n + l − 1)T,

(1 + b exp(−N ((n − 1)T +)e−σ lT )

×N ((n − 1)T +)e−σ(t−(n−1)T ), (n + l − 1)T < t ≤ nT,

R(t) = R((n − 1)T +)e−(σ+δ)(t−(n−1)T ), (n − 1)T < t ≤ nT,

(2.3)

Denote N (nT +) = NnT , N ((n−1)T +) = N(n−1)T ,

R(nT +) = RnT , R((n − 1)T +) = R(n−1)T , we have:

⎧
⎨

⎩

NnT = N(n−1)T (1 + b exp(−N(n−1)T e−σ lT ))e−σT ,

RnT = (1 − p)R(n−1)T e−(σ+δ)T
+ pN(n−1)T (1 + b exp(−N(n−1)T e−σ lT ))e−σT ,

(2.4)

Equations (2.4) are difference equations. Difference
system (2.4) has two fixed points (0, 0) and (N∗, R∗),
where N∗ = eσ lT ln

b

eσT − 1
, R∗ = pN∗

1−(1−p)e−(σ+δ)T .

For each fixed point of difference equations, there is
an associated periodic solution of system (2.2) and

vice versa. Therefore, the dynamical behavior of sys-
tem (2.3) is determined through the dynamical behavior
of system (2.4) coupled with system (2.3). Thus, in the
following, we will focus our attention on the system
(2.3) and (2.4).

Next, we consider the stability of the fixed point by
means of the characteristic equation. Firstly, the stabil-
ity of the fixed point (0, 0) is determined by the follow-
ing characteristic equation,

∣
∣
∣
∣
λ− (1 + b)e−στ 0
−p(1 + b)e−στ λ− (1 − p)e−(δ+σ)τ

∣
∣
∣
∣ = 0.

We obtainλ1 = (1+b)e−στ , λ2 = (1− p)e−(δ+σ)τ ,
0 < λ2 < 1 and 0 < λ1 < 1 for b < eσT − 1. Hence,

the fixed point (0, 0) is stable if b < eσT −1. Similarly,
for the fixed point (N∗, R∗), we have
∣
∣
∣
∣
λ− 1 + (1 − e−στ ) ln b

eστ−1 0
∗ λ− (1 − p)e−(δ+σ)τ

∣
∣
∣
∣ = 0,

where the asterisk does not influence on calculating the
characteristic root; therefore, there is no need to calcu-
late. From the above characteristic equation, we have
λ3 = 1−(1−e−στ ) ln b

eστ−1 , λ4 = (1− p)e−(δ+σ)τ . It
is easy to compute that 0 < λ4 < 1 and −1 < λ3 < 1
hold for b < (eσT − 1) ln 2

1−e−σT and b > eσT − 1.

Therefore, the fixed point (N∗, R∗) is stable for eσT −
1 < b < (eσT − 1) ln 2

1−e−σT . Correspondingly, the
infection-free periodic solution (N ∗ (t), 0, R∗(t)) of
system (1.2) is given by the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N∗(t) =

⎧
⎪⎨

⎪⎩

eσ lT ln
b

eσT − 1
e−σ(t−(n−1)T ), (n − 1)T < t ≤ (n + l − 1)T,

eσ(l+1)T ln
b

eσT − 1
e−σ(t−(n−1)T ), (n + l − 1)T < t ≤ nT,

R∗(t) = peσ lτ ln b
eσT −1

1 − (1 − p)e−(δ+σ)T e−(σ+δ)(t−(n−1)T ), (n − 1)T < t ≤ nT,

(2.5)

Therefore, we have:

Theorem 2.1 The infection-free periodic solution
(N∗(t), 0, R∗(t)) of system (1.2) is stable for eσT −1 <
b < (eσT − 1) ln 2

1−e−σT .

3 The bifurcation of the nontrivial periodic
solution

In the following, we will view b as a bifurcation para-
meter and investigate the bifurcation of the positive
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periodic solution near the infection-free periodic solu-
tion (N∗(t), 0, R∗(t)). From system (1.2) and N (t) =
S(t)+ I (t)+ R(t), system (1.2) may be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR
dt

= γ I − (δ + σ)R,
dI
dt

= β(N − I − R)I
−(γ + σ)I,

⎫
⎪⎪⎬

⎪⎪⎭

t �= nT, t �=(n + l−1)T,

�R(t) = 0,

�I (t) = 0,

}

t = (n + l − 1)T,

�R = p(N − I ),

�I = 0,

}

t = nT .

