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Abstract In this paper, we apply an improved version
of the multiple scales perturbation method to a system
of weakly nonlinear, regularly perturbed ordinary dif-
ference equations. Such systems arise as a result of
the discretization of a system of nonlinear differen-
tial equations, or as a result in the stability analysis
of nonlinear oscillations. In our procedure, asymptotic
approximations of the solutions of the difference equa-
tions will be constructed which are valid on long iter-
ation scales.

Keywords Nonlinear difference equation · Multiple
scales perturbation method · Difference operator

1 Introduction

For scientists and engineers, the analysis of nonlinear
dynamical systems is an important field of research
since the solutions of these systems can exhibit coun-
terintuitive and sometimes unexpected behavior. To
obtain useful information from these systems, the mul-
tiple scales perturbation method can play an important
role.
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Nowadays, the multiple time-scales perturbation
method for differential equations is well developed,
well accepted, and a very popular method to ap-
proximate solutions of weakly nonlinear differential
equations. For difference equations, this perturbation
method is recently improved by Van Horssen [1] such
that it can be applied to a large class of problems.
In [1], a version of the multiple scales perturbation
method is presented in a complete “difference opera-
tor” setting. This method can for instance be applied to
problems for systems with time-varying masses. Ex-
amples of such systems can be found in robotics, rotat-
ing crankshafts, conveyor systems, excavators, cranes,
biomechanics, and in fluid-structure interaction prob-
lems [2, 3]. The oscillations of electric transmission
lines and cables of cable-stayed bridges with water
rivulets on the surface are also examples of time-
varying dynamic systems [4]. For these mechanical
constructions, the 1-mode Galerkin approximation of
the continuous model will lead to a single degree-of-
freedom oscillator (sdofo)-equation. These sdofos are
considered to be representative models for testing nu-
merical methods and for studying forces which are act-
ing on the system [5]. In [6] and [7], the forced vibra-
tions of a linear sdofo with a time-varying mass were
studied. The forced vibrations are due to small masses
which are periodically hitting and leaving the oscilla-
tor with different velocities. In [8], the vibrations of a
damped, linear sdofo with a time-varying mass were
studied, and the stability properties for the free, and
for the forced vibrations (due to small masses and an
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external force (for instance, a windforce)) were pre-
sented for various parameter values. A system of two
nonlinear ordinary difference equations (O�Es) is ob-
tained when also windforces are included in the model.
To analyze the system of O�Es, numerical methods
were used. In the analysis, a small parameter ε was
defined for the relative mass which is added periodi-
cally. Then, also a perturbation method can be applied.
In this paper, we are going to study similar systems
of O�Es. It will be shown how the improved multi-
ple scales perturbation method can be applied to such
systems of O�Es. Moreover, several bifurcation prob-
lems will be studied in detail.

2 Problem definition

In this paper, we consider a weakly nonlinear per-
turbed system of two first-order O�Es. A nice rep-
resentation for such a system can be written as{

xn+1 = f1,0(xn, yn) + εf1,1(xn, yn) + O(ε2),

yn+1 = f2,0(xn, yn) + εf2,1(xn, yn) + O(ε2),
(1)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1,0(xn, yn) = a11xn + a12yn,

f2,0(xn, yn) = a21xn + a22yn,

f1,1(xn, yn) = b10 + b11xn + b12yn + b13x
2
n

+b14xnyn + b15y
2
n + b16x

3
n

+b17x
2
nyn + b18xny

2
n + b19y

3
n,

f2,1(xn, yn) = b20 + b21xn + b22yn + b23x
2
n

+b24xnyn + b25y
2
n + b26x

3
n

+b27x
2
nyn + b28xny

2
n + b29y

3
n,

(2)

and where aij and bij are real constants, and 0 <

ε � 1.
In our work, by using the multiple scales perturba-

tion method in terms of difference operators, we will
obtain secular-free solutions of system (1) which can
be used to analyze, for example, systems with time-
varying masses. Furthermore, our analysis will give a
complete bifurcation analysis of system (1) when the
eigenvalues of matrix

A =
(

a11 a12

a21 a22

)
, (3)

are complex valued. This analysis strongly depends on
the eigenvalues of the problem when ε = 0. The most
interesting case from the applicational point of view is
the case when the eigenvalues of matrix A are complex
valued with nonzero real and imaginary parts, and are
in modulus smaller than or equal to 1. The analysis in
this paper will be restricted to this case.

