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Abstract Nonlinear dynamics of a bouncing ball
moving in gravitational field and colliding with a mov-
ing limiter is considered. Displacement of the lim-
iter is a quadratic function of time. Several dynami-
cal modes, such as fixed points, 2-cycles, grazing and
chaotic bands are studied analytically and numerically.
It is shown that chaotic bands appear due to homo-
clinic structures created from unstable 2-cycles in a
corner-type bifurcation.

Keywords Nonsmooth dynamics · Bouncing ball ·
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1 Introduction

Vibro-impacting systems belong to a very interesting
and important class of nonsmooth and nonlinear dy-
namical systems [1–4] with important technological
applications [5–8]. Dynamics of such systems can be
extremely complicated due to velocity discontinuity
arising upon impacts. A very characteristic feature of
such systems is the presence of nonstandard bifurca-
tions such as border-collisions and grazing impacts
which often lead to complex chaotic motions.
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The Poincaré map, describing evolution from an
impact to the next impact, is a natural tool to study
vibro-impacting systems. The main difficulty with in-
vestigating impacting systems is in finding instant of
the next impact, what typically involves solving a non-
linear equation. However, the problem can be simpli-
fied in the case of a bouncing ball dynamics assuming
a special motion of the limiter. Bouncing ball models
have been extensively studied; see [9] and references
therein. As a motivation that inspired this work, we
mention the study of physics and transport of granu-
lar matter [6]. A similar model has been also used to
describe the motion of railway bogies [7]. In such sys-
tems chattering and chaotic dynamics arise typically;
see [10, 11] for a theoretical analysis.

Recently, we have considered several models of
motion of a material point in a gravitational field col-
liding with a limiter moving with piecewise constant
velocity [12–15]. Moreover, we have proposed more
realistic yet still simple models approximating sinu-
soidal motion of the table as exactly as possible but
still preserving possibility of analytical computations
[16]. In the present work, we study the model in which
displacement of the table is a quadratic and periodic
function of time.

The paper is organized as follows. In Sect. 2 a one-
dimensional dynamic of a ball moving in a gravita-
tional field and colliding with a table is reviewed and
the corresponding Poincaré map is constructed. A bi-
furcation diagram is computed for displacement of the
table assumed as a quadratic and periodic function of
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time. In the next section, dynamical modes shown in
the bifurcation diagram such as fixed points, 2-cycles,
grazing and chaotic bands are studied analytically and
numerically. It is shown that chaotic bands appear
due to homoclinic structures created from unstable 2-
cycles in a corner-type bifurcation. We summarize our
results in Sect. 4.

2 Bouncing ball: a simple motion of the table

We consider a motion of a small ball moving verti-
cally in a gravitational field and colliding with a mov-
ing table, representing unilateral constraints. The ball
is treated as a material point while the limiter’s mass
is assumed so large that its motion is not affected by
impacts. A motion of the ball between impacts is de-
scribed by the Newton’s second law:

mẍ = −mg, (1)

where ẋ = dx/dt and motion of the limiter is

y = y(t), (2)

with a known function y. We shall also assume that y

is a continuous function of time. Impacts are modeled
as follows:

x(τi) = y(τi), (3)

ẋ
(
τ+
i

) − ẏ(τi) = −R
(
ẋ
(
τ−
i

) − ẏ(τi)
)
, (4)

where duration of an impact is neglected with re-
spect to time of motion between impacts. In (3), (4),
τi stands for time of the ith impact, while ẋ−

i , ẋ+
i are

left-sided and right-sided limits of ẋi (t) for t → τi ,
respectively, and R is the coefficient of restitution,
0 ≤ R < 1 [5].

Solving (1) and applying impact conditions (3), (4),
we derive the Poincaré map in nondimensional vari-
ables:

γ Y (Ti+1) = γ Y (Ti) − Δ2
i+1 + Δi+1Vi, (5a)

Vi+1 = −RVi + 2RΔi+1 + (1 + R)γ Ẏ (Ti+1), (5b)

where Δi+1 ≡ Ti+1 − Ti , Y(T ) determines position
of the table at time T , V is velocity of the ball and
γ is a parameter depending on space and time scales
and the acceleration g [17]; see also [18] where analo-
gous map was derived earlier. The limiter’s motion has

been typically assumed in form Ys(T ) = sin(T ), cf.
[13] and references therein. This choice leads to seri-
ous difficulties in solving the first of (5) for Ti+1, thus
making analytical investigations of dynamics hardly
possible. Accordingly, we have decided to simplify the
limiter’s periodic motion to make (5a) solvable.