(3.1)

To this purpose, we shall employ a fixed point argu-
ment. We denote by	(t,U0) the solution of the (unper-
turbed) system consisting of the first two equations of
(1.2) for the initial data U0 = (u1

0, u2
0); also, 	 =

(	1,	2). We define the mapping I1, I2 : R2 → R2

by

I1(x1, x2) = (x1, x2),

I2(x1, x2) = (x1 − px2 + pN , x2)

and the mapping F = (F1, F2) : R2 → R2 by

F1(x1, x2) = γ x2 − (δ + σ)x1,

F2(x1, x2) = β(N − x2 − x1)x2 − (γ + σ)x2.

Furthermore, let us define 
 : [0,∞)× R2 → R2 by


(T,U0) = I2(	((1 − l)T, I1(	(lT,U0))));

(T,U0) = (
1(T,U0),
2(T,U0)).

It is easy to see that 
 is actually the stroboscopic
mapping associated with the system (3.1), which puts
in the correspondence the initial data at 0+ with the
subsequent state of the system
(T +,U0) at T+,where
T is the stroboscopic time snapshot.

We reduce the problem of finding a periodic solu-
tion of (3.1) to a fixed problem. Here, U is a periodic
solution of period T for (3.1) if and only if its initial
value U (0) = U0 is a fixed point for 
(T, ·). Conse-
quently, to establish the existence of nontrivial periodic
solutions of (3.1), one needs to prove the existence of
the nontrivial fixed point of 
.

We are interested in the bifurcation of nontrivial
periodic solution near (R∗(t), 0). Assume that X0 =
(x0, 0) is starting point for the trivial periodic solution
(R∗(t), 0), where x0 = R∗(0+).To find a nontrivial

periodic solution of period τ with initial value X, we
need to solve the fixed point problem X = 
(τ, X),
or denoting τ = T + τ̃ , X = X0 + X̃ ,

X0 + X̃ = 
(T + τ̃ , X0 + X̃).

Let us define

N
(
τ̃ , X̃

) = X0 + X̃ −

(
T + τ̃ , X0 + X̃

)

= (
N1

(
τ̃ , X̃

)
, N1

(
τ̃ , X̃

))
. (3.2)

At the fixed point N (̃τ , X̃) = 0. Let us denote

DX N (0, (0, 0)) =
(

a′
0 b′

0

c′
0 d ′

0

)

.

It follows that

a′
0 = 1 − exp(−(σ + δ)T ) > 0, (3.3)

b′
0 = −γ

[

e−(δ+σ)T
∫ lT

0
e
∫ s

0 (βN (τ )−βR∗(τ )−γ−σ)dτds

+ e−(δ+σ)(1−l)T e−(γ+σ)u−∫ u
0 (βN (τ )−βR∗(τ ))dτdu

]
,

(3.4)

c′
0 = 0, (3.5)

d ′
0 = 1 − exp

∫ T

0
(βN (t)− βR∗(t)− γ − σ)dt. (3.6)

(see Appendix A1 for details). A necessary condition
for the bifurcation of nontrivial periodic solution near
(R∗(t), 0) is then

det[DX N (0, (0, 0))] = 0.

Since DX N (0, (0, 0)) is an upper triangular matrix and
1 − exp(−(δ+ σ)T ) > 0, it consequently follows that
d ′

0 = 0 is necessary for the bifurcation. It is easy to see
that d ′

0 = 0 is equivalent to

b = (eσT −1) exp

⎛

⎝
(σ + γ )T

β(eσT −1)
σ

+ pβeσ lT (1−e−(δ+σ)T )
(δ+σ)(1−(1−p)e−(δ+σ)T )

⎞

⎠

�= b∗.

It now remains to show that this necessary condition is
also sufficient. This assertion represents the statement
of the following theorem, which is our main result.

Theorem 3.1 A supercritical bifurcation occurs at
b = b∗ in system (1.2), in the sense, for ε > 0 such that
b ∈ (b∗, b∗ + ε) there is a nontrivial periodic solution.