3 The multiple scales perturbation method for
O�Es

In this section, the multiple scales perturbation method
for O�Es will be presented in a complete “difference
operator” setting. Before introducing this method, sev-
eral operators have to be defined (and motivated). The
well-known shift operator E, the difference operator
�, and the identity operator I are defined as follows:

Exn = xn+1, �xn = xn+1 − xn, and

Ixn = xn.
(4)

The relationship between these operators easily fol-
lows from (4):

E = � + I ⇔ � = E − I. (5)

The solution of a weakly perturbed O�E usually con-
tains a rapidly changing part in n, and a slowly chang-
ing part in n. This is usually referred to as multiple
scales behavior. It should be observed that these no-
tations are similar to the ones used in the multiple
timescales perturbation method for ODEs. Now it is
assumed that xn = x(n, εn). This assumption implies
that the solution of the O�E depends on two vari-
ables. So, the O�E actually becomes a partial differ-
ence equation. For that reason also, partial shift opera-
tors and partial difference operators have to be defined.
The following definitions are proposed [1]:

E1x(n, εn) = x(n + 1, εn),

Eεx(n, εn) = x
(
n, ε(n + 1)

)
,

�1x(n, εn) = x(n + 1, εn) − x(n, εn)

= (E1 − I )x(n, εn),

�εx(n, εn) = x
(
n, ε(n + 1)

) − x(n, εn)

= (Eε − I )x(n, εn).

(6)
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From (4), (5), and (6), it follows that (assuming xn =
x(n, εn)):

�xn = xn+1 − xn = x
(
n + 1, ε(n + 1)

) − x(n, εn)

= E1Eεx(n, εn) − Ix(n, εn)

= (�1 + I )(�ε + I )x(n, εn) − Ix(n, εn)

= (�1 + �ε + �1�ε)x(n, εn). (7)

And so, it follows that

� = �1 + �ε + �1�ε, and E = E1Eε. (8)

Furthermore, for the partial difference operators �1

and �ε it is assumed that [1]:

�1x(n, εn) = O
(
x(n, εn)

)
, and

�εx(n, εn) = O
(
εx(n, εn)

)
.

(9)

In fact, this assumption (9) implies that the variation in
the dependent variable x(n, εn) with respect to one of
the independent variables is proportional to the prod-
uct of the absolute value of the dependent variable and
the variation in that particular independent variable.

When xn depends on m + 1 scales, the given def-
initions can readily be generalized, yielding (for j =
0,1, . . . ,m):

xn = x
(
n, εn, ε2n, . . . , εmn

)
,

Eεj x
(
n, . . . , εmn

)
= x

(
n, εn, . . . , εj (n + 1), . . . , εmn

)
,

�εj x
(
n, . . . , εmn

) = (Eεj − I )x
(
n, . . . , εmn

)
,

E = E1EεEε2 · · ·Eεm,

� = (�1 + I )(�ε + I ) · · · (�εm + I ) − I,

�εj x
(
n, . . . , εmn

) = O
(
εj x

(
n, . . . , εmn

))
.

(10)

Now it will be shown how these operators can be used
for system (1). Using (4) and (5), it follows that (1)
can be rewritten in:{

Exn = f1,0(xn, yn) + εf1,1(xn, yn) + O(ε2),

Eyn = f2,0(xn, yn) + εf2,1(xn, yn) + O(ε2).
(11)

Assuming that xn and yn depend on two scales (a
fast scale n, and a slow scale εn), it follows that
xn = x(n, εn) and yn = y(n, εn). By using (8), (11)

becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(�1 + �ε + �1�ε + I )xn

= f1,0(xn, yn) + εf1,1(xn, yn) + O(ε2),

(�1 + �ε + �1�ε + I )yn

= f2,0(xn, yn) + εf2,1(xn, yn) + O(ε2).

(12)

To construct an approximation for xn and yn, one now
has to substitute into (12) a formal power series (in ε)
for xn and yn, that is,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn = x(n, εn) = x0(n, εn) + εx1(n, εn)

+ ε2x2(n, εn) + · · · ,

yn = y(n, εn) = y0(n, εn) + εy1(n, εn)

+ ε2y2(n, εn) + · · · .