In our previous papers, we have assumed displace-
ment of the table as piecewise linear periodic function
of time [12–15]. In our recent work, preliminary re-
sults for function Y(T ) assumed as quadratic, Yq , and
two cubic functions of time, Yc1 and Yc2 , have been
obtained [16]. In this work, we study dynamics for
quadratic function of time Yq(T ):

Yq(T ) =
{

−16T̂ (T̂ − 1
2 ), 0 ≤ T̂ < 1

2 ,

16(T̂ − 1
2 )(T̂ − 1), 1

2 ≤ T̂ ≤ 1,
(6)

with T̂ = T − �T �, where �x� is the floor function—
the largest integer less than or equal to x, cf. Fig. 1
where displacement of the table in the case of si-
nusoidal motion Ys(T ) = sin(2πT ) has been also
shown.

Since the period of motion of the limiter is equal
to one, the map (5) is invariant under the translation
Ti → Ti + 1. Accordingly, all impact times Ti can be
reduced to the unit interval [0, 1]. The model consists
thus of (5), (6) with control parameters R, γ .

3 Analytical and numerical results

In Fig. 2 below, we show the bifurcation diagram with
times of impacts computed for growing γ and R =
0.85 (see also [16] where bifurcation diagram with
velocities just after impacts against γ was shown). It
follows that dynamical system (5), (6) has several at-
tractors: six fixed points, one 2-cycle and, possibly,
chaotic attractor.

We shall investigate now fixed points, 2-cycle and
chaotic bands shown in Fig. 2, as well as grazing, com-
bining analytical and numerical approach. General an-
alytical conditions for birth of new modes of motion
were given in [19].

3.1 Fixed points and their stability

We shall first study periodic solutions with one impact
per k periods. Such states have to fulfill the following
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Fig. 1 Displacement of the
table: Yq(T )—solid line,
and Ys(T )—dashed line

Fig. 2 Bifurcation diagram. R = 0.85, γ ∈ [0.0100, 0.0635].
Vertical critical line marks end of stability of fixed points and
birth of chaotic dynamics

conditions:

Vn+1= Vn ≡ V
(k/1)∗ , Tn+1 = Tn + k ≡ T

(k/1)∗ + k

(k = 1,2, . . .), (7)

where

T
(k/1)∗ ∈ (0, 1), V

(k/1)∗ > γ Ẏq(T ). (8)

Substituting these conditions into (5), (6), we ob-
tain two sets of fixed points:

0 ≤ T
(k/1)∗s = 1

4
− k(1 − R)

32γ (1 + R)
≤ 1

2
,

V
(k/1)∗s = k,

(9)

where the impact occurs in time interval T
(k/1)∗s ∈

(0, 1
2 ) and

1

2
≤ T

(k/1)∗u = 3

4
+ k(1 − R)

32γ (1 + R)
≤ 1,

V
(k/1)∗ = k

(10)

with impacts taking place in time interval T
(k/1)∗u ∈

( 1
2 ,1).

Solutions (9) fulfill physical requirements and are
stable in the following interval of γ :

k
1 − R

8(1 + R)
≤ γ ≤ 1 + R2

8(1 + R)2
, (11)

where lower bound is a consequence of T
(k/1)∗s ≥ 0

while the upper bound follows from the condition that
eigenvalues λ of the stability matrix obey |λ| < 1. On
the other hand, solutions (10) are always unstable and
are physical for

γ ≥ k
1 − R

8(1 + R)
, (12)

what is equivalent to the condition T
(k/1)∗u ≤ 1.