Proof With the above notations, it is that

dim(Ker[DX N (0, (0, 0))]) = 1,
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SIRS epidemic model 2375

Fig. 1 Graph describes the trivial periodic solution, σ =
0.7, β = 0.8, δ = 1, γ = 1, b = 2, p = 0.3, T = 2.5, l = 0.5.
a Time series of the susceptible population. b Time series of the

infectious population. c Time series of the Removed population.
d Phase space of the trivial periodic solution

and a basis in Ker[DX N (0, (0, 0))] is (− b′
0

a′
0
, 1). Then,

the equation N (̃τ , X̃) = 0 is equivalent to

N1(̃τ , αY0 + zE0) = 0, N2(̃τ , αY0 + zE0) = 0,

where E0 = (1, 0), Y0 = (− b′
0

a′
0
, 1). X̃ = αY0 + zE0

represents the direct sum decomposition of X̃ using
the projections onto Ker[DX N (0, (0, 0))] (the central
manifold) and Im[DX N (0, (0, 0))] (the stable mani-
fold).

Let us define

f1(̃τ , α, z) = N1(̃τ , αY0 + zE0),

f2(̃τ , α, z) = N2(̃τ , αY0 + zE0).

Firstly, we see that

∂ f1

∂z
(0, 0, 0) = ∂N1

∂x1
(0, (0, 0)) = a′

0 �= 0.

Therefore, by the implicit function theorem, one may
solve the equation f1(̃α, α, z) = 0 near (0, 0, 0) with
respect to z as a function of τ̃ andα and find z = z(̃τ , α)
such that z(0, 0) = 0 and

f1(̃τ , α, z(̃τ , α)) = N1(̃τ , αY0 + z(̃τ , α)E0) = 0.

(3.7)

Moreover,

∂N1

∂x1
(0, (0, 0)) ·

(

−b′
0

a′
0

)

+ ∂N1

∂x2
(0, (0, 0))

+ ∂N1

∂x1
(0, (0, 0)) · ∂z

∂α
(0, 0) = 0

and consequently,

a′
0

(

−b′
0

a′
0

)

+ b′
0 + a′

0
∂z

∂α
(0, 0) = 0.
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2376 Z. Zhao et al.

Fig. 2 The graph describes the infection-free periodic solution,
σ = 0.7, β = 0.8, δ = 1, γ = 1, b = 8, p = 0.3, T = 2, l =
0.5. a Time series of the susceptible population. b Time series of

the infectious population. c Time series of the removed popula-
tion. d Phase space of the infection-free periodic solution

Hence, we obtain that

∂z

∂α
(0, 0) = 0.

Next, we compute ∂z
∂τ̃
(0, 0).

∂x1

∂z

∂z

∂τ̃
(0, 0) = ∂ I2

∂x1

∂	1

∂τ̃
((1 − l)T, I1(lT, X0))

· (1 − l)+ ∂ I2

∂x1

∂	1

∂x1
((1 − l)T, I1(	(lT, X0)))

·
(
∂	1

∂τ̃
(lT, X0) · l + ∂	1

∂x1
(lT, X0) · ∂z

∂τ̃
(0, 0)

)

+ ∂ I2

∂x1

∂	1

∂x2
((1 − l)T, I1(	(lT, X0)))

·
(
∂	2

∂τ̃
(lT, X0) · l + ∂	2

∂x1
(lT, X0)

∂z

∂τ̃
(0, 0)

)

.

We may obtain

∂z

∂τ̃
(0, 0) ·

(

1 − ∂	1

∂x1
((1 − l)T, I1(	(lT, X0)))

∂	1

∂x1
(lT, X0)

)

= ∂	1

∂τ̃
((1 − l)T, I1(	(lT, X0))) · (1 − l)

+ ∂	1

∂x1
((1 − l)T, I1(	(lT, X0)))

∂	1

∂τ̃
(lT, X0) · l,

therefore, we have

∂z

∂τ̃
(0, 0) = 1

a′
0
[−(δ + σ)R∗(T )(1 − l)

+ e−(δ+σ)(1−l)T R∗(lT )l]
= −δ + σ

a′
0

R∗(T ).
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SIRS epidemic model 2377

Fig. 3 Graph describes the nontrivial periodic solution, σ =
0.7, β = 0.8, δ = 1, γ = 1, b = 13.4, p = 0.3, T = 2, l =
0.5. a Time series of the susceptible population. b Time series of

the infectious population. c Time series of the removed popula-
tion. d Phase space of the nontrivial periodic solution

Then N (̃τ , X̃) = 0 if and only if

f2 (̃τ , α) = N2

(

τ̃ ,

(

−b′
0

a′
0
α + z (̃τ , α) , α

))

= 0.