(13)

Then, by taking together those terms of equal powers
in ε, one obtains as O(1)-problem{

(�1 + I )x0 = f1,0(x0, y0),

(�1 + I )y0 = f2,0(x0, y0),
(14)

where x0 = x0(n, εn) and y0 = y0(n, εn), and as
O(ε)-problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε((�1 + I )x1 − f1,0(x1, y1))

= εf1,1(x0, y0) − (�ε + �1�ε)x0,

ε((�1 + I )y1 − f2,0(x1, y1))

= εf2,1(x0, y0) − (�ε + �1�ε)y0,

(15)

where x1 = x1(n, εn), y1 = y1(n, εn).

4 Two complex eigenvalues

When the O(1)-problem has two complex valued
eigenvalues (namely, λ1 and λ2), we restrict ourselves
to two cases for r : 0 < r < 1, or r = 1, where r is the
absolute value of the complex eigenvalues. It follows
from (14) that(

x0(n, εn)

y0(n, εn)

)
= g0(εn)

(
c1

1

)
λn

1

+ h0(εn)

(
c2

1

)
λn

2, (16)

where c1 = λ1−a22
a21

and c2 = λ2−a22
a21

are complex con-
jugates, and where g0(εn) and h0(εn) are still arbi-
trary functions which can be used to avoid unbounded
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behavior in x1(n, εn) and y1(n, εn) on the O( 1
ε
) iter-

ation scale. Then, by substituting (16) into the O(ε)-

problem (15), and after rearranging terms, one finally
obtains as O(ε)-problem

(
ε((�1 + I )x1 − f1,0(x1, y1))

ε((�1 + I )y1 − f2,0(x1, y1))

)
=

(
M10

M20

)
+

(
M11

M21

)
λn

1 +
(

M12

M22

)
λn

2 +
(

M13

M23

)
λ2n

1 +
(

M14

M24

)
λn

1λn
2

+
(

M15

M25

)
λ2n

2 +
(

M16

M26

)
λ3n

1 +
(

M17

M27

)
λ2n

1 λn
2 +

(
M18

M28

)
λn

1λ2n
2 +

(
M19

M29

)
λ3n

2 ,

(17)

where Mij (for i = 1,2, and j = 0, . . . ,9) are given by(
M10

M20

)
= ε

(
b10

b20

)
,

(
M11

M21

)
=

(
ε(b11c1 + b12)g0 − c1λ1�εg0(εn)

ε(b21c1 + b22)g0 − λ1�εg0(εn)

)
,

(
M12

M22

)
=

(
ε(b11c2 + b12)h0 − c2λ2�εh0(εn)

ε(b21c2 + b22)h0 − λ2�εh0(εn)

)
,

(
M13

M23

)
= ε

(
b13c

2
1 + b14c1 + b15

b23c
2
1 + b24c1 + b25

)
g2

0,

(
M14

M24

)
= ε

(
2b13c1c2 + b14(c1 + c2) + 2b15

2b23c1c2 + b24(c1 + c2) + 2b25

)
g0h0,

(
M15

M25

)
= ε

(
b13c

2
2 + b14c2 + b15

b23c
2
2 + b24c2 + b25

)
h2

0,

(
M16

M26

)
= ε

(
b16c

3
1 + b17c

2
1 + b18c1 + b19

b26c
3
1 + b27c

2
1 + b28c1 + b29

)
g3

0,

(
M17

M27

)
= ε

(
3b16c

2
1c2 + b17c1(c1 + 2c2) + b18(2c1 + c2) + 3b19

3b26c
2
1c2 + b27c1(c1 + 2c2) + b28(2c1 + c2) + 3b29

)
g2

0h0,

(
M18

M28

)
= ε

(
3b16c1c

2
2 + b17c2(2c1 + c2) + b18(c1 + 2c2) + 3b19

3b26c1c
2
2 + b27c2(2c1 + c2) + b28(c1 + 2c2) + 3b29

)
g0h

2
0,

(
M19

M29

)
= ε

(
b16c

3
2 + b17c

2
2 + b18c2 + b19

b26c
3
2 + b27c

2
2 + b28c2 + b29

)
h3

0,

(18)

where g0 = g0(εn) and h0 = h0(εn). In system (17)
for x1(n, εn) and y1(n, εn), it is obvious that the right-
hand side contains terms (i.e., multiples of (c1,1)T λn