3.2 Birth of the stable 2-cycle

It follows from the bifurcation diagram, Fig. 2, that
there exists a stable 2-cycle with time of the first im-
pact T∗1 ∈ (0, 1

2 ) and time of the second impact T∗2 ∈
( 1

2 ,1). Such periodic solution must fulfill the follow-
ing equations which are easily obtained from (5), (6):
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16γ

(
T∗2 − 1

2

)
(T∗2 − 1)

= −16γ T∗1

(
T∗1 − 1

2

)
− (T∗2 − T∗1)

2

+ (T∗2 − T∗1)V∗1,

V∗2 = −RV∗1 + 2R(T∗2 − T∗1)

+ γ (1 + R)(32T∗2 − 24),

−16γ (T∗3 − 1)

(
(T∗3 − 1) − 1

2

)
(13)

= 16γ

(
T∗2 − 1

2

)
(T∗2 − 1) − (T∗3 − T∗2)

2

+ (T∗3 − T∗2)V∗2,

V∗3 = −RV∗2 + 2R(T∗3 − T∗2)

+ γ (1 + R)(8 − 32(T∗3 − 1)),

T∗3 = T∗1 + 1,

V∗3 = V∗1.

Eliminating variables, we arrive at equation for time
of the first impact only:

C4x
4 + C3x

3 + C2x
2 + C1x + C0 = 0, (14)

where x ≡ T∗1 and

C0 = (8(R2 − 1)γ + R2 + 1)(128(R + 1)3γ 2 + 8(R2 − 1)(3R + 1)γ + (R − 1)(R2 + 1))

(R + 1)3(R − 1)2
,

C1 = −64γ
128(R2 − 2R − 1)(R + 1)2γ 2 + 8(R + 1)(3R3 − 3R2 + 7R + 1)γ + (R2 + 1)(R − 1)2

(R − 1)2(R + 1)2
,

C2 = −2048γ 2 48R(R + 1)γ − R3 − R2 − 5R + 1

(R − 1)2(R + 1)
,

C3 = 4096γ 2(−1 + 16γ )
R2 + 2R − 1

(R − 1)2
,

C4 = −4096γ 2(−1 + 16γ )
R + 1

R − 1
.

(15)

It follows from the bifurcation diagram that the 2-
cycle is born when T∗1 = x = 0. This in turn occurs
when C0 = 0. Equation C0 = 0 has three roots:

γ1 = 1

8

1 + R2

1 − R2
,

γ2 = 1

32(R + 1)

× −3R2 + 2R + 1 − √
R4 − 12R3 − 2R2 + 4R + 9

R + 1
,

γ3 = 1

32(R + 1)

× −3R2 + 2R + 1 + √
R4 − 12R3 − 2R2 + 4R + 9

R + 1
.

(16)

Testing (16) against numerical computations, we find
out that the stable 2-cycle is born at γ = γ3. For ex-
ample, for R = 0.85, we have γ3 = 0.0233674, cf.
Fig. 2.

3.3 N impacts in the subinterval 0 ≤ T < 1
2 or

1
2 ≤ T ≤ 1 and grazing

Let us assume that the first and the next impact start
and end in the interval 0 ≤ T < 1

2 or in 1
2 ≤ T ≤ 1. In

these cases, equation for the time of the next impact
(5a) has trivial solution Ti+1 = Ti . We have from (5a)
and (6):
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−γ 16(Ti + Δi)

(
Ti + Δi − 1

2

)

+ γ 16Ti

(
Ti − 1

2

)
= −Δ2

i + ΔiVi,

γ 16

(
Ti + Δi − 1

2

)
(Ti + Δi − 1)

− γ 16

(
Ti − 1

2

)
(Ti − 1) = −Δ2

i + ΔiVi,

(17)

where Ti, Ti+1 ∈ [0, 1
2 ], Ti, Ti+1 ∈ [ 1

2 ,1], respectively,
and Δi = Ti+1 − Ti .

Nonzero solutions read

Δi = 8γ (4Ti − 1) + Vi

1 − 16γ
,

0 ≤ γ <
1

16
, Ti, Ti+1 ∈

[
1

2
,1

]
,

Δi = −32γ Ti − 24γ − Vi

16γ + 1
, 0 ≤ γ, Ti, Ti+1 ∈

[
1

2
,1

]

(18)

and can be written in terms of post impact relative ve-

locity vi
df= Vi − γ Ẏq as

Δi = 1

1 − 16γ
vi,

0 ≤ γ <
1

16
, Ti, Ti+1 ∈

[
0,

1

2

]
,

Δi = 1

1 + 16γ
vi, 0 ≤ γ, Ti, Ti+1 ∈

[
1

2
,1

]
,

(19)

where Ẏq(T ) = −32T +8 for 0 ≤ T < 1
2 and Ẏq(T ) =

−32T + 8 for 0 ≤ T < 1
2 , cf. (6).