(3.8)

Equation (3.8) is called the “determining equation,”
and the number of its solutions equals the number of
periodic solutions of (1.2). We now proceed to solving
(3.8). Let us denote

f (̃τ , α) = f2(̃τ , α, z).

Firstly, it is easy to see that f (0, 0) = N2(0, (0, 0)) =
0. We determine the Taylor expansion of f around
(0, 0).For this, we compute the first-order partial deriv-
atives ∂ f

∂τ̃
(0, 0) and ∂ f

∂α
(0, 0) and observe that

∂ f

∂τ̃
(0, 0) = ∂ f

∂α
(0, 0) = 0.

(see Appendix A2 for the proof of this fact). Further-
more, it is observed in Appendix A3 that

A = ∂2 f (0, 0)

∂τ̃ 2 , B = ∂2 f (0, 0)

∂α∂τ̃
< 0,

C = ∂2 f (0, 0)

∂α2 > 0,

and hence

f (̃τ , α) = ∂2 f (0, 0)

∂α∂τ̃
ατ̃ + ∂2 f (0, 0)

∂τ̃ 2

α2

2

+ o (̃τ , α)
(
τ̃ 2 + α2

)
.
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For ∂2 f
∂ατ̃

(0, 0) < 0, by denoting τ̃ = lα (where
l = l(α)), we obtain that (3.7) is equivalent to

Bl + C
l2

2
+ o(lα, α)(1 + l2) = 0.

Since B < 0 and C > 0, this equation is solvable
with respect to l as a function of α. Moreover, here,
l ≈ − 2B

C > 0, which implies that there is a supercrit-
ical bifurcation to a nontrivial periodic solution near a
period T which satisfies the sufficient condition for the
bifurcation b = b∗. 
�

4 Discussion

In this paper, an SIRS epidemic model with birth
pulse and pulse vaccination is discussed by means
of a Poincaré map and bifurcation theory. We obtain
the trivial periodic solution that is stable (see Fig. 1)
for the birth rate b < eσT − 1, which means popu-
lation tends to extinction, and infection-free periodic
solution (S∗(t), 0, R∗(t)) is asymptotically stable for
eσT − 1 < b < (eσT − 1) ln 2

(1−e−σT )
, which is sim-

ulated in Fig. 2. Next, the bifurcation of nontrivial
periodic solution via a projection method is investi-
gated in Sect. 3, and there is a supercritical bifurca-
tion of a nontrivial periodic solution which satisfies
the sufficient condition for the bifurcation b = b∗. In
Fig. 3, a nontrivial periodic solution is simulated for
b∗ = 0.636.

5 Appendix A1: The first-order partial derivatives
of �1,�2

By formally deriving the equation

d

dt
(	(t, X0)) = F(	(t, X0)),

which characterized the dynamics of the unperturbed
flow associated with the first two equations in (1.2),
one obtains that
d

dt
[DX	(t, X0)] = DX F(	(t, X0))DX	(t, X0).

(5.1)

This relation will be integrated in what follows in order
to compute the components of DX	(t, X0) explicitly.
Firstly, it is clear that

	(t, X0) = (	1(t, X0), 0).

Then we deduce that (5.1) takes the particular form

d

dt

⎛

⎜
⎝

∂	1

∂x1

∂	1

∂x2
∂	2

∂x1

∂	2

∂x2

⎞

⎟
⎠ (t, X0)

=
(−(δ + σ) γ

0 βN (t)− βR∗(t)− γ − σ

)

×
⎛

⎜
⎝

∂	1

∂x1

∂	1

∂x2
∂	2

∂x1

∂	2

∂x2

⎞

⎟
⎠ (t, X0), (5.2)

the initial condition for (5.2) at t = 0 being

DX	(0, X0) = I2. (5.3)

Here, I2 is the identity matrix in M2(R). It follows that

∂	2(t, X0)

∂x1
= exp

(∫ t

0
(βN (s)− βR∗(s)− γ − σ)ds

)

×∂	2(0, X0)

∂x1
.

