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Abstract We show that time-delayed feedback meth-
ods, which have successfully been used to control un-
stable steady states or periodic orbits, provide a tool
to control Hopf bifurcation for a small-world network
model with nonlinear interactions and time delays. We
choose the interaction strength parameter as a bifurca-
tion parameter. Without control, bifurcation will occur
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early; meanwhile, the model can maintain a station-
ary total influenced volume only in a certain domain
of the interaction strength parameter. However, out-
side of this domain the model still possesses a stable
total influenced volume that can be guaranteed by de-
layed feedback perturbation, and the onset of the Hopf
bifurcation is postponed. The feedback perturbation
vanishes if the stabilization is successful and thus the
domain of stability can be extended under only small
control force. We present an analytical investigation of
the feedback scheme using characteristic equation and
discuss effects of both a low-pass filter included in the
control loop and nonzero latency times associated with
generation and injection of the feedback signal.

Keywords Small-world network · Hopf bifurcation ·
Time-delayed feedback · Bifurcation control ·
Latency time · Low-pass filter

1 Introduction

We have witnessed rapidly growing interest in con-
trol of nonlinear dynamic systems exhibiting bifur-
cation phenomena in recent years. There has been a
wide variety of promising application of bifurcation
controls. These include stall of compression system in
jet engines, high incidence flight, voltage collapse in
power systems, oscillatory behavior of tethered satel-
lites, magnetic bearing systems, rotating chains, ther-
mal convection loop, and cardiac alternates and heart
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rhythms, see [1, 2] and references therein. The aim of
bifurcation control is to design a controller to modify
the bifurcation properties of a given nonlinear system,
thereby to achieve some desirable dynamical behav-
iors, see [1–7]. Typical objectives of bifurcation con-
trol are often achieved by delaying the onset of an in-
herent bifurcation, stabilizing an unstable bifurcated
solution or branch, and changing the critical values of
an existing bifurcation, etc.; see [2].

Various methods have been used to control and
anti-control bifurcations in both discrete and continu-
ous systems. Bifurcation control has been designed for
stationary [31, 32], Hopf bifurcations [3, 33], period-
doubling bifurcations [34] and chaotic motions [8],
etc. For Hopf bifurcation control, a static state feed-
back controller was proposed by Abed and Fu [32].
Later, nonlinear feedback (mainly cubic) controller
for Hopf bifurcation was considered by Yagnoobi and
Abed [35]. The main disadvantage of those controllers
is that the controllers not only affect the stability of the
equilibrium being controlled, but also may change the
location and stability of other equilibria. Thus, control
energy is wasted in the forced alteration of the system
equilibrium, and moreover the system performance is
often degraded due to being operated at an equilib-
rium different from the one designed to operate. Re-
cently, Chen et al. [2] developed a dynamic state feed-
back control law incorporating a washout filter to con-
trol Hopf bifurcation in the Lorenz system. Later the
washout filter controller was applied by Wen et al. to
control and anti-control Hopf bifurcation in discrete
maps [36]. The advantage of the washout filter-aided
controller is to preserve all the systems equilibria, but
it increases the dimension of the system by one, which
not only changes the structure of the original system,
but also increases the complexity of dynamical analy-
sis. Moreover, the washout filter controller may de-
stroy the symmetry of the equilibria of the original
system [5]. Time-delayed feedback control has also
been widely used in controlling chaos. Bleich and So-
colar [8] used time-delayed feedback to obtain stable
periodic orbits in a chaotic system, while Brandt et al.,
in [9], designed a linear, time-delayed feedback con-
trol for suppressing a pathological period-2 rhythm in
an atrioventricular nodal conduction model. Recently,
Song et al., in [10], proposed a chaos control method
using time-delay based on repetitive learning. How-
ever, it has been noted that the application of time-
delayed feedback in controlling bifurcations is not so

popular, especially for controlling bifurcations aris-
ing from time-delayed systems. In this paper, time-
delayed feedback will be extended to consider control
of Hopf bifurcations in a delayed systems.

Starting with the work of Watts and Strogatz [11]
on small-world networks, a lot of interesting re-
searches on the theory and application of small-world
networks [12–16] have arisen. The properties of com-
plicated networks, such as internet servers, power
grids, forest fires, and disordered porous media, are
mainly determined by the way of connections between
the vertices or occupied sites. One limiting case is the
regular network with a high degree of local clustering
and a large average distance, while the other limiting
case is the random network with negligible local clus-
tering and a small average distance. The small-world
network is a special class of networks with a high de-
gree of local clustering as well as a small average dis-
tance. This a small-world phenomenon can be found
in many common networks such as the Internet, power
grids, financial networks, and neural networks.

Recently, Newman and Watts [12] and Moukarzel
[13] studied the spreading and response of an influ-
ence in a system with sparse long-range connections
by using the small-world model. The Newman–Watts
and Moukarzel models are linear models in the sense
that the governing equation is linear and the response
is immediate as there is no time delay in the models.
However, in reality, there are usually time delays in
spreading and response. Also, the nonlinear interac-
tions due to competition and communication conges-
tion of vertices should be modelled in order to simulate
more realistic networks. Thus, in [17], a more general
nonlinear delayed differential equation model was for-
mulated for small-world networks, as

ddV

dtd
= ξd + V (t − τ) − μξdV 2(t − τ), (1)

where V (t) is the total influenced volume, d is the
dimension of the network, ξ is the Newman–Watts
length scale [12], and μ is a measure of nonlinear
interactions in the network. By recasting (1) into a
nonlinear difference equation, Yang [17] investigated
the chaotic behavior as well as its control of this net-
work model in the one-dimensional case (d = 1). Li
et al. [18], on the other hand, showed that Hopf bifur-
cation may occur as the measure parameter, μ, passes
through a critical point, where a family of periodic so-
lutions bifurcate from an equilibrium point.
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In this paper, bifurcation control using a time-
delayed feedback controller for the delayed differen-
tial equation (1), also in one dimension case (d = 1),
will be considered. This system can be described as

dV

dt
= ξ + V (t − τ) − μξV 2(t − τ). (2)