Finally, we obtain from (5b) in both cases:

vi+1 = Rvi, Ti, Ti+1 ∈
[

0,
1

2

]
or Ti, Ti+1 ∈

[
1

2
,1

]
.

(20)

We demand now that T0 + ∑n−1
i=0 Δi stays in the

appropriate interval—this guarantees n impacts in the
appropriate interval. Accordingly, we get from (19)
and (20):

Fig. 3 Bifurcation diagram, R = 0.85, γ ∈ [0.0627, 0.0630].
Vertical critical line marks end of stability of fixed points and
birth of chaotic dynamics

T0 + 1 − Rn

(1 − 16γ )(1 − R)
v0 ≤ 1

2
, T0 ∈

[
0,

1

2

]
, (21)

T0 + 1 − Rn

(1 + 16γ )(1 − R)
v0 ≤ 1, T0 ∈

[
1

2
,1

]
, (22)

and conditions for grazing are obtained for n → ∞,
Rn → 0.

3.4 Chaotic bands and homoclinic structure

Magnification of Fig. 2 near the origin of chaotic
bands is shown in Fig. 3.

There are six chaotic bands (and six basins of at-
traction) above the critical point γcr. The first band
which appears for appropriate initial conditions is
shown in Fig. 4. Each band consists of two subbands
only since due to cyclic periodic conditions points
T = 0, T = 1 are identified.

We note that there is a switch of stability—fixed
points become unstable precisely at γ = γcr when
chaotic bands are born. Then at γ = γcr, a homoclinic
trajectory with T = 1− is probably created—this is
suggested by presence of clusters of points near T = 0,
T = 1.

Computer simulations show that just below γcr

there are six unstable 2-cycles. For γ < γcr impacts
occur in the following time intervals: T∗1 ∈ (0, 1

2 ),

T∗2 ∈ (1 + m,1 1
2 + m), T∗3 ∈ (2 + n,2 + n + 1

2 ),
m = 0,1,2, . . ., n = m + 2 and T∗3 = T∗1 mod 1
where true impact times without cyclic conditions
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are shown. Then at γ = γcr, a corner event occurs,
i.e., T∗2 = 1—indeed, at T∗2 = 1 acceleration of the
table is discontinuous. Then, for γ > γcr, another
six unstable 2-cycles are created with impact times
T∗1 ∈ (0, 1

2 ), T∗2 ∈ ( 1
2 + m,1 + m), T∗3 ∈ (2 + n,

2 + n + 1
2 ), m = 0,1,2, . . . , n = m + 2 and T∗3 =

T∗1 mod 1.
Critical 2-cycle with m = 0, n = 2 (R = 0.85) is

shown in Fig. 5 below. This is indeed a corner event—
the time of second impact occurs at T∗2 = 1 when ac-
celeration of the table is discontinuous.

It is now possible to write down equations for the
unstable 2-cycles for γ ≤ γcr, suggested by numerical

Fig. 4 Bifurcation diagram. First chaotic band, R = 0.85,
γ ∈ [0.0627, 0.0630]. Horizontal solid lines marks positions
of the fixed points to the left of the critical vertical line and po-
sitions of other chaotic bands to the right of the critical line

computations discussed above:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

16γ (ym − 1
2 )(ym − 1)

= −16γ x(x − 1
2 ) − (y − x)2 + (y − x)u,

v = −Ru + 2R(y − x) + γ (1 + R)(32ym − 24),

−16γ zn(zn − 1
2 )

= 16γ (ym − 1
2 )(ym − 1)

− (z − ym)2 + (z − ym)v,

w = −Rv + 2R(z − ym) + γ (1 + R)(8 − 32zn),

zn = x,

w = u,

(23)

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = T∗1, y = T∗2, z = T∗3,

u = V∗1, v = V∗2, w = V∗3,

ym = T∗2 − m, zn = T∗3 − n,

(24)

with integer m, n and n = m + 2.