This implies, using the initial condition (5.3), that

∂	2(t, X0)

∂x1
= 0, f or t ≥ 0. (5.4)

To compute ∂	1(t,X0)
∂x1

,
∂	1(t,X0)

∂x2
and ∂	2(t,X0)

∂x2,
, from

(5.2), one obtains that

d

dt

(
∂	1(t, X0)

∂x1

)

= − (δ + σ)
∂	1(t, X0)

∂x1
,

d

dt

(
∂	1(t, X0)

∂x2

)

= − (δ + σ)
∂	1(t, X0)

∂x2

+ γ ∂	2(t, X0)

∂x2
,

d

dt

(
∂	2(t, X0)

∂x2

)

= (βN (t)− βR∗(t)− γ − σ)

×∂	2(t, X0)

∂x2
.

According to the initial condition, we obtain that

∂	1(t, X0)

∂x1
= e−(δ+σ)t ,

∂	1(t, X0)

∂x2
= e−(δ+σ)t

∫ t

0
γ e

∫ s
0 (βN (t)−βR∗(t)−γ−σ)dt ds,

∂	2(t, X0)

∂x2
= e

∫ t
0 βN (s)−βR∗(s)−γ−σ)ds .

From (3.1), we obtain that

DX N (0, (0, 0)) = I2 − DXψ(T, X0),
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which implies

DX N (0, (0, 0)) =
(

a′
0 b′

0

0 d ′
0

)

,

with a′
0, b′

0, d ′
0 given by

a′
0 = 1 − ∂	1

∂x1
((1 − l)T, I1(	1(lT, X0)))

×∂	1(lT, X0)

∂x1
, (5.5)

b′
0 = −

[
∂	1

∂x1
((1 − l)T, I1(	1(lT, X0)))

×∂	1(lT, X0)

∂x2
+ ∂	1

∂x2
((1 − l)T,

I1(	1(lT, X0)))
∂	2

∂x2
(lT, X0)

]

, (5.6)

d ′
0 = 1 − ∂	2

∂x2
((1 − l)T, I1(	1(lT, X0)))

×∂	2(lT, X0)

∂x2
. (5.7)

6 Appendix A2: The first partial derivatives of f

By (3.1) and (3.7), it is easy to see that

∂ f

∂α
(τ , α)

= ∂

∂α
[α − ψ2(T + τ , X0 + αY0 + z(τ , α)E0)]

= 1 − ∂

∂α
[	2((1 − l)(T + τ), I1(	(l(T + τ), X0

+αY0 + z(τ , α)E0))))]
= 1 − ∂	2

∂x1
((1 − l)(T + τ), I1(	(l(T + τ), X0

+αY0+z(τ , α)E0))×
(
∂	1

∂x1
(l(T +τ ), X0+αY0

+z(τ , α))

(

−b′
0

a′
0

+ ∂z

∂α
(τ , α)

)

+ ∂	1

∂x2
(l(T + τ , X0 + αY0 + z(τ , α)E0))

)

− ∂	2

∂x2
((1 − l)(T + τ), I1(	(l(T + τ , X0

+αY0 + z(τ , α)E0)))

(
∂	2

∂x1
(l(T + τ), X0

+αY0 + z(τ , α)E)

(

−b′
0

a′
0

+ ∂z

∂α
(̃τ , α)

)

+∂	2

∂x2
(l(T + τ , X0 + αY0 + z(τ , α)E0))

)

.

(6.1)

It then follows that
∂ f (0, 0)

∂α
= 1 − ∂	2

∂x2
((1 − l)T, I1(	(lT, X0)))

(
∂	2

∂x1
(lT, X0)

(

−b′
0

a′
0

+ ∂z

∂α
(0, 0)

)

+∂	2

∂x2
(lT, X0)

)

.

Since
∂	2

∂τ̃
(lT, X0) = 0,

∂	2

∂x1
(lT, X0) = 0,

(6.2)

it is seen that
∂ f

∂α
(0, 0) = 1 − ∂	2

∂x2
((1 − l)T, I1(	(lT, X0)))

×∂	2

∂x2
(lT, X0)

= d ′
0 = 0.

