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Abstract This paper presents a control strategy desig-
ned as a combination of a PD controller and a twisting-
like algorithm to stabilize the damped cart pole sys-
tem, provided that the pendulum is initially placed
within the upper-half plane. To develop the strategy,
the original system is transformed into a four-order
chain of integrator form, where the damping force is
included through an additional nonlinear perturbation.
The strategy consists of simultaneously bringing the
position and velocity of the pendulum to within a com-
pact region by applying the PD controller. Meanwhile,
the system state variables are brought to the origin by
the twisting-like algorithm. The corresponding conver-
gence analysis is done using several Lyapunov func-
tions. The control strategy is illustrated with numerical
simulations.
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1 Introduction

The cart pole system (CPS), also known as the inverted
pendulum on a cart, is among the classic mechani-
cal systems that have been studied extensively in con-
trol theory during the last four decades. This sys-
tem was originally used as a benchmark for educa-
tional purposes, see [1,6,15,33,39,43,44,46] .Through
the years, this system has attracted attention as an
important underactuated mechanical system, because
the pendulum angular acceleration cannot be directly
controlled [18,42]. As the CPS dynamics resembles
that of many underactuated robot systems, it has
been studied as a simplified model such systems (see
[7,27,30,38,40,43] ). This system is made up of a cart
that moves, forward and backward, over a straight line
and has a free-moving pendulum hanging from it. The
cart is moved by a horizontal force, which is the input of
the system. It is well known that several control strate-
gies that were initially conceived for fully actuated sys-
tems cannot be applied to drive this system. Actually,
the system is not feedback linearizable [23,42]; also,
the system loses controllability when the pendulum
passes through the horizontal plane [18,41]. However,
the system can be controlled when located near the
unstable equilibrium point, by applying the direct pole
placement procedure [25,42].

In the present authors’ opinion, there are two impor-
tant problems related to the control of the CPS. The first
consists of the upward swing of the pendulum from the
hanging position to the upright position. In general, this
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problem has been tackled by using methods based on
energy control and hybrid schemes [2,3,8,9,22,26,31,
44,45] . The second issue arises when the pendulum
is located somewhere in the upper-half plane, and the
goal is bringing it to its unstable equilibrium point. Usu-
ally, this control challenge has been solved by applying
nonlinear control tools. A full review of these tools is
beyond the scope of this work; however, we mention,
for instance, the well-known energy-based controller or
Lyapunov-based techniques, and methods based on the
feedforward or the backforward forms, in conjunction
with the saturation function or the bounded function
approaches [3–5,13,14,22,30,45].

In this work, we propose a control strategy to stabi-
lize the damped CPS around to its unstable equilibrium
point, assuming that the pendulum starts moving from
some position located inside of the upper-half plane and
that the damped coefficient is known. Considering the
damping force in the non-actuated coordinate makes
controlling this system a challenge, because this force
can easily destroy the system stability [21,32,47]. In
addition, managing this force is a very difficult task.
Several works have neglected the damping coefficient
for this reason.

To develop the proposed control strategy, we trans-
formed the original system into a four-order chain
of integrators, with an additional nonlinear perturba-
tion. Then, we proposed the strategy as a combination
of a linear PD controller and a modified version of
the twisting algorithm [16,28,34–36] ,where the first
acts over the pendulum position and velocity, while
the second brings the whole system state to the ori-
gin. The corresponding stability analysis was carried
out by using several Lyapunov functions. Convincing
numerical simulations were done to assesses the per-
formance of the proposed control strategy. Finally, we
mention that this work was inspired by [35,36]. How-
ever, our strategy, when the controller gains are ade-
quately selected, may guarantee global convergence,
as long as the position pendulum is initialized into
the upper-half plane, though it has the disadvantage
of being less robust in the presence of unmodeled per-
turbations. During the development of this study, we
use the following functions:

sgn[x] =
⎧
⎨

⎩

1 if x > 0,

−1 if x < 0,

ε [−1, 1] if x = 0.

; d

dx
|x | = sgn[x] .

