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Abstract A special Lie symmetry and Hojman con-
served quantity of the Appell equations for a Chetaev
nonholonomic system are studied. The differential
equations of motion and Appell equations of the
Chetaev nonholonomic system are established. Un-
der the special Lie symmetry group transformations
in which the time is invariable, the determining equa-
tion of the special Lie symmetry of the Appell equa-
tions for a Chetaev nonholonomic system is given, and
the expression of the Hojman conserved quantity is
deduced directly from the Lie symmetry. Finally, an
example is given to illustrate the application of the re-
sults.
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1 Introduction

Appell equations are very important equations in ana-
lytical mechanics, and belong to one of the three types
of mechanical system in the theory of analytical me-
chanics [1]. Nearly 20 years, Chinese scholars have
gained fruitful achievements in research, promotion
and application of the Appell equation [2–8]. Since
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2000, Chinese scholars have made some achievements
in the studies of symmetry for mechanical system with
constraints [9–24], especially in Lie symmetry’s re-
search [25–39]. However, for a long time, there have
been fewer results to Appell equations. To solve Ap-
pell equations, Mei Feng-Xiang, the famous classical
mechanics expert, first gained the Noether conserved
quantity deduced indirectly from the Noether symme-
try by Mei symmetry [40]; Ref. [41] examined the
conserved quantity of the variable mass holonomic
system deduced indirectly from the Noether symme-
try by Mei symmetry; Ref. [4] obtained the conserved
quantity of Appell equations for the rotational rela-
tivistic holonomic system deduced indirectly from the
Noether symmetry and Lie symmetry by Mei sym-
metry; Ref. [42] used Appell to express the structure
equation of Mei symmetry and Mei conserved quantity
for a non-Chetaev’s type constrained mechanical sys-
tem. However, there are fewer research results of Lie
symmetry of Appell equations. This paper works on
special Lie symmetry and Hojman conserved quantity
of Appell equations for a Chetaev type nonholonomic
system.

2 Appell equations for a Chetaev nonholonomic
system

Suppose that the position of a mechanical system is
determined by the n generalized coordinates qs (s =
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1,2, . . . , n), and it is subject to the g ideal bilateral
Chetaev nonholonomic constraints

fβ(t,q, q̇) = 0 (β = 1,2, . . . , g). (1)

The restriction condition of constraints imposed on
virtual displacement is
∂fβ

∂q̇s

δqs = 0 (β = 1,2, . . . , g). (2)

The acceleration energy of system is S = S(t,q, q̇, q̈),
the generalized forces are Qs = Qs(t,q, q̇), con-
straint multipliers are λβ = λβ(t,q, q̇). Then the Ap-
pell equations of the system are

∂S

∂q̈s

= Qs + λβ

∂fβ

∂q̇s

. (3)

From Eqs. (1) and (3), all the constraint multipliers
λβ can be found, and Eq. (3) can be rewritten as

∂S

∂q̈s

= Qs + Λs. (4)

These are called equations of the holonomic system
corresponding to the nonholonomic system (1) and
(3), where

Λs = Λs(q, q̇, t) = λβ

∂fβ

∂q̇s

, (5)

are generalized constraint forces. It has been proved
that the solution of the corresponding holonomic sys-
tem (4) gives the motion of the nonholonomic system
if the initial conditions of motion satisfy the constraint
equation (1). The differential equations of motion of
the system can be solved from Eq. (4):

q̈s = αs(t,q, q̇) (s = 1,2, . . . , n). (6)

3 Determining equation and definition of Lie
symmetry

Introducing the special infinitesimal transformations

of group in which the time is invariable, a vector X̃
(0)

of the infinitesimal generators and its first expansion

X̃
(1)

and its second expansion X̃
(2)

along the trajectory
of motion of the system are

t∗ = t, q∗
s

(
t∗

) = qs(t) + εξs(t,q, q̇). (7)

X̃
(0) = ξs

∂

∂qs

, (8)

X̃
(1) = X̃

(0) + d̄ξs

dt

∂

∂q̇s

, (9)

X̃
(2) = X̃

(1) + d̄

dt

d̄ξs

dt

∂

∂q̈s

. (10)

where [40]

d̄

dt
= ∂

∂t
+ q̇s

∂

∂qs

+ αs

∂

∂q̇s

+ α̇s

∂

∂q̈s

. (11)

ε denotes an infinitesimal parameter in Eq. (7), ξs are
infinitesimal generators from Eq. (7) to Eq. (10).