Using (3.1) and (3.7), it is seen that

∂ f

∂τ
(τ , α)

= ∂

∂τ
[α −
2(T + τ , X0 + αY0 + z(τ , α)E0)]

= − ∂

∂τ
[	2((1 − l)(T + τ), I1(	(l(T + τ), X0

+αY0 + z(τ , α)E0))))]

= −∂	2

∂τ
((1 − l)(T + τ), I1(	(l(T + τ), X0

+αY0 + z(τ , α)E0)))(1 − l)

− ∂	2

∂x1
((1 − l)(T + τ), I1(	(l(T + τ), X0

+αY0 + z(τ , α)E0))) ·
(
∂	1

∂τ
(l(T + τ), X0

+αY0 + z(τ , α)E0) · l + ∂	1

∂τ
(l(T + τ), X0

+αY0 + z(τ , α)E0)
∂z

∂τ
(τ , α)

)

− ∂	2

∂x2
((1 − l)(T + τ), I1(	(l(T + τ), X0

+αY0 + z(τ , α)E0)))(1 − q)
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·
(
∂	2

∂τ
(l(T + τ), X0 + αY0

+ z(τ , α)E0) · l + ∂	2

∂x1
(l(T + τ), X0

+αY0 + z(τ , α)E0)
∂z

∂τ
(τ , α)

)

. (6.3)

Therefore,

∂ f

∂τ
(0, 0)

= −∂	2

∂τ
((1 − l)T, I1(	(lT, X0)))(1 − l)

− ∂	2

∂x1
((1 − l)T, I1(	(lT, X0)))

·
(
∂	1

∂τ
(lT, X0) · l + ∂	1

∂x1
(lT, X0)

∂z

∂τ
(0, 0)

)

− ∂	2

∂x2
((1 − l)T, I1(	(lT, X0)))

(1 − q)

(
∂	2

∂τ
(lT, X0) · l + ∂	2

∂τ
(lT, X0)

∂z

∂τ
(0, 0)

)

.

Since

∂	2

∂τ
((1 − l)T, I1(lT, X0)) = 0, (6.4)

∂	2

∂x1
((1 − l)T, I1(	(lT, X0))) = 0, (6.5)

it follows that

∂ f

∂τ
(0, 0) = 0.

7 Appendix A3: The second-order partial
derivatives of �2

Again, by formally deriving

d

dt
(	(t, X0)) = F(	(t, X0)),

as done in appendix A1, we may get ∂2	2
∂x2

1
(t, X0),

∂2	2
∂x2

2
(t, X0),

∂2	2
∂x1∂x2

(t, X0) as the solutions of certain

initial value problems.

d

dt

(
∂2	2

∂x2
1

(t, X0)

)

= (βN (t)− β	1(t, X0)− γ − σ)
∂2	2

∂x2
1

−β ∂	1

∂x1
(t, X1)

∂	2

∂x1
(t, X0)

and since

∂	2

∂x1
(t, X0) = 0 f or t ≥ 0.

It then follows that

∂2	2

∂x2
1

(t, X0)

= e
∫ t

0 (βN (s)−β	1(s,X0)−γ−σ)ds ∂
2	2

∂x2
1

(0, X0).

Since ∂2	2
∂x2

1
(0, X0) = 0, this implies that

∂2	2

∂x2
1

(t, X0) = 0 f or t ≥ 0.

By similar method, we have

d

dt

(
∂2	2

∂x2
2

(t, X0)

)

= (βN (t)− β	1(t, X0)− γ − σ)
∂2	2

∂x2
2

(t, X0)

−β ∂	2

∂x2
(t, X0)

∂	1

∂x2
(t, X0).

Since

∂2	2

∂x2
2

(0, X0) = 0,

we have

∂2	2

∂x2
2

(t, X0) = −βe
∫ t

0 (βN (s)−β	1(s,X0)−γ−σ)dt

×
∫ t

0

∂	1

∂x2
(s, X0)ds.

Similarly, we may compute

d

dt

(
∂2	2

∂x1∂x2
(t, X0)

)

= (βN (t)− β	1(t, X0)− γ − σ)
∂2	2

∂x1∂x2
(t, X0)

−β ∂	1

∂x2
(t, X0)

∂	2

∂x1
(t, X0).

According to ∂2	2
∂x1∂x2

(t, X0) = 0, we get

∂2	2

∂x1∂x2
(t, X0) = −βe

∫ t
0 (βN (t)−β	1(t,X0)−γ−σ)dt

×
∫ t

0

∂	1

∂x1
(s, X0)ds.
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We note that

∂2	2

∂x1∂τ
((1 − l)T, I1(	(lT, X0))) = 0, (7.1)

∂2	2

∂x2
1

((1 − l)T, I1(	(lT, X0))) = 0, (7.2)

∂2	2

∂x2
1

(lT, X0) = 0. (7.3)

Considering (7.1)–(7.3) with (6.2)–(6.5), we obtain

∂2 f

∂τ 2 (0, 0) = −∂
2	2

∂τ 2 ((1 − l)T, I1(	(lT, X0)))(1 − l)2.