The study of bifurcation control in a small-world net-
work model is quite significant. On the one hand, the
bifurcations, which involve emergence of oscillatory
behaviors, may provide an explanation for the para-
meter sensitivity observed in practice in many realistic
small-world networks such as the Internet, the electri-
cal power grids, and the biological neural networks;
and on the other hand, based on the bifurcation of
small-world networks, we can apply the existing effec-
tive bifurcation control methods [19] to achieve some
desirable system behaviors that benefit the networks.
In detail, Hopf bifurcation may occur as μ passes
through a critical point. Thus, the total influenced vol-
ume V is not guaranteed, which is not desirable. In this
paper, our objective here is to design a delayed feed-
back controller to introduce a new Hopf bifurcation
with regard to μ as well as make the Hopf bifurcation
to have certain characteristics. We will delay the onset
of Hopf bifurcation by adding time-delayed feedback
control to the model (2). We will show, with a Hopf
bifurcation controller, that one can increase the criti-
cal value of measure parameter, μ, thereby, guarantee
a stationary total influenced volume for large parame-
ter values, which benefits small-world networks.

The main contribution of this paper is design a gen-
eral time-delayed feedback scheme to control Hopf bi-
furcation for the small-world network model, which
is valid for any dynamical system close to the bifur-
cation point. This delayed feedback controller keeps
the equilibria of a system unchanged and also pre-
serves the dimension of the system. Thus, the con-
trolled system has the same structure as the original
system. Although some methods can achieve the bifur-
cation control in most researches, controller designs
appear purely arbitrary and complex, and the charac-
teristic of original system is destroyed. Therefore, bi-
furcation control can be only realized in mathematical
viewpoint. There is no link between the controllers and
the physical configuration. From the control theory
viewpoint, the realistic problem of bifurcation control
is to design a feedback scheme such that less possible
simple of controller be interconnected. Our controller

is based on feedback control strategy, thus, bifurcation
control can be carried out by physical configuration.
The results obtained are of general importance for op-
timizing the control technique of Hopf bifurcation and
stimulate the search for further modifications aiming
at the improvement of the control performance.

The organization of this article is as follows. In the
next section, the main results for the Hopf bifurcation
of the small-world network model obtained in [18]
are summarized for completeness and convenience. In
Sect. 3, we will introduce the control force and inves-
tigate the domain of stability, the onset and direction
of bifurcation using characteristic equation. In Sect. 4,
we will discuss the extended delayed feedback. Fur-
ther, we will consider the effects of nonzero latency
times and additional low-pass filtering in Sects. 5
and 6. Finally, a conclusion is drown in Sect. 7.

2 Stability and bifurcation of uncontrolled system

In this section, the results of stability and Hopf bifur-
cation in the small-world network model, obtained in
[18], are summarized here for comparison, complete-
ness and convenience.

Theorem 1 For system (2), the positive equilibrium

V ∗ is locally stable if μ < π2−4τ 2

16τ 2ξ2 , and unstable if μ >

π2−4τ 2

16τ 2ξ2 , where V ∗ = 1+
√

1+4μξ2

2μξ
(see [18]).

From the conclusion of Theorem 1, the bifurcation
diagram is drawn in the parameter plane (τ,μ) as in
Fig. 1.

Theorem 2 For system (2), a Hopf bifurcation occurs
from its positive equilibrium, V ∗, when the measure
parameter, μ, passes through the critical value, μ∗ =
π2−4τ 2

16τ 2ξ2 , where V ∗ = 1+
√

1+4μξ2

2μξ
(see [18]).

Theorem 3 The Hopf bifurcation in the small-world
network model (2) is determined by the parameters
μ2, β2, τ2, where μ2 determines the direction of the
Hopf bifurcation: if μ2 > 0 (μ2 < 0), then the Hopf
bifurcation is supercritical (subcritical) and the bifur-
cating periodic solutions exist for μ > μ∗ (μ < μ∗);
β2 determines the stability of the bifurcating periodic
solutions: the bifurcating periodic solutions are stable
(unstable) if β2 < 0 (β2 > 0); and τ2 determines the
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Fig. 1 The curve

μ = π2−4τ 2

16τ 2ξ2 divides the first
quadrant of (τ,μ)-plane
into two regions, D1
and D2. D2 is an absolutely
stable region; D1 is an
unstable region

period of the bifurcating periodic solutions: the period
increases (decreases) if τ2 > 0 (τ2 < 0).

The parameters μ2, β2, τ2 are given by

μ2 = −Re{C1(0)}
Re{λ′(0)} ,

β2 = 2Re{C1(0)}, (3)

τ2 = − Im{C1(0)} + μ2Im{λ′(0)}
ω0

,

where

Re{λ′(0)} = 2ξ2τ

1 + (b∗
1τ)2

,

Im{λ′(0)} = − 1

b∗
1τ

dα

dμ
= − 2ξ2

[1 + (b∗
1τ)2]b∗

1
, (4)

C1(0) = i

2ω0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2
,

in which

ω0 = π

2τ
,

g20 = g02 = −g11 = −2b∗
2

1 + b∗
1τe−iω0τ

,

g21 = 2i

1 + b∗
1τe−iω0τ

[
2(2b∗

2 − g11 − ḡ11)b
∗
2

b∗
1 (5)

+ (g20 − ḡ02 + 2b∗
2)b∗

2

b∗
1 − 2iω0

]
,

b∗
1 = −

√
1 + 4μ∗ξ2,

b∗
2 = −μ∗ξ.