The following sections are organized as follows. The
nonlinear model of the system is presented in Sect. 2. In
Sect. 3, we develop the control strategy. The numerical
simulations and the conclusions are in Sects. 4 and 5,
respectively.

2 Problem statement

Consider the damped inverted pendulum mounted on a
cart. This system can be described by the following set
of normalized differential equations [42]:

(1 + μ) ẍ + cos θ θ̈ − θ̇2 sin θ = f,

ẍ cos θ + θ̈ − sin θ = −d θ̇ , (1)

where x is the normalized cart displacement, θ , is the
angle between the pendulum and the vertical, f is the
normalized force applied to the cart, which is also the
input to the system, and μ > 0 is a scalar constant
dependent on both the cart and pendulum masses. The
pendulum viscous friction is considered as a linear
function of the angular velocity, d θ̇ , with d ≥ 0.

In this work, the physical parameters μ and d are
actually given by [42]:

μ = M
m ; d = γ

mL1/2g3/2 ,

where M and m stand for the cart and pendulum masses,
respectively, the pendulum length is L , g is the gravity
constant, and γ is the actual dissipation coefficient pre-
sented in the non-actuated coordinated θ . The damping
force presented in the actuated coordinate is neglected
in order to simplify the methodology presented here.
It is important to remark that this force can be easily
compensated by using any adaptive control algorithm
([20,29]).

The control objective consists of bringing the pen-
dulum to its unstable equilibrium point,

p = (θ = 0, θ̇ = 0, x = 0, ẋ = 0),

under the following important considerations:
C1) The system is initialized inside of the following

set:

U = {(θ, θ̇ , x, ẋ) : (−π/2, π/2) × R3}
C2) The state variables are available and the para-

meters are known.
It should be notice that C1 is not very restrictive,

because the pendulum is assumed to be somewhere
inside of the upper-half plane; in fact, it can be easily
accomplished by using some suitable controller such
as those proposed in [26].
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Stabilizing the CPS by sliding mode control 2771

Differential equations are understood in the Filip-
pov sense [19] in order to provide for the possibility
to use discontinuous signals in controls. Filippov solu-
tions coincide with the usual solutions, when the right-
hand sides are Lipschitzian. It is assumed also that all
considered inputs allow the existence of solutions and
their extension to the whole semi-axis t ≥ 0.

3 System transformation

After introducing the following feedback law:

f = u(μ + sin2 θ) − d cos θ θ̇ − θ̇2 sin θ + cos θ sin θ,

(2)

the system can be rewritten as:

θ̈ = sin θ − cos θu − d θ̇ ,

ẍ = u, (3)

Now, in order to represent the system (3) as a four-
order chain of integrators plus an additional nonlinear
perturbation, we define the following new change of
coordinates:

z1 = x + 2 tanh−1
(

tan
θ

2

)

; z3 = tan θ;
z2 = ẋ + θ̇ sec θ; z4 = θ̇ sec2 θ. (4)

Then, the system (3) can be rewritten as:

ż1 = z2;
ż2 = z3 + α (z3) z2

4 − dz4β (z3) ;
ż3 = z4;
ż4 = υ; (5)

where

α(z3) = z3
(
1+z2

3

) 3
2

; β(z3) = 1√

1+z2
3

,

and υ is the new control variable, defined as:

υ = sec2 θ
(
sin θ − cos θu − d θ̇

) + 2θ̇2 sec2 θ tan θ

(6)

It is important to remark that:

|α(x)| ≤ κ0 = 2
33/2 ; |β(x)| ≤ 1. (7)

Now, to dominate the undesirable term dβ(z3)z4, found
in the second equation of (5), we use the following
change of coordinates and the following scale of time:

q1 = ε2z1; q2 = εz2; q3 = z3;
q4 = z4/ε; τ = εt,

(8)

where ε is a strictly positive free parameter. Hence, the
system (5) can be written in the new coordinates as:

q̇1 = q2;
q̇2 = q3 + εq4ρ(q);
q̇3 = q4

q̇4 = v

ε2 = vε, (9)

where ρ(q) is a vanishing perturbation defined by:

ρ(q) = εα (q3) q4 − dβ (q3) (10)

Here, the symbol “dot” stands for differentiation with
respect to the dimensionless time τ . We must under-
score that the free parameter, ε > 0, can be tuned as
desired.