Since

∂2	2

∂τ 2 ((1 − l)T, I1(	(lT, X0))) = 0,

we have

∂2 f

∂τ 2 (0, 0) = 0.

We then compute ∂2 f
∂α2 (0, 0). By (6.1), we have

∂2 f

∂α2 (̃τ , α)

= ∂2

∂α2 (α −
2(T + τ̃ , X0 + αY0 + z(̃τ , α)E0))

= − ∂2

∂α2 (	2((1 − l)(T + τ̃ ), I1(	(T + τ̃ )l, X0

+αY0 + z(̃τ , α)E0)))

= − ∂

∂α

[
∂	2

∂x1
((1 − l)(T + τ̃ ), I1(	((T + τ̃ )l, X0

+αY0 + z(̃τ , α)E0)))

]

×
(
∂	1

∂x1
((T + τ̃ )l, X0

+αY0 + z(̃τ , α)E0)

(

−b′
0

a′
0

+ ∂z

∂α
(̃τ , α)

)

+ ∂	1

∂x2
((T + τ̃ )l, X0 +αY0 + z(̃τ , α)E0))

− ∂	2

∂x1
((1 − l)(T + τ̃ ), I1 (	 ((T + τ̃ )l, X0

+αY0 + z(̃τ , α)E0)))× ∂

∂α

[
∂	1

∂x1
((T + τ̃ )l, X0

+αY0 + z(̃τ , α)E0)

(

−b′
0

a′
0

+ ∂z

∂α
(̃τ , α)

)

+ ∂	1

∂x2
((T + τ̃ )l, X0 +αY0 + z(̃τ , α)E0)

]

− ∂

∂α

[
∂	2

∂x2
((1 − l)(T + τ̃ ), I1(	(T + τ̃ )l, X0

+αY0 + z(̃τ , α)E0))

]

×
(
∂	1

∂x1
((T + τ̃ )l, X0

+αY0 + z(̃τ , α)E0)

(

−b′
0

a′
0

+ ∂z

∂α
(̃τ , α)

)

+ ∂	1

∂x2
((T + τ̃ )l, X0 +αY0 + z(̃τ , α)E0))

− ∂	2

∂x2
((1 − l)(T + τ̃ ), I1((T + τ̃ )l, X0

+αY0 + z(̃τ , α)E0))× ∂

∂α

[
∂	2

∂x1
((T + τ̃ )l, X0

+αY0 + z(̃τ , α)E0)

(

−b′
0

a′
0

+ ∂z

∂α
(̃τ , α)

)

+ ∂	2

∂x2
((T + τ̃ )l, X0 +αY0 + z(̃τ , α)E0)

]

.

After a few computations, we derive that

∂2 f

∂α2 (0, 0)

= − ∂

∂α

[
∂	2

∂x1
((1 − l)(T + τ), I1(	(l(T + τ),

X0 + αY0 + z(τ , α)E0)))

]

|(τ ,α)=(0,0)

×
(
∂	1

∂x1
(lT, X0)

(

−b′
0

a′
0

+ ∂z

∂α
(0, 0)

)

+ ∂	1

∂x2
(lT, X0)

)

− ∂

∂α

[
∂	2

∂x1
((1 − l)(T + τ),

I1(	(l(T + τ), X0 + αY0

+ z(τ , α)E0)))

] ∣
∣
∣
(τ ,α)=(0,0)

×
(

−b′
0

a′
0

+ ∂z

∂α
(0, 0)

)

+ ∂	2

∂x2
(lT, X0))

− ∂	2

∂x2
((1 − l)T, I1(	(lT, X0)))

× ∂

∂α

[
∂	2

∂x1
(l(T + τ), X0 + αY0 + z(τ , α)E0)

×
(

−b′
0

a′
0

+ ∂z

∂α
(0, 0)

)

+ ∂	2

∂x2
(l(T + τ , X0

+αY0 + z(τ , α)E0)))

]

|(τ ,α)=(0,0).