The detailed derivation of the above formulas can
be found in [18].

3 Control by time-delayed feedback

We now turn to design a time-delayed feedback force
to accomplish the control of the Hopf bifurcation aris-
ing from the small-world network model (2). Follow-
ing the ideal of Pyragas [20], we add a time-delayed
controller α(V (t − τ) − V (t)) to the model (2), that is
the following delayed feedback control system:

dV

dt
= ξ + V (t − τ) − μξV 2(t − τ)

+ α
(
V (t − τ) − V (t)

)
(6)
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where the feedback gain α is real number. It is easy
to see that this time-delayed feedback controller pre-
serves the equilibrium point of the small-world net-
work model (2). The goal of the control is to change
the Hopf bifurcation to achieve desirable behaviors,
such as delaying the onset of a Hopf bifurcation.

Remark 1 In [21], Cheng and Cao proposed the fol-
lowing delayed feedback:

α1
(
V (t − τ) − V ∗)+ α2

(
V (t − τ) − V ∗)2

+ α3
(
V (t − τ) − V ∗)3,

to control the Hopf bifurcation of the small-world net-
work model (2). However, for some systems, the nat-
ural equilibrium cannot be given by analytic expres-
sion. Therefore, delayed feedback controller in [21]
are unable to be added to this kind of system. In this
paper, a new time-delayed feedback controller will
be extended to consider control of Hopf bifurcations
in the small-world network model. This controller is
more general in bifurcation control and valid for any
dynamical system close to the bifurcation point.

3.1 Stability and existence of bifurcation

Using Taylor expansion, we can expand the right-hand
side of (6) around V ∗, resulting in the following lin-
earized equation:

V̇ (t) = −α
(
V (t) − V ∗)+ b1

(
V (t − τ) − V ∗), (7)

where b1 = α − √
1 + 4μξ2. Let u(t) = V (t) − V ∗,

then (7) becomes

u̇(t) = −αu(t) + b1u(t − τ), (8)

which has the characteristic equation:

λ + α − b1e
−λτ = 0. (9)

In what follows, we regard μ as the bifurcation
parameter to investigate the distribution of the roots
to (9).

Lemma 4 If α > 0, we have

(i) When 0 < μ ≤ 4α2−1
4ξ2 , all the roots of (9) have neg-

ative real parts.

(ii) When μ > 4α2−1
4ξ2 , there exists τ0 such that all

the roots of (9) have negative real parts when
τ ∈ [0, τ0), and (9) has at least one root with pos-
itive real part when τ > τ0, where

τ0 = 1√
b2

1 − α2
arccos

(
α

b1

)
.

Proof (i) When b1 = 0, λ = −α < 0, let iω (i is the
unit of imaginary part, ω > 0) be a root of (9), it is
straightforward to obtain that

b1 cos(ωτ) − α = 0, ω + b1 sin(ωτ) = 0, (10)

yielding ω2 = b2
1 − α2, which dose not hold when

|b1| < α. When b1 = −α, for (8), there is no pure
imaginary root, and λ = 0 is not its root. These im-
ply that there is no root appearing on the imaginary
axis when b1 ∈ [−α,α). Thus, all the roots of (9) have
negative real parts when b1 ∈ [−α,α).

Since 0 < μ ≤ 4α2−1
4ξ2 is equivalent to b1 ∈ [−α,α),

the conclusion (i) follows.
(ii) If μ > 4α2−1

4ξ2 holds, we have b1 < −α. From

the definition of τ0, we know that (τ0,

√
b2

1 − α2) is

a solution of (9), i.e., ±i
√

b2
1 − α2 is a pair of pure

imaginary roots of (9) with τ = τ0.
Clearly, τ0 is the first value of τ > 0 such that (9)

has root appearing on the imaginary axis. Therefore,
all the roots of (9) have negative real parts when τ ∈
[0, τ0).

Let λ(τ) = ρ(τ) + iω(τ) be the root of (9) satisfy-

ing ρ(τ0) = 0 and ω(τ0) =
√

b2
1 − α2. We can obtain

dλ

dτ
= − b1λe−λτ

1 + b1τe−λτ
,

then

ρ′(τ0) = Re

(
dλ

dτ

∣∣
τ=τ0

)
= ω2

(1 − ατ0)2 + (ωτ0)2
> 0.

Thus, (9) has at least one root with positive real part
when τ > τ0. The conclusion (ii) follows. Then the
proof is completed. �

From Lemma 4, we easily obtain the following re-
sults about the stability of the equilibrium V ∗ of sys-
tem (6).
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Fig. 2 The curve

μ = 4α2−1
4ξ2 divides the first

quadrant of (α,μ)-plane
into two regions, S1 and S2.
S2 is an absolutely stable
region; S1 is a conditionally
stable region, and there is a
stability switch for the
parameter being located in
the region S1

Theorem 5 Let α > 0, we have

(i) If 0 < μ ≤ 4α2−1
4ξ2 , then the equilibrium V ∗ of sys-

tem (6) is asymptotically stable for all τ ≥ 0.
(ii) If μ > 4α2−1

4ξ2 , then the V ∗ is asymptotically stable

when τ ∈ [0, τ0) and unstable when τ > τ0.

Proof It is well known that the solution is locally as-
ymptotically stable if all the roots of the characteris-
tic equation have negative real parts and unstable if at
least one root has positive real part. Therefore, conclu-
sions (i) and (ii) are straightforward from Lemma 4.
This completes the proof. �

According to the conclusion of Theorem 5, we can
draw the bifurcation diagram in the parameter plane
(α,μ) as in Fig. 2.