Notice that ∂S
∂q̈s

= d̄
dt

∂T
∂q̇s

− ∂T
∂qs

; the determining
equation of Lie symmetry of Appell equations (4) for
a Chetaev nonholonomic system can be written as

X̃
(2)

(
∂S

∂q̈s

)
= X̃

(1)
(Qs) + X̃

(1)
(Λs). (12)

The determining equation of Lie symmetry for (6)
can be written as

d̄

dt

d̄

dt
ξs = ∂αs

∂qk

ξk + ∂αs

∂q̇k

d̄

dt
ξk. (13)

The restriction equation of Lie symmetry for non-
holonomic constraints of Eq. (1) under the special in-
finitesimal transformations (7) can be expressed as

X̃
(1){

fβ(q, q̇, t)
} = 0. (14)

It can be easily proved that restriction equations (2)
of which the constraint equation (1) is imposed on the
virtual displacement δqs can be rewritten in the fol-
lowing form:

∂fβ

∂q̇s

ξs = 0 (β = 1,2, . . . , g; s = 1,2, . . . , n). (15)

Equation (15) is called the additional restriction equa-
tion.

Definition 1 If the infinitesimal generators ξs satisfy
the determining equations (12) or (13), then the rele-
vant symmetry is the Lie symmetry of the holonomic
system (4) or (6) corresponding to the Chetaev non-
holonomic system (1) and (3).

Definition 2 If the infinitesimal generators ξs satis-
fies determining equations (12) or (13) and restriction
equation (14), then the relevant symmetry is a weak
Lie symmetry of the holonomic system (4) or (6) cor-
responding to the Chetaev nonholonomic system (1)
and (3).

Definition 3 If the infinitesimal generators ξs sat-
isfy the determining equations (12) or (13), restriction
equation (14) and additional restriction equation (15),
then the relevant symmetry is a strong Lie symmetry
of the holonomic system (4) or (6) corresponding to
the Chetaev nonholonomic system (1) and (3).
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4 Hojman conserved quantity deduced from the
Lie symmetry

Proposition 1 If the infinitesimal generators ξs are
generators of a Lie symmetry of the Chetaev non-
holonomic system (1) and (3), and satisfy the deter-
mining equations (12) or (13), and if for a function
μ = μ(t,q, q̇) holds

∂αs

∂q̇s

+ d̄

dt
lnμ = 0, (16)

then the Hojman conserved quantity deduced directly
from the Lie symmetry of Appell equations for the cor-
responding holonomic system is

IH = 1

μ

∂

∂qs

(μξs) + 1

μ

∂

∂q̇s

(
μ

d̄

dt
ξs

)
= const. (17)

Proposition 2 If the infinitesimal generators ξs are
generators of a weak Lie symmetry of the Chetaev non-
holonomic system (1) and (3), and satisfy the deter-
mining equations (12) or (13) and restriction equa-
tion (14), and if a function μ = μ(t,q, q̇) satisfies
Eq. (16), then the Hojman conserved quantity deduced
directly from a weak Lie symmetry of Appell equations
for the corresponding holonomic system is Eq. (17).

Proposition 3 If the infinitesimal generators ξs are
generators of strong Lie symmetry of the Chetaev non-
holonomic system (1) and (3), and satisfy the de-
termining equations (12) or (13), restriction equa-
tion (14) and additional restriction equation (15), and
if a function μ = μ(t,q, q̇) satisfies Eq. (16), then the
Hojman conserved quantity deduced directly from a
strong Lie symmetry of Appell equations for the corre-
sponding holonomic system is Eq. (17).

5 An illustrative example

In the following, we give an example, which only to
illustrate the application of the above results.

A particle of quality as m moved in three-dimens-
ional space, whose Appell function, generalized force
and Chetaev’s type nonholonomic constraint equations
are

S = 1

2
m

(
q̈2

1 + q̈2
2 + q̈2

3

)
, (18)

Q1 = Q2 = 0, Q3 = −mg, (19)

f = q̇2
1 + q̇2

2 − q̇2
3 = 0. (20)

m and g are constants in Eqs. (18) and (19). We try to
study the Lie symmetry and Hojman conserved quan-
tity deduced directly from the Lie symmetry of the Ap-
pell equations for the system.