123



2382 Z. Zhao et al.

Using again (7.2) and ∂z
∂α
(0, 0) = 0, it follows that

∂2 f

∂α2 (0, 0)

= −2
∂2	2

∂x1∂x2
((1 − l)T, I1(	(lT, X0)))

×
(
∂	1

∂x1
(lT, X0)

(

−b′
0

a′
0

)

+ ∂	1

∂x2
(lT, X0)

)

×∂	2

∂x2
(lT, X0)− ∂2	2

∂x2
2

((1 − l)T, I1(	(lT, X0)))

×
(
∂	2

∂x2
(lT, X0)

)2
− ∂	2

∂x2
((1−l)T, I1(	(lT, X0)))

×
[

2
∂2	2

∂x2∂x1
(lT, X0)

(

−b′
0

a′
0

)

+ ∂2	2

∂x2
2

(lT, X0)

]

.

Obviously, it can be deduced from above that

∂2 f

∂α2 (0, 0) > 0.

It is also seen that

∂2 f

∂α∂τ
(0, 0)

= − ∂2	2

∂x2∂τ̃
((1−l)T, I1(	(lT, X0)))

∂	2

∂x2
(lT, X0)(1−l)

− ∂2	2

∂x1∂x2
((1 − l)T, I1(	(lT, X0)))

∂	2

∂x2
(lT, X0)

×
(
∂	1

∂τ̃
(lT, X0)l + ∂	1

∂x1
(lT, X0)

∂z

∂τ̃
(0, 0)

)

− ∂	2

∂x2
((1 − l)T, I1(lT, X0))

×
(
∂2	2

∂x2∂τ̃
(lT, X0)+ ∂2	2

∂x1∂x2
(lT, X0)

∂z

∂τ̃
(0, 0)

)

.

Now, we compute the right-hand side of the equation
above. It is showed that

− ∂2	2

∂x2∂τ̃
((1 − l)T, I1(	(lT, X0)))

∂	2

∂x2
(lT, X0)(1 − l)

= − (
βN (T )− βR∗(T )− γ − σ

)
(1 − l),

− ∂2	2

∂x2∂x1
((1 − l)T, I1(	(lT, X0)))

∂	2

∂x2
(lT, X0)

=
∫ (1−l)T

0
γ e−(δ+σ)t dt,

∂	1

∂τ̃
(lT, X0)l + ∂	1

∂x1
(lT, X0)

∂z

∂τ̃
(0, 0)

= −(δ + σ)R∗(lT )l + e−(δ+σ)lT (−(δ + σ)R∗(T ))
a′

0

= −(δ + σ)(R∗(lT )l + e−(δ+σ)lT R∗(T )
a′

0
),

−∂	2

∂x2
((1 − l)T, I1(	(lT, X0)))

(
∂2	2

∂x2∂τ̃
(lT, X0)l

+ ∂2	2

∂x1∂x2
(lT, X0)

∂z

∂τ̃
(0, 0)

)

= −∂	2

∂x2
((1 − l)T, I1(	(lT, X0)))((βN (lT )

−βR∗(lT )− γ − σ)
∂	2

∂x2
(lT, X0)l

−
(
∂	2

∂x2
(lT, X0)

∫ lT

0
γ e−(δ+σ)sds

)
∂z

∂τ̃
(0, 0))

= − [
(βN (lT )− βR∗(lT )− γ − σ)l

+
∫ lT

0
γ e−(δ+σ)sds

(δ + σ)R∗(T )
a′

0

]

.

Hence, it is concluded that

∂2 f

∂α∂τ̃
(0, 0) = −(βN (T )− βR∗(T )− γ − σ)(1 − l)

−(δ+σ)
(

R∗(lT )l+ e−(δ+σ)lT R∗(T )
a′

0

)

×
∫ (1−l)T

0
γ e−(δ+σ)t dt

−
[

(βN (lT )− βR∗(lT )− γ − σ)l

+
∫ lT

0
γ e−(δ+σ)sds

(δ + σ)R∗(T )
a′

0

]

.

It follows from dS
dt
> 0 and

∫ T
0 (β(N (s)− R∗(s))−

γ − σ)ds = ∫ T
0 (βS(u) − γ − σ)du = 0, we have

1
T

∫ T
0 (β(N (s)− R∗(s))−γ −σ)ds < βS(lT )l −(γ +

σ)l + βS(T )(1 − l)− (γ + σ)(1 − l). Consequently,

one notes that ∂2 f
∂α∂τ̃

(0, 0) < 0.
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