Lemma 6 For the controlled system (6), there exists a
minimum positive number μ+

0 such that (9) has a pair
of purely imaginary roots ±iω+

0 at μ = μ+
0 .

Proof If λ = iω is a pure imaginary solution of (9),
then it must satisfy (10). Then, we have the following

equation:

tan(ωτ) = −ω

α
. (11)

Let v = ωτ , then we have tan(v) = −v/(ατ). Solu-
tions of this equation are the horizontal coordinates of
the intersecting points between the curve y = tan(v)

and the line y = −v/(ατ). There are infinite num-
ber of intersecting points for these two curves that are
graphically illustrated in Fig. 3.

Without loss of generality, we only consider the
intersecting points with positive horizontal coordi-
nates vi, i = 1,2, . . . . It is clear that iπ − π/2 <

vi < iπ, i = 1,2, . . . , and iπ − vi → π/2 monotoni-
cally when i → ∞. For these vi , from (10), we can
choose bi

1 = α/ cos(vi), then we have |bi
1| → +∞

and b1
1, b

3
1, b

5
1, . . . < 0, b2

1, b
4
1, b

6
1, . . . > 0. Then, from

b1 = α −√
1 + 4μξ2, we have

μi = (α − bi
1)

2 − 1

4ξ2
. (12)

Since |bi
1| > α, we obtain the following orderings:

0 < μ1 < μ3 < μ5 < · · · , and

0 < μ2 < μ4 < μ6 < · · · .
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Fig. 3 Illustration for
intersecting points between
curve y = tan(v) and line
y = −v/(ατ)

Thus, we can choose μ+
0 = mini∈{1,2}{μi} =

mini∈{1,2}{ (α−bi
1)

2−1
4ξ2 }. Clearly, (9) has a pair of purely

imaginary roots ±iω+
0 at μ = μ+

0 . �

Remark 2 It should be noted that in the proof of
Lemma 6, the two orderings of μ is indeed indepen-
dent of α.

We will only discuss the case of μ = μ+
0 . In this

case, ω = ω+
0 . Then, we have the following results

about Hopf bifurcation.

Theorem 7 For the controlled system (6), there exists
a Hopf bifurcation emerging from its equilibrium V ∗,
when the measure parameter, μ, passes through the
critical value, μ∗ = μ+

0 , where the equilibrium point

V ∗ is kept unchanged, where V ∗ = 1+
√

1+4μξ2

2μξ
.

Proof The last condition for the occurrence of a Hopf
bifurcation at μ+

0 is

d

dμ
[Reλ]μ+

0

= 0. (13)

Letting λ = ρ + iω, and then substituting λ into the
characteristic (9) yields

(ρ + iω) + α − b1e
−ρτ

[
cos(ωτ) − i sin(ωτ)

]= 0

from which one can easily obtain

dρ

dμ
+ 2ξ2√

1 + 4μξ2
e−ρτ cos(ωτ)

+
(
α −

√
1 + 4μξ2

)
τe−ρτ cos(ωτ)

dρ

dμ

+
(
α −

√
1 + 4μξ2

)
τe−ρτ sin(ωτ)

dω

dμ
= 0,

dω

dμ
− 2ξ2√

1 + 4μξ2
e−ρτ sin(ωτ)

−
(
α −

√
1 + 4μξ2

)
τe−ρτ sin(ωτ)

dρ

dμ

+
(
α −

√
1 + 4μξ2

)
τe−ρτ cos(ωτ)

dω

dμ
= 0.
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This implies that

dρ

dμ

∣∣∣∣
μ=μ+

0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 2ξ2√
1+4μ

+
0 ξ2

[cos(v1)+b1
1τ ]

[1+b1
1τ cos(v1)]2+[b1

1τ sin(v1)]2 , μ+
0 = μ1,

− 2ξ2√
1+4μ

+
0 ξ2

[cos(v2)+b2
1τ ]

[1+b2
1τ cos(v2)]2+[b2

1τ sin(v2)]2 , μ+
0 = μ2,

(14)

dω

dμ

∣∣∣∣
μ=μ+

0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2ξ2√
1+4μ

+
0 ξ2

sin(v1)

[1+b1
1τ cos(v1)]2+[b1

1τ sin(v1)]2 , μ+
0 = μ1,

2ξ2√
1+4μ

+
0 ξ2

sin(v2)

[1+b2
1τ cos(v2)]2+[b2

1τ sin(v2)]2 , μ+
0 = μ2.

From the proof of Lemma 6, since π/2 < v1 < π ,
we can obtain cos(v1) < 0, b1

1 = α/ cos(v1) < 0. Since
3π/2 < v2 < 2π , we can also obtain cos(v2) > 0,
b2

1 = α/ cos(v1) > 0. Therefore, we have

dρ

dμ

∣∣∣∣
μ=μ+

0

{
>0, μ+

0 = μ1,

<0, μ+
0 = μ2.

Thus, the transversality condition (13) for Hopf bi-
furcation is satisfied. Applying Lemma 6 and Hopf
bifurcation theorems for functional differential equa-
tions in [22], we obtain that Hopf bifurcation occurs at
μ∗ = μ+

0 for the controlled system (6). This completes
the proof. �

Remark 3 Theorem 7 shows that one can delay or ad-
vance the onset of a Hopf bifurcation without chang-
ing the original equilibrium points by choosing an ap-
propriate value of α.

3.2 Stability of bifurcating periodic solutions

Next, we will use the center manifold and normal form
theories introduced in [23] to study the direction of
Hopf bifurcation and stability of the bifurcating peri-
odic solutions on the center manifold in the controlled
system (6).