Finally, the above system can be expressed in a com-
pact form as:

q̇ = f (q) + Bvε = F(q, vε); (11)

where vε ∈ R, q ∈ R4 and f (q) : R4 → R4.

4 Control of the cart pole system

The control law is proposed as:

vε(q) = vs(q) + ve(q),

where ve(q) is a linear controller devoted to bring the
states q3 and q4 close enough to the origin, andvs(q) is a
bounded controller designed using the twisting sliding
mode algorithm.

The linear control part of the controller, vε , is
selected as:

ve = −k1q3 + k2q4

k3
; (12)

Let us introduce the following auxiliary variables:

s1 = k1q1 + (k1 + k2)q2 + (k3 + k2) q3 + k3q4;
s2 = k1q2 + k2q3 + k3q4; (13)

where the set of constants ki > 0 should be selected
such that they satisfy the following:

k2 > 1/2 + λ1ε
2 (k2 + k1) κ0 + δ1;

λ2
1 > λ2

2 + 2λ1εd (k2 + k1) q4 + δ2;
λ2 > k1

(
κ0ε

2q2
4 + εdq4

)
+ δ3; (14)

where δi > 0, i = {1, 2, 3}.1 The inequities in (14)
are referred to in the sequel as assumption A1. Let us

1 With q4 = λ1+λ2
k2

and δi can be fixed as needed inside of a
suitable range.
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propose vs as a discontinuous injection based on the
twisting control algorithm [28,34–36] .That is,

vs = − 1

k3
(λ1sgn[s1] + λ2sgn[s2]) = −vs

k3
; (15)

where λ1 > λ2 > 0.
Let us synthesize the main result of this work in the

following theorem:

Theorem 1 Consider the system (9) in closed-loop
with:

v = − 1

k3

(
k1q3 + k2q4 + λ1sig[s1] + λ1sig[s2]

)
,

where

s1 = k1q1 + (k1 + k2)q2 + (k3 + k2) q3 + k3q4;
s2 = k1q2 + k2q3 + k3q4.

Under the assumption that the control parameters
ki > 0; with i = {1, 2, 3} and λ1 > λ2 > 0, satisfy
the inequalities in (14), then the closed-loop system
is asymptotically stable. In particular, the variables s1

converge to zero in finite time.

Proof Following the application of the linear control,
and after some simple algebra, the dynamics of s1 and
s2 become:

ṡ1 = s2 + (k1 + k2)εq4ρ(q) + k3vs;
ṡ2 = k1εq4ρ(q) + k3vs . (16)

Then, the system composed by (16) and the last two
equations of (9) reads as:

ṡ1 = s2 + εq4ρ(q)(k1 + k2) + k3vs,

ṡ2 = εq4ρ(q)k1 + k3vs

q̇3 = q4,

q̇4 = − 1

k3

(
k1q3 + k2q4

) + vs; (17)

To be able to carry out the convergence analysis, we
analyze the boundedness of the states q3 and q4, when
the system (17) is feedback by the twisting controller,
to assure the boundedness of the vanishing nonlinear
perturbation ρ(q). That is, the system (17), in closed-
loop with (15), reads as

ṡ1 = s2 + εq4ρ(q)(k1 + k2) − vs,

ṡ2 = k1εq4ρ(q) − vs

q̇3 = q4,

q̇4 = − 1

k3

(
k1q3 + k2q4

) − 1

k3
vs (18)

where

vs = λ1sig[s1] − λ2sig[s2].
Before formally presenting the corresponding proof,
we introduce the following auxiliary lemma:

Lemma 1 Consider the following second order sys-
tem:

ẋ = y ; ẏ = −kpx − kd y + υ;
where the set of constants ki > 0, for i = {p, d}, with
|υ| ≤ υ. Then, there exits a finite time, t0 > 0, such
that:

|x | ≤ υ+δ0
kp

; |y| ≤ υ+δ0
kd

; ∀t ≥ t0,

where δ0 > 0is sufficiently small. The proof of this
lemma is omitted due to its obviousness.