1
and of (c2,1)T λn

2, where T refers to the transpose
of the matrix), which are solutions of the homoge-
neous system. For the case 0 < r < 1, it follows
from (17) that only two vectors (M11,M21)

T λn
1 and

(M12,M22)
T λn

2 contain secular, and also nonsecular

terms. Therefore, we decompose the sum of these vec-
tors into two linearly independent directions to sepa-
rate secular and nonsecular terms,(

M1

M2

)
λn

1 +
(

M3

M4

)
λn

2

=
{
m1

(
c1

1

)
+ m2

(
c2

1

)}
λn

1
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Table 1 Values of Mk (for
k = 1, . . . ,4) in (19) for
some representations of the
absolute value of the
eigenvalues λ1 and λ2

r M1 = M2 = M3 = M4 =

0 < r < 1 M11 M21 M12 M22

r = 1 M11 + M17 M21 + M27 M12 + M18 M22 + M28

+
{
m3

(
c1

1

)
+ m4

(
c2

1

)}
λn

2, (19)

where Mk (for k = 1, . . . ,4) are obtained based on the
relationship between the eigenvalues λ1 and λ2, see
Table 1. From (19), we obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m1 = c2M2−M1
c2−c1

,

m2 = M1−c1M2
c2−c1

,

m3 = c2M4−M3
c2−c1

,

m4 = M3−c1M4
c2−c1

.

(20)

To avoid secular behavior in x1(n, εn) and y1(n, εn),
it follows that m1 = 0 and m4 = 0, that is,

M1 = c2M2, and M3 = c1M4. (21)

If we solve system (21) for �εg0(εn) and �εh0(εn),
for the case 0 < r < 1 and based on Table 1, it follows
that{

�εg0(εn) = εk1g0(εn),

�εh0(εn) = εk2h0(εn),
(22)

where

k1 = c1b11 + b12 − c1c2b21 − c2b22

λ1(c1 − c2)
, and

k2 = −c2b11 + b12 − c1c2b21 − c1b22

λ2(c1 − c2)
.

(23)

Since, for the complex eigenvalues, c1 and c2 are
complex conjugates, and so k1 and k2 are, and since
the solutions x0(n, εn) and y0(εn) need to be real, it
then follows that h0(εn) = g0(εn), where the overline
refers to complex conjugates. Therefore, system (22)
can be reduced to a single equation

�εg0(εn) = εk1g0(εn), (24)

which has as a solution

g0(εn) = g0(0)(1 + εk1)
n. (25)

From (24), it then follows that if |1+εk1| is less than 1,
then the equilibrium point (x(n, εn), y(n, εn)) = (0 +

O(ε),0+O(ε)) of system (1) is an asymptotically sta-
ble focus, if |1 + εk1| is bigger than 1, then the equi-
librium point (x(n, εn), y(n, εn)) = (0 + O(ε),0 +
O(ε)) of system (1) is an unstable focus, and if k1 is
zero, then the equilibrium point (x(n, εn), y(n, εn)) =
(0 + O(ε),0 + O(ε)) is a higher singularity and the
O(ε2)-problem for x2(n, εn) and x2(n, εn) has to be
studied (which is outside the scope of this paper).

For the case r = 1 and when the eigenvalues of ma-
trix A in (3) are complex with nonzero real and imag-
inary parts, it follows from (17) that only four vectors
(M11,M21)

T λn
1 , (M12,M22)

T λn
2, (M17,M27)

T λ2n
1 λn

2,
and (M18,M28)

T λn
1λ

2n
2 contain secular, and also non-

secular terms. Therefore, we decompose the sum of
these vectors into two linearly independent directions
to separate secular and nonsecular terms which follow
from the same equation as (19), for the case r = 1,
where Mk (for k = 1, . . . ,4) are obtained based on the
relationship λ1λ2 = 1, see Table 1. If we solve sys-
tem (21) for �εg0(εn) and �εh0(εn), where h0(εn) =
g0(εn), for the case r = 1, and based on Table 1, we
have again a single equation

�εg0(εn) = εg0(εn)
(
k1 + k3g0(εn)g0(εn)

)
, (26)

where

k3 = (
3c2

1c2(b16 − c2b26) + c1(c1 + 2c2)(b17 − c2b27)