For notation convenience, let μ = μ∗ + ε. Then,
ε = 0 is the Hopf bifurcation value for system (6). Ap-
plying Taylor expansion to the right-hand side of sys-
tem (6) at the equilibrium point, V ∗, we have

u̇(t) = −αu(t) + b1u(t − τ) + b2u
2(t − τ) + o

(|u|3),
(15)

where

b1 = α −
√

1 + 4μξ2,

b2 = −μξ.

(16)

For initial condition φ = φ(s,μ), s ∈ [−τ,0] with φ ∈
C([−τ,0], R), we set

Lμφ = −αφ(0) + b1φ(−τ),

and

F(μ,φ) = b2φ
2(−τ) + o

(|φ|3).
By the Riesz representation theorem, there exists a
function η(θ,μ) of bounded variation for θ ∈ [−τ, 0],
such that

Lμφ =
∫ 0

−τ

dη(θ,μ)φ(θ) for φ ∈ C,

which can be satisfied by choosing

η(θ,μ) = −αδ(θ) + b1δ(θ + τ),

where δ is the Dirac delta function.
For φ ∈ C1([−τ,0], R), define

A(μ)φ =
⎧⎨
⎩

dφ(θ)
dθ

, θ ∈ [−τ,0),∫ 0
−τ

dη(μ, s)φ(s), θ = 0,

and

R(μ)φ =
{

0, θ ∈ [−τ,0),

F (μ,φ), θ = 0.

Then, system (15) is equivalent to

u̇t = A(μ)ut + R(μ)ut , (17)

where ut (θ) = u(t + θ) for θ ∈ [−τ,0].
For ψ ∈ C([0, τ ], R), define

A∗ψ(s) =
⎧⎨
⎩

− dψ(s)
ds

, s ∈ (0, τ ],∫ 0
−τ

ψ(−t)dη(t,0), s = 0,

and a bilinear inner product
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ψ(s), φ(θ)

〉

= ψ̄(0)φ(0) −
∫ 0

θ=−τ

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ,

(18)

where η(θ) = η(θ,0). Then, A(0) and A∗ are adjoint
operators.

In order to determine the Poincare normal form of
the operator A(0), we need to calculate the eigenvec-
tor q of A(0) corresponding to the eigenvalue iω+

0 and
the eigenvector q∗ of A∗ corresponding to the eigen-
value −iω+

0 . We can easily verify that

q(θ) = exp
(
iω+

0 θ
)
, θ ∈ [−τ,0),

is the eigenvector of A(0) corresponding to the eigen-
value iω+

0 , and

q∗(s) = B exp
(
iω+

0 s
)
, s ∈ [0, τ ),

is the eigenvector of A∗ corresponding to −iω+
0 .

From (18), we have

〈
q∗(s), q(θ)

〉

= B̄ −
∫ 0

θ=−τ

∫ θ

ξ=0
B̄e−iω+

0 (ξ−θ) dη(θ)eiω+
0 ξ dξ

= B̄ − B̄

∫ 0

θ=−τ

θeiω+
0 θ dη(θ)

= B̄
(
1 + b1τe−iω+

0 τ
)
.

Thus, we can choose

B = 1

1 + b1τeiω+
0 τ

,

such that 〈q∗(s), q(θ)〉 = 1.
Following the algorithms given in [23] and using a

computation process similar to that in [24], we can ob-
tain the coefficient which will be used in determining
the important quantities:

g20 = −2B̄μξe−2iω+
0 τ ,

g11 = −2B̄μξ,

g02 = −2B̄μξe2iω+
0 τ ,

g21 = −2B̄μξ
[
2e−iω+

0 τW11(−τ) + eiω+
0 τW20(−τ)

]
,

(19)

where

W20(θ) = ig20

ω+
0

eiω+
0 θ + iḡ02

3ω+
0

e−iω+
0 θ + E1e

2iω+
0 θ ,

W11(θ) = − ig11

ω+
0

eiω+
0 θ + iḡ11

ω+
0

e−iω+
0 θ + E2,

(20)

in which

E1 = − 2μξe−2iω+
0 τ

2iω+
0 + α − b1e

−2iω+
0 τ

,

E2 = − 2μξ

α − b1
.

(21)

Therefore, each gij in (19) has been expressed in terms
of the parameters and the delay given in system (6).
Furthermore, we can compute the following quanti-
ties:

C1(0) = i

2ω+
0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2
,

μ2 = −Re{C1(0)}
Re{λ′(0)} ,

β2 = 2Re{C1(0)},

τ2 = − Im{C1(0)} + μ2Im{λ′(0)}
ω+

0

.

(22)

Now, the main results of this section are summarized
as follows.

Theorem 8 The Hopf bifurcation exhibited by the
controlled Internet congestion model (6) is determined
by the parameters μ2, β2, τ2, where μ2 determines
the direction of the Hopf bifurcation: if μ2 > 0 (μ2 <

0), then the Hopf bifurcation is supercritical (subcrit-
ical) and the bifurcating periodic solutions exist for
μ > μ∗ (μ < μ∗); β2 determines the stability of the
bifurcating periodic solutions: the bifurcating periodic
solutions are stable (unstable) if β2 < 0 (β2 > 0);
and τ2 determines the period of the bifurcating pe-
riodic solutions: the period increases (decreases) if
τ2 > 0 (τ2 < 0).

Remark 4 It is shown in Theorem 8 that besides
changing the onset of a Hopf bifurcation without de-
stroying the structure of uncontrolled system (2), di-
rection of Hopf bifurcation and stability of the bifur-
cating periodic solutions can also be modulated by
varying the value of the feedback gain parameter α.
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3.3 A numerical example

In this section, we present numerical results to ver-
ify the analytical predictions obtained in the previous
section, using the time-delayed feedback controller
to control the Hopf bifurcation of small-world net-
work model (2). The numerical approach is based on
a fourth-order Runge–Kutta integration scheme.