From Eq. (3), we get

mq̈1 = 2λq̇1, mq̈2 = 2λq̇2,

mq̈3 = −mg − 2λq̇3.
(21)

From Eqs. (20) and (21), we obtain

λ = − mg

4q̇3
. (22)

By substituting Eq. (22) into Eq. (23), we obtain

mq̈1 = −mgq̇1

2q̇3
, mq̈2 = −mgq̇2

2q̇3
,

mq̈3 = −mg

2
.

(23)

The determining equation (13) of the Lie symmetry
gives

ξ̈1 = ξ̇1

(
− mg

2q̇3

)
+ ξ̇3

mgq̇1

2q̇2
3

,

ξ̈2 = ξ̇2

(
− mg

2q̇3

)
+ ξ̇3

mgq̇2

2q̇2
3

, (24)

ξ̈3 = 0.

According to the restriction equation (14), we can
obtain

q̇1ξ̇1 + q̇2ξ̇2 − q̇3ξ̇3 = 0. (25)

From the additional restriction equation (15), we get

q̇1ξ1 + q̇2ξ2 − q̇3ξ3 = 0. (26)

The above-mentioned equations (24) have the follow-
ing solutions:

ξ1 = q̇1, ξ2 = q̇2, ξ3 = q̇3, (27)

ξ1 = ξ2 = ξ3 = 1, (28)

ξ1 = ξ2 = 0, ξ3 = (
q̇2

1 + q̇2
2 + q̇2

3 + 2gq3
)2

. (29)

Apparently, the infinitesimal generators (27) are
generators of strong Lie symmetry, which satisfy
Eqs. (24)–(26), and Eqs. (28) and (29) are generators
of weak Lie symmetry, which satisfy Eqs. (24) and
(25).

Furthermore, from Eq. (16), we obtain

− g

q̇3
+ d̄

dt
lnμ = 0. (30)

The above-mentioned equation (30) has the following
solutions:
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μ = 1

q̇2
3

, (31)

μ = 1

q̇2
3

(
q̇2

1 + q̇2
2 + q̇2

3 + 2gq3
)
. (32)

By using the proposition, from Eqs. (28) and (31), we
have a Hojman conserved quantity

IH1 = 0. (33)

From Eqs. (28) and (32), we obtain

IH2 = 2g
(
q̇2

1 + q̇2
2 + q̇2

3 + 2gq3
)−1 = const. (34)

Equations (29) and (31) give

IH3 = 4g
(
q̇2

1 + q̇2
2 + q̇2

3 + 2gq3
) = const. (35)

From Eqs. (29) and (32), we obtain

IH4 = 6g
(
q̇2

1 + q̇2
2 + q̇2

3 + 2gq3
) = const. (36)

From Propositions 1–3, we know that IH1, IH2, IH3

and IH4 are Hojman conserved quantities deduced di-
rectly from the weak Lie symmetry of the Appell equa-
tions for the Chetaev nonholonomic system, where IH1

is the usual conserved quantity. The conserved quanti-
ties with obvious physical meanings can be found by
using Newtonian mechanics, but there are not plenty;
more conserved quantities can be found by using the
analytical mechanics methods, but the physical mean-
ings of some are often not obvious. However, we can
find more and more conserved quantities by the sym-
metry theory, but physical meaning of some conserved
quantities is less obvious. It is a problem of suspense
that still remains to be resolved, when we find the con-
served quantities by using the symmetry theory.

6 Conclusion

The Hojman conserved quantity deduced directly from
a special Lie symmetry of the Appell equations for the
Chetaev nonholonomic system is gained from this pa-
per. The results of this paper can further spread to the
studies of Lie symmetry of Appell equations for non-
Chetaev nonholonomic system and nonholonomic sys-
tem of non-Chetaev’s type with unilateral constraints.
There are few studies about Lie symmetry of Appell
equation, so the results of this paper have much signif-
icance in perfecting and developing the theory of Lie
symmetry and conserved quantity for the mechanical
system.
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