+ (2c1 + c2)(b18 − c2b28) + 3(b19 − c2b29)
)

/λ1(c1 − c2). (27)

Consider

g0(εn) = g0,1(εn) + ig0,2(εn),

k1 = k11 + ik12, and

k3 = k31 + ik32,

(28)

where g0,1(εn) and g0,2(εn) are real functions, and
where k11, k12, k31, and k32 are real constants. Then
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(26) becomes⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�εg0,1 = ε{[k11 + k31(g
2
0,1 + g2

0,2)]g0,1

−[k12 + k32(g
2
0,1 + g2

0,2)]g0,2},
�εg0,2 = ε{[k11 + k31(g

2
0,1 + g2

0,2)]g0,2

+[k12 + k32(g
2
0,1 + g2

0,2)]g0,1},
(29)

where g0,1 = g0,1(εn) and g0,2 = g0,2(εn). As far as
we know, there are no exact solutions available for sys-
tem (29). However system (29) has always an equilib-
rium point in (g0,1, g0,2) = (0,0), and an equilibrium
“circle”

g2
0,1 + g2

0,2 = −k11k31 + k12k32

k2
31 + k2

32

, (30)

when k31k12 = k32k11.
For an additional analysis, we define a new variable

R, where R2 = g2
0,1 + g2

0,2. After doing some compu-
tations, it follows from (29) that

�ε

(
R2) = 2ε

(
k11 + k31R

2)R2 + ε2[k2
11 + k2

12

+ 2(k11k31 + k12k32)R
2

+ (
k2

31 + k2
32

)
R4]R2. (31)

Since the dynamics of the system is mostly influenced
by the O(ε)-problem rather than O(ε2)-problem we
consider O(ε) terms in (31) for the analysis. Then it
follows that if k11 and k31 have different signs, and if
k11 is positive, there is a stable limit cycle, and if k11

is negative then the limit cycle is unstable. To compute
the radius of this limit cycle, the right-hand side of (31)
is set equal to zero, that is, �ε(R

∗2) = 0. To construct
an approximation for R∗2, one now has to substitute
into the right-hand side of (31) a formal power series
(in ε) for R∗2, that is,

R∗2 = R∗
0 + εR∗

1 + ε2R∗
2 + O

(
ε3), (32)

One solution of �ε(R
∗2) = 0 is the origin, that is

R∗ = 0. To find a nontrivial approximation, by taking
together those terms of equal powers in ε, one obtains
as O(1)-problem

k11 + k31R
∗
0 = 0, (33)

which has as a nontrivial solution

R∗
0 = −k11

k31
, (34)

when − k11
k31

> 0, and, as O(ε)-problem

2k31R
∗
1 + k2

11 + k2
12 + 2(k11k31 + k12k32)R

∗
0

+ (
k2

31 + k2
32

)
R

∗2
0 = 0, (35)

which has as a solution

R∗
1 = − (k31k12 − k11k32)

2

2k3
31

, (36)

and, as O(ε2)-problem

2k31R
∗
2 + 2(k11k31 + k12k32)R

∗
1

+ 2
(
k2

31 + k2
32

)
R∗

0R∗
1 = 0, (37)

which has as a solution

R∗
2 = k32(k31k12 − k11k32)

3

2k5
31

, (38)

and so on. So, nontrivial equilibrium points follow
from⎧⎪⎨
⎪⎩

g∗2
0,1 + g∗2

0,2 = R∗2,

(k11 + k31R
∗2)g∗

0,1 − (k12 + k32R
∗2)g∗

0,2 = 0,

(k11 + k31R
∗2)g∗

0,2 + (k12 + k32R
∗2)g∗

0,1 = 0,

(39)

where R∗2 is defined in (32). Now, we expand a formal
power series (in ε) for g∗

0,1 and g∗
0,2, that is,{

g∗
0,1 = a0 + εa1 + ε2a2 + O(ε3),

g∗
0,2 = b0 + εb1 + ε2b2 + O(ε3).