For a consistent comparison, the same model (2),
used in [18], is discussed, with ξ = 3 and τ = 1. For
the uncontrolled model, it follows from Theorems 2
and 3 that

μ∗ = 0.0408, ω0 = 1.5708,

and

μ2 = 0.0019, τ2 = 0.0033, β2 = −0.0280.

The dynamical behavior of this uncontrolled small-

world network model (2) is illustrated in Figs. 4–6.
From Theorem 1, it is shown that when μ < μ∗, tra-
jectories converge to the equilibrium point (see Fig. 4),
while as μ is increased to pass μ∗, V ∗ loses its
stability and a Hopf bifurcation occurs (see Figs. 5
and 6). Note that the periodic orbits are stable since
β2 < 0, the bifurcating periodic solutions exist at
least for the value μ slightly larger than the crit-
ical value μ∗ since μ2 > 0 and the period of the
periodic solutions increases as μ increases due to
τ2 > 0.

Now we choose appropriate value of α to control
the Hopf bifurcation. It is easy to see from Theorem 7
that for a appropriate value of α, we can delay the on-
set of the Hopf bifurcation. For example, by choosing

α = 0.6,

we can apply Theorem 7 and (22) in Sect. 3 to obtain

μ∗ = μ+
0 = 0.1561, ω+

0 = 1.8798,

and

μ2 = 0.0431, τ2 = −0.0140, β2 = −0.2256.

Note that the controlled small-world network model (6)
has the same equilibrium point as that of the original
small-world network model (2), but the critical value
μ∗ increases from 0.0408 to 0.1561, implying that the
onset of the Hopf bifurcation is delayed.

We choose μ = 0.14, α = 0.6 ((μ,α) ∈ S1, the
same value of μ used in Fig. 6). With these parame-
ters, τ0 = 1.0806 is obtained from Lemma 4. Hence,
by Theorem 5, instead of having a Hopf bifurcation,
the controlled Internet congestion model (6) converges
to the equilibrium point V ∗ when τ = 1 ∈ [0, τ0), as
shown in Fig. 7.

We choose μ = 0.16, α = 0.6 ((μ,α) ∈ S1).
With these parameters, τ0 = 0.9830 is obtained from
Lemma 4. Hence, by Theorem 5, the equilibrium
point V ∗ is unstable when τ = 1 ∈ (τ0,∞), as shown
in Fig. 8. Moreover, when μ = 0.2, α = 0.6
((μ,α) ∈ S1), we can derive τ0 = 0.8426 from Lem-

Fig. 4 Waveform plot and phase portrait of model (2) with μ = 0.035
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Fig. 5 Waveform plot and phase portrait of model (2) with μ = 0.06

Fig. 6 Waveform plot and phase portrait of model (2) with μ = 0.14

Fig. 7 Waveform plot and phase portrait of model (6) with μ = 0.14 and α = 0.6

ma 4. Therefore, by Theorem 5, the equilibrium point
V ∗ is also unstable when τ = 1 ∈ (τ0,∞), as shown
in Fig. 9.

It is shown that when μ passes the critical value
μ∗ = 0.1561, a Hopf bifurcation occurs (see Figs. 8
and 9). The periodic orbits are stable since β2 < 0.
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Fig. 8 Waveform plot and phase portrait of model (6) with μ = 0.16 and α = 0.6

Fig. 9 Waveform plot and phase portrait of model (6) with μ = 0.2 and α = 0.6

Since μ2 > 0, the bifurcating periodic solutions exist
at least for the value μ slightly larger than the criti-
cal value μ∗. Since τ2 < 0, the period of the periodic
solutions decreases as μ increases.

It can be shown that if we choose a larger value
of α, the small-world network model may not have
a Hopf bifurcation even for larger values of μ (see
Fig. 11). This indicates that the time-delayed feed-
back controller can delay the onset of Hopf bifur-
cation, thus guarantee a stationary total influenced
volume for larger values of μ. For example, when
choosing α = 2, the controlled small-world network
model (6) converges to the equilibrium solution V ∗ if
μ < μ∗ = 0.6777. In detail, we choose μ = 0.5, α = 2
((μ,α) ∈ S1). With these parameters, τ0 = 2.0649 is
obtained from Lemma 4. Hence, by Theorem 5, the
controlled small-world network model (6) converges

to the equilibrium point V ∗ when τ = 1 ∈ [0, τ0), as
shown in Fig. 10.

Figure 12 displays a bifurcation diagram in terms
of the parameter μ for model (6).

4 Extended time-delayed feedback

In this section, we consider a more general (extended)
version of the delayed feedback control that employs
a different delay from τ in uncontrolled system (2),
which then becomes

dV

dt
= ξ + V (t − τ) − μξV 2(t − τ)

+ α
(
V (t − τ1) − V (t)

)
. (23)

Here we will discuss how time delay τ1 changes the
domain of stability and the onset of Hopf bifurcation.
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Fig. 10 Waveform plot and phase portrait of model (6) with μ = 0.5 and α = 2

Fig. 11 The fluctuation of
μ∗ depending on α

Let x(t) = V (t) − V ∗. Linearizing the system (23)
about the equilibrium point V ∗, we can obtain

ẋ(t) = −αx(t) −
√

1 + 4μξ2x(t − τ) + αx(t − τ1).