According to this lemma, the last two equations of
(17) satisfy the following inequity:

|q3| ≤ λ1+λ2+δ0
k1

; |q4| ≤ q4 = λ1+λ2+δ0
k2

; ∀t ≥ t0,

(19)

where t0 is a finite period of time and δ0 is a small
positive constant. That is, q3 and q4 are bounded after
t ≥ t0. This fact assures that the proposed closed-loop
system is Lipschitzian, implying that the states s1 and s2

remain bounded during a finite time. Hence, the finite
time of scape does not exist—see [24]. On the other
hand, from the relations (7) and (10), the inequality,

|ρ(q)| ≤ κ0ε |q4| + d; ∀t ≥ t0, (20)

is fulfilled. Having shown that q3 and q4 are uniformly
bounded after some finite time, we are in a position to
finally perform the convergence analysis of the whole
system, using a continuous and differentiable almost
everywhere Lyapunov function. Before to proceeding,
we must remember that these kinds of Lyapunov func-
tions have been introduced since the late nineties to
prove the stability of discontinuous systems and sys-
tems with solutions intended in Filippov’s sense—see
for example, [10–12]. Let us introduce our Lyapunov
function, as:

VT (p) = k1

2k3
q2

3 + 1

2
q2

4 + λ1

k3
|s1| + 1

2k3
s2

2 ; (21)

with the vector state p = (s1, s2, q3, q4), whose time
derivative around the trajectories of the system (17) is
almost everywhere given by:
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V̇T (p) = −k2

k3
q2

4 + 1

k3
q4vs +

W (p)
︷ ︸︸ ︷
λ1

k3
sgn[s1]ṡ1 + 1

k3
s2ṡ2.

(22)

Notice that the derivative of the Lyapunov function (21)
exists for all s1 values except the set of measure zero
given by s1 = 0. Notice that W (p) can be expressed
after using (16), as follows:

W (p) = λ1

k3
(k2 + k1) sgn[s1]ρ(q)ε + k1

k3
s2ρ(q)ε

−λ2
1

k3
− λ1λ2sgn[s1]sgn[s2]

k3
− λ2

k3
|s2| .

By using the inequality |q4vs | ≤ (q2
4 + v2

s )/2, we have
that (22) can be upperbounded, as:

V̇T (p) ≤ −
(

k2

k3
− 1

2k3

)

q2
4 − v2

s

2k3
+ W (p). (23)

It is easy to see, after some simple algebra that the
following inequality

v2
s

2k3
+ W (p) ≤ − λ2

1

2k3
− λ2

k3
|s2| + 1

2k3
λ2

2 + k1

k3
|s2| εq4ρ

+λ1

k3
(k2 + k1)

(
κ0ε

2q2
4 + εdq4

)
(24)

holds, for all t ≥ t0; where for simplicity, we introduce,
ρ, such that2

|ρ(q)| ≤ ρ = κ0εq4 + d. (25)

After substituting (24) into the relation (23), we obtain
the following inequality:

V̇T (p) ≤ −
(

k2

k3
− 1

2k3
− λ1

k3
ε2 (k2 + k1) κ0

)

q2
4

− 1

2k3
λ2

1 + 1

2k3
λ2

2 + λ1d

k3
ε (k2 + k1) q4

− |s2|
(

λ2

k3
− k1

k3
εq4ρ

)

.

Then, according to the conditions in assumption A1,
we have that after a finite time t ≥ t0, the following
inequity is fulfilled:

V̇T (p) ≤ − δ1

k3
q2

4 − δ2

2k3
− δ3

k3
|s2| . (26)

From the above, it follows that VT (p) < VT (p(0))

and, from its own definition, VT (t) is radially bounded

2 Notice that by definition

|ρ(q)| ≤ κ0ε |q4| + d ≤ κ0εq4 + d; ∀t ≥ t0.

and differentially everywhere, except when s1 = 0.
Consequently, the vector state p is bounded. On the
other hand, as VT is bounded from below, with strictly
negative definite time derivative, then V converges and
p has a limit. Also,

.
p is bounded, according to (18).