We are going to solve (23), (24) at γ = γcr and this

means that we have to put ym = 1. It follows that there

are six unstable 2-cycles in question which are ob-

tained for m = 0,1, . . . ,5 and n = m+2, solutions for

larger m’s being nonphysical. Solving these equations,

Fig. 5 Displacement of the
table Yq(T )—solid line,
and critical 2-cycle
(T∗2 = 1)—open circles
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Table 1 Initial conditions for chaotic bands

m 0 1 2 3 4 5

T
(cr)
∗1, m 0.4347 0.3436 0.2602 0.1784 0.0974 0.0167

V
(cr)
∗1, m 0.5148 1.6237 2.7169 3.8065 4.8946 5.9819

T
(cr)
∗2, m 1− 1− 1− 1− 1− 1−

V
(cr)
∗2, m 1.4546 2.3667 3.2794 4.1923 5.1051 6.0180

Fig. 6 Bifurcation diagram. Second chaotic band, R = 0.85,
γ ∈ [0.0627, 0.0630]. Horizontal solid lines marks positions
of the fixed points to the left of the critical vertical line and
positions of other chaotic bands to the right of the critical line

we get:

γcr = 1 + R2

8(1 + R)2
, n = m + 2,

T
(cr)
∗1, m ≡ x = 2R2 − 6 − 4m

2(R2 − 1)

+ 2
√

(3 + 5m + 2m2)R4 + 1 + 3m + 2m2

2(R2 − 1)

− m − 2, (25)

and we do not show more complicated expressions for
T

(cr)
∗2, m, V

(cr)
∗1, m, V

(cr)
∗2, m.

It follows from (25) that for R = 0.85 there are only
six acceptable solutions with T

(cr)
∗1, m > 0 correspond-

ing to six chaotic bands in Fig. 3.
In Table 1 impact times and the corresponding ve-

locities just after the impact, computed from (23), (25)
are listed for R = 0.85 and m = 0,1, . . . ,5.

In Fig. 6, the second chaotic band is shown.

Table 2 Lyapunov exponents at the onset of chaotic bands

m 0 1 2 3 4 5

λm 0.15 0.145 0.145 0.15 0.15 0.18

The bifurcation diagrams in Figs. 3, 4, 6 were com-
puted in the case of γ > γcr = 0.06291 . . . for ini-
tial conditions shown in the Table 1. Sharp edges of
chaotic bands are given within good approximation by
T

(cr)
∗1, m, see horizontal lines in Figs. 3, 4, 6. It seems

that the homoclinic structure exists for all values of
γ > γcr shown in the figures.

We have also computed Lyapunov exponents for γ

slightly greater than γcr, cf. Table 2.
It follows that all values of Lyapunov exponents are

very similar with λ5 carrying the largest computational
error. The Lyapunov exponents are positive—this con-
firms chaotic dynamics in the bands.

4 Discussion and closing remarks

We have studied dynamics of a material point moving
vertically in a gravitational field and colliding with a
limiter. Displacement of the limiter has been assumed
as quadratic and periodic function of time (6). Due
to the simplicity of the problem, it was possible to
investigate the dynamics analytically with some sup-
port from numerical computations. Firstly, fixed points
were found and their stability was determined. Sec-
ondly, equations for a stable 2-cycle were found and
simplified, cf. (14), (15). From these equations, the an-
alytical condition for birth of the 2-cycle was found
(cf. γ = γ3 in (16)). We have also provided analytical
conditions for n impacts in the subinterval 0 ≤ T < 1

2
or 1

2 ≤ T ≤ 1 and for grazing. Finally, a transition to
chaotic dynamics was described in analytical terms. It
was shown that six stable chaotic bands appear from
six unstable 2-cycles. Equations for these 2-cycles
were found and solved to yield critical value of γ , im-
pact times and the corresponding velocities at γ = γcr;
see (25) where γcr and T

(cr)
∗1, m were given. Approxima-

tion to the band edges was also found.
We have demonstrated, combining analytical and

numerical approach, that at the transition point γ = γcr

unstable 2-cycles give rise to homoclinic structures
which lead to chaotic behaviour. This transition is
a corner-type bifurcation similar to that found in a
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bouncing ball model with piecewise linear velocity
[15]. In our future work, we shall study models with
displacement of the table described by cubic functions
of time [16].

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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