(24)

Then the characteristic equation of system (24) is

λ + α +
√

1 + 4μξ2e−λτ − αe−λτ1 = 0. (25)

Theorem 9 When the parameter μ passes through the

critical value μ = μ∗, where

μ∗ =
[(

α cos(ω0τ1) − α

cos(ω0τ)

)2

− 1

]/(
4ξ2),

here ω0 is the root of

ω0 = α tan(ω0τ)
[
cos(ω0τ1) − 1

]− α sin(ω0τ1).
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Fig. 12 Bifurcation
diagram of model (2)
without and with control

If

2τξ2 − 2ατ1ξ
2√

1 + 4μ∗ξ2
cos
[
ω0(τ − τ1)

] 
= 0

is satisfied, there is a Hopf bifurcation from the equi-
librium V ∗ to a periodic orbit in the controlled sys-
tem (23).

Proof Suppose (25) has a pure imaginary solution λ =
iω0 (ω0 > 0), for some parameter value μ = μ∗. This
leads to the following equation:

iω0 + α +
√

1 + 4μ∗ξ2e−iω0τ − αe−iω0τ1 = 0, (26)

which can be rewritten as

⎧⎨
⎩

α +√
1 + 4μ∗ξ2 cos(ω0τ) − α cos(ω0τ1) = 0,

ω −√
1 + 4μ∗ξ2 sin(ω0τ) + α sin(ω0τ1) = 0.

(27)

So,
⎧⎪⎨
⎪⎩

μ∗ =
[(

α cos(ω0τ1) − α

cos(ω0τ)

)2

− 1

]/(
4ξ2),

ω0 = tan(ω0τ)
[
α cos(ω0τ1) − α

]− α sin(ω0τ1).

(28)

The last condition for the occurrence of a Hopf bi-
furcation is d

dμ
[Reλ]μ=μ∗ 
= 0. In the following, we

will show that this condition is also satisfied.
Letting λ = ρ + iω and using (25), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ + α +√
1 + 4μξ2e−ρτ cos(ωτ)

− αe−ρτ1 cos(ωτ1) = 0,

ω −√
1 + 4μξ2e−ρτ sin(ωτ)

+ αe−ρτ1 sin(ωτ1) = 0.

(29)

Hence, we have

d

dμ
[Reλ]μ=μ∗ = dρ

dμ

∣∣∣∣
μ=μ∗
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Fig. 13 The fluctuation of
μ∗ depending on α for
ξ = 3 and τ = 1 as given by
controlled system (23)

=
2τξ2 − 2ατ1ξ

2√
1+4μ∗ξ2

cos[ω0(τ − τ1)]
P 2 + Q2


= 0 (30)

where

P = 1 − τ

√
1 + 4μ∗ξ2 cos(ω0τ) + ατ1 cos(ω0τ1),

Q = τ

√
1 + 4μ∗ξ2 sin(ω0τ) − ατ1 sin(ω0τ1).

(31)

This implies that the parameter μ passes through the
critical value μ∗, there is Hopf bifurcation from the
equilibrium V ∗ to a periodic orbit. �

Remark 5 Different from the time-delayed feedback
discussed in Sect. 3, extended time-delayed feedback
has a different delay τ1 from τ in uncontrolled sys-
tem (2), which expands the regulated parameters be-
sides feedback gain parameter α for bifurcation con-
trol. Thus, bifurcation control can be realized more
conveniently in implementation of small-world net-
works.

Figure 13 displays the dependence of μ∗ upon the
feedback gain α according to controlled system (23)
for ξ = 3 and τ = 1. The solid curve corresponds to

a delay of τ1 = 0.8, the dotted curve to τ1 = 0.5, the
dash-dotted curve to τ1 = 0.3. The values of the μ∗ are
calculated by solving (28) numerically. For increasing
the feedback gain α, the critical value μ∗ increases for
a fixed time delay τ1. Increasing α postpones the onset
of Hopf bifurcation and reduces the instability. Hence
the control is successful. It can be seen that increasing
time delay of τ1 raises the value of μ∗ to a fixed feed-
back gain α. The degree on postponement of μ∗ de-
pends on the delay τ1. Further increase of τ1 elevates
the value of μ∗ for a fixed feedback gain α.

In the case of a combination of ξ = 3, τ = 1 and
α = 0.6, the values 0.0713, 0.0971 and 0.1362 of
μ∗ correspond to τ1 = 0.3, 0.5 and 0.8, respectively.
Panel (a) of Fig. 14 (τ1 = 0.3) shows V (t) tends to
the equilibrium V ∗ at μ = 0.065 for controlled sys-
tem (23), while panel (b) of Fig. 14 depicts the equi-
librium V ∗ is unstable at μ = 0.09. A Hopf bifurca-
tion emerges when μ passes through the μ∗ = 0.0713.
The position of original bifurcation point is postponed
(see Figs. 4 and 5). Panel (a) of Fig. 15 (τ1 = 0.5) dis-
plays that the controlled system (23) converges to the
equilibrium V ∗ again at the same value 0.09 of μ used
in panel (b) of Fig. 14. If μ = 0.13 > μ∗ = 0.0971,
the equilibrium V ∗ becomes unstable (see panel (b)
of Fig. 15). It can be shown that if one chooses
larger value of τ1, the controlled small-world network



334 M. Xiao et al.

Fig. 14 Waveform plot of model (23) with τ1 = 0.3 and α = 0.6 (panel (a): μ = 0.065; panel (b): μ = 0.09)

Fig. 15 Waveform plot of model (23) with τ1 = 0.5 and α = 0.6 (panel (a): μ = 0.09; panel (b): μ = 0.13)

model (23) may not have a Hopf bifurcation even for
larger values of μ (see Fig. 16).

Figure 17 displays a bifurcation diagram in terms
of the parameter μ for model (23).

5 Latency time effects

This section is focused on nonzero latency times,
which can be associated with the generation and injec-
tion of feedback signal [25]. It has been shown exper-
imentally [26] in the case of an unstable periodic orbit
that latency can have important effects on the control-
lability of the system and might limit the success of the
time-delayed feedback. A theoretical explanation can
be found in [27, 28]. Here we will study how latency
times change the domain of control in Hopf bifurca-
tion.