That is, p is uniformingly continuous. Now, integrating
both sides of the last inequity and using simple algebra,
we can claim that the following inequity:

δ1

k3

∫ t

t0
q2

4 (s)ds + δ3

k3

∫ t

t0
|s2(s)| ds < VT (p(t0)), (27)

holds, for t > t0. It implies that the signals s2 and q4

are, respectively, L1 and L2. According to Barbalat’s
lemma, we have that s2 → 0 and q4 → 0, as long
as t → ∞. We proceed to show that s1 converges
to zero, in a finite time. So, as the values of |s2| and
|q4| decreasing continuously toward the origin, always
exists a finite time t1 > 0 and a constant μ > 0, such
that, λ1 > |�(q(t))| + μ, for all t > t1, where:

�(q(t)) = s2 + εq4ρ(q)(k1 + k2) − λ2sgn[s2], (28)

because λ1 >> λ2. Hence, the first equation of (18)
can be read, as:

ṡ1 = −λ1sgn[s1] + �(q); t > t1. (29)

Evidently, the dynamics of s1 concides with the
dynamics of a first-order sliding mode.

To see the convergence of s1, we propose V1 = s2
1/2.

According to (28), we have:
.

V 1 ≤ −μ |s1| ; t > t1.

From the above inequity, we conclude that s1 → 0, in
a finite time. That is, there is a time t2 > t1, such that,
s1(t) → 0, as long as t > t2. To prove that q3 converges
to zero, we introduce the following auxiliary variable
z = k3q4 + k2q3 − s2, whose time derivative can be
written, after using simple algebra, as:

.
z = −k1

k2
(z − k3q4 + s2) − k1εq4ρ(q). (30)

According to (20) and the fact that s1 → 0 and q4 →
0, the last differential equation turns out to be

.
z =

−k1z/k2. It imples that z → 0 and q3 → 0. Therefore,
the closed-loop system (18) asymptotically converges
to the origin, if the control gains are selected according
with A1.

Remark 1 The function VT is continuous but not
locally Lipschitz. Therefore, the usual version of the
traditional Lyapunov theorem cannot be applied [10,
17]. However, it can be shown that function VT (p)is

123



2774 C. Aguilar-Ibáñez et al.

Fig. 1 Closed-loop
responses for two initial
conditions (p1, p2 ), and a
partial knowledge of 85 %
of the damping force
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absolutely continuous along the trajectories of the
closed-loop equation (17), implying that VT (p) is dif-
ferentiable almost everywhere, monotone decreasing
and converges to zero. These are the conditions needed
by the theorem of Zubov [28,37].

Remark 2 Should the damping parameter d be very
large, assumption A1 becomes a strong condition,
because assuring the positiveness of constants δi and ki ,

i = {1, 2, 3}, in a way that the inequities in (14) hold,
needs the parameter ε to be sufficiently small, which
converts the controller into a high-gain controller—see
(9). Another way to see it is that when the damping force
is very strong, strong control actions must be taken.

It is important to note that the proposed controller
has a very simple structure and does not presents singu-
larities, if the system is initialized inside of the upper-
half plane.
Tuning the control parameters The correct perfor-
mance of the control strategy requires control parame-
ters tuning according to the restriction (23). To illus-
trate this tuning, we fix the pendulum length, mass,
and damping as L = 0.35 (m), m = 0.250 (Kg),
and γ = 4 (kgm2/s), respectively. Then, according to
the expression given in comment C1, the normalized
damping coefficient is d = 0.9. Now, fixing the con-
trol gains as k1 = 0.9, k2 = 3.5, k3 = 4, λ1 = 6,
and λ2 = 0.8, and setting the rescale parameter as
0 < ε < 0.404, it is easy to see in a plot that the
inequities in (14) hold.
Summarizing Given d > 0 and δi ≈ 0.1, we need to
find an admissible parameter vector

Q = (k1, k2, k3, λ1, λ2, ε) ∈ R6+
fulfilling the restrictions given in (23). This problem
can be solved using any numerical optimization pro-
gram.