(40)

Then, we substitute (40) into (39) and take together
those terms of equal powers in ε to find a0, b0, a1,

b1, . . . . One obtains as O(1)-problem⎧⎪⎨
⎪⎩

a2
0 + b2

0 = R∗
0 ,

a0(k11 + k31R
∗
0) − b0(k12 + k32R

∗
0) = 0,

b0(k11 + k31R
∗
0) + a0(k12 + k32R

∗
0) = 0,

(41)

where R∗
0 is defined in (34). It follows from (34) that

(41) has nontrivial solutions for a0 and b0 if and only
if k11k32 = k12k31 and a2

0 + b2
0 = − k11

k31
. And, as O(ε)-

problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2a0a1 + 2b0b1 = R∗
1 ,

(a0k31 − b0k32)R
∗
1 + a1(k11 + k31R

∗
0)

−b1(k12 + k32R
∗
0) = 0,

(b0k31 + a0k32)R
∗
1 + b1(k11 + k31R

∗
0)

+a1(k12 + k32R
∗
0) = 0,

(42)
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where R∗
1 is defined in (36). Then it follows that, if

k11k32 = k12k31, (42) has nontrivial solution for a1 and

b1 if and only if a0a1 + b0b1 = 0.

If we define g0,1 = R cos(φ) and g0,2 = R sin(φ),

after doing some computations, it follows from (29)

that

�ε

(
g0,2

g0,1

)
= ε(k12 + k32R

2)R2

g0,1(εn)g0,1(ε(n + 1))
. (43)

or, after expanding the right-hand side with respect to
ε, it follows that

�ε

(
g0,2

g0,1

)
= ε(k12 + k32R

2)R2

g2
0,1

[
1 − ε(k11g0,1 − k12g0,2 + (g0,1k31 − g0,2k32)R

2)

g0,1

∞∑
m=0

( −ε

g0,1

)m
]
, (44)

where g0,1 = g0,1(εn) and g0,2 = g0,2(εn). It fol-
lows from (31) and (44) that if k11k32 = k12k31 there
are infinitely many equilibrium points and as a re-
sult singularity exists, therefore, for this case we need
higher order terms when we compute secular terms.
But if k11k32 �= k12k31, then the system has only one
equilibrium point (which is located in the origin).
And, by linearization of (29) around origin, it fol-
lows that if |1 + εk1| is less than 1, then the equi-
librium point (x(n, εn), y(n, εn)) = (0 + O(ε),0 +

O(ε)) of system (1) is an asymptotically stable focus,
if |1 + εk1| is bigger than 1, then the equilibrium point
(x(n, εn), y(n, εn)) = (0+O(ε),0+O(ε)) of system
(1) is an unstable focus, and if k1 is zero, then the equi-
librium point (x(n, εn), y(n, εn)) = (0 + O(ε),0 +
O(ε)) is a higher singularity and the O(ε2)-problem
for x2(n, εn) and x2(n, εn) has to be studied (which
is outside the scope of this paper). Then it also fol-
lows from (16) that the real solutions for x0(n, εn) and
y0(n, εn), for the case when r = 1, are as follows:

(
x0(n, εn)

y0(n, εn)

)
= 2R(εn)

( 1
a21

[cos(φ(εn) + (n + 1)θ) − a22 cos(φ(εn) + nθ)]
cos(φ(εn) + nθ)

)
, (45)

where λ1 = cos(θ) + i sin(θ) and λ2 = λ1.

5 Conclusions and remarks

In this paper, by applying the multiple scales perturba-
tion method to a general system of two first-order ordi-
nary difference equations, including linear, quadratic,
and qubic terms, we obtain approximations of the so-
lutions which are valid on long iteration scales. We
considered two cases for which the eigenvalues are
complex with nonzero real and imaginary parts, and
the modulus is less than or equal to 1. For the case
when the modulus is smaller than 1, we found con-
ditions for which the solutions are stable, and for the
case when the modulus is equal to 1, and for some
special values of the constants, we encounter limit cy-
cles, and a circle of equilibrium points. Our results are

in nice agreement with numerical results in [9] when
ε is considered to be small. The stable and unstable
limit cycles in the phase plane shown by [9] show this
agreement.

The methodology that we used in this paper can
also be expanded in the same way to the other cases
such as two distinct real eigenvalues, and two coincid-
ing real eigenvalues, and based on the values for the
constants aij and bij we can have the bifurcation di-
agrams as well. The obtained results help us in a bet-
ter understanding of the behavior of nonlinear oscil-
lations. In particular, all kinds of bifurcations can be
studied in detail.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the orig-
inal author(s) and the source are credited.
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