5 Numerical simulations

In order to verify the proposed controller performance,
we carried out some numerical simulations, where the
above proposed control gains were used, with ε =
0.4. To make this experiment more interesting, we
assume that the knowledge of the damping force has an
accuracy of 85%. We ran two experiments with their
own different initial conditions. The obtained closed-
loop responses for p1 = (θ(0) = 1.2 (rad), θ̇ (0) =
−0.1 (rad/s), x = 0, ẋ = 0) and p2 = (θ(0) =
−0.7[rad], θ̇ (0) = 0, x = 0.2 (m/s), ẋ = 0) are shown
in Fig. 1, where pi correspond to (θ,

.

θ, x,
.
x). As we can

see, the control strategy is able to render the system to
the origin after 7 (s) elapsed, even when the value of
the damping coefficient, d, is partially known.

To provide an idea of how good the proposed control
strategy OC is, we compared it with the control tech-
nique proposed by Riachy et al. in [35], here referred
to as RC. The control parameters of RC were tun-
ing heuristically, but to be fair, we tried to find the
values that enable the best transient response. The ini-
tial conditions were fixed as (θ = 0.9, 0, 0, 0). The
obtained results are shown in Fig. 2, where we can
see that the closed-loop response of the propose con-
trol strategy is as good as the responses of RC. Fur-
thermore, we can see that our strategy presents a bet-
ter behavior in the angular variable, if compared with
the RF strategy. However, the cart displacements in
our strategy are larger that those in RC. Please keep
in mind that this is a numeric comparison, a formal
comparison is beyond the scope of this work, as is a
comparative study between our control strategy and
others found in the literature. We must underscore
that all the simulations were carried out in the actual
coordinates of the pendulum system. Finally, Fig. 3
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Fig. 2 Comparison
between the closed-loop
responses of the OC and the
RC strategies, represented
with a solid line and a
dotted line, respectively
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Fig. 3 Asymptotic behavior of VT and
.

V T , for the initial con-
ditions: (s1 = 1, s2 = 0, q3 = −5, q4 = 1) and (s1 = 0, s2 =
0, q3 = 1, q4 = 4). The plot on the left side corresponds to the
first initial conditions, and the one on the right side to the second
initial conditions

shows numerically the asymptotic behavior the Lya-
punov function VT (p), and its derivative. To this exper-
iment, we used the same setup as before, but normal-
ized time, and the following two different sets of initial
conditions: (s1 = 1, s2 = 0, q3 = −5, q4 = 1) and
(s1 = 0, s2 = 0, q3 = 1, q4 = 4). The numerical
similations shown in this figure are the expect results,
because VT converges asymptotically to zero and

.

V T

is always strictly negative, with
.

V T tends to −4.9.

6 Conclusions

In this work, we introduced a control strategy, based
on a PD controller in conjunction with a twisting-like
algorithm, to solve the stabilization of the damped cart
pole system, assuming that the pendulum is initialized

somewhere inside of the upper-half plane. To this end,
we first used some nonlinear transformations over the
original pendulum system to express it as a four-order
chain of integrators, with an additional perturbation that
vanishes at the origin. The PD controller was designed
to bring the pendulum position and its velocity inside
of a compact region simultaneously. At the same time,
the twisting-like algorithm renders the whole system
state to the origin. For the convergence analysis, we
used several Lyapunov functions, thereby assuring that
our strategy converges asymptotically once the pendu-
lum position and its velocity are inside of the compact
region. The effectiveness and robustness of the strat-
egy was tested running numerical simulations, where
uncertainties in the parameters’ values were included.
The obtained results allow us to claim that the perfor-
mance of our controller is satisfactory.
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