The latency time δ can be included as an additional
time delay in the control force of (6), which then be-

comes

F(t − δ) = α
(
V (t − τ − δ) − V (t − δ)

)
, (32)

leading to a characteristic equation similar to (9) but
with two additional exponential factors

λ +
√

1 + 4μξ2e−λτ + αe−λδ − αe−λ(τ+δ) = 0, (33)

or, separating into real and imaginary parts,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ +√
1 + 4μξ2e−ρτ cos(ωτ) + αe−ρδ cos(ωδ)

− αe−ρ(τ+δ) cos
[
ω(τ + δ)

]= 0,

ω −√
1 + 4μξ2e−ρτ sin(ωτ) − αe−ρδ sin(ωδ)

+ αe−ρ(τ+δ) sin
[
ω(τ + δ)

]= 0,

(34)

where ρ and ω denote the real and imaginary part of λ,
respectively.
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Fig. 16 Waveform plot of model (23) with τ1 = 0.8 and α = 0.6 (panel (a): μ = 0.13; panel (b): μ = 0.14)

Fig. 17 Bifurcation
diagram of system (23) with
control

Theorem 10 When the parameter μ passes through
the critical value μ = μ∗, where

μ∗ =
{[

α cos[ω0(τ + δ)] − α cos(ω0δ)

cos(ω0τ)

]2

− 1

}/(
4ξ2),

here ω0 is the root of

ω0 = α tan(ω0τ)
{
cos
[
ω0(τ + δ)

]− cos(ω0δ)
}

+ α sin(ω0δ) − α sin
[
ω0(τ + δ)

]
.

If

2ξ2√
1 + 4μ∗ξ2

{
τ

√
1 + 4μ∗ξ2 cos(2ω0τ) − cos(ω0τ)

+ αδ cos
[
ω0(τ + δ)

]

− α(τ + δ) cos
[
ω0(2τ + δ)

]} 
= 0

is satisfied, there is a Hopf bifurcation from the equi-
librium V ∗ to a periodic orbit for the small-world net-
work model with control (32).
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Proof Suppose (33) has a pure imaginary solution λ =
iω0 (ω0 > 0), for some parameter value μ = μ∗. This
leads to the following equation:

iω0 +
√

1 + 4μξ2e−iω0τ + αe−iω0δ − αe−iω0(τ+δ)

= 0, (35)

which can be rewritten as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
1 + 4μξ2 cos(ω0τ) + α cos(ω0δ)

− α cos
[
ω0(τ + δ)

]= 0,

ω0 −√
1 + 4μξ2 sin(ω0τ) − α sin(ω0δ)

+ α sin
[
ω0(τ + δ)

]= 0.

(36)

So,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ∗ =
{[

α cos[ω0(τ + δ)] − α cos(ω0δ)

cos(ω0τ)

]2

− 1

}/(
4ξ2

)
,

ω0 = α tan(ω0τ)
{
cos
[
ω0(τ + δ)

]− cos(ω0δ)
}

+ α sin(ω0δ) − α sin
[
ω0(τ + δ)

]
.

(37)

From (34), we have

d

dμ
[Reλ]μ=μ∗

= dρ

dμ

∣∣∣∣
μ=μ∗

=
2ξ2√

1+4μ∗ξ2
{τ√1 + 4μ∗ξ2 cos(2ω0τ) − cos(ω0τ) + αδ cos[ω0(τ + δ)] − α(τ + δ) cos[ω0(2τ + δ)]}

M2 + N2

= 0

(38)

where

M =1 − τ
√

1 + 4μ∗ξ2 cos(ω0τ) − αδ cos(ω0δ)

+ α(τ + δ) cos
[
ω0(τ + δ)

]
,

N = τ
√

1 + 4μ∗ξ2 sin(ω0τ) + αδ sin(ω0δ)

− α(τ + δ) sin[ω0(τ + δ)].

(39)

This implies that the parameter μ passes through the
critical value μ∗, there is Hopf bifurcation from the
equilibrium V ∗ to a periodic orbit. �

Remark 6 It is shown in Theorem 10 that the goal
of bifurcation control can be ensured if time-delayed
feedback control (32) with latency time is carried out
for uncontrolled model (2). Note that the μ∗ is depen-
dent on feedback gain parameter α and latency time δ.

Therefore, the bifurcation control approach developed
in this section is more efficient.

Figure 18 displays the dependence of μ∗ upon the
feedback gain α according to the small-world network
model (2) with control (32) for ξ = 3 and τ = 1. The
solid curve corresponds to latency time of δ = 0.1,
the dotted curve to δ = 0.15, the dash-dotted curve
to δ = 0.2. The values of the μ∗ are calculated by
solving (37) numerically. For increasing the feedback
gain α, the critical value μ∗ increases for a fixed la-
tency time δ. Increasing α postpones the onset of Hopf
bifurcation and reduces the instability. Hence the con-
trol scheme is successful. The degree on postponement
of μ∗ depends on the latency time δ. Further decrease
of δ raises the value of μ∗ for a fixed feedback gain α.

In the case of a combination of ξ = 3, τ = 1 and
α = 0.6, the values 0.1471, 0.1392 and 0.1313 of
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Fig. 18 The fluctuation of
μ∗ depending on α for
ξ = 3 and τ = 1 as given by
model (2) with control (32)

Fig. 19 Waveform plot of model (23) with δ = 0.1 and α = 0.6 (panel (a): μ = 0.145; panel (b): μ = 0.148)

μ∗ correspond to δ = 0.1, 0.15 and 0.2, respectively.
Panel (a) of Fig. 19 (δ = 0.1) shows trajectories con-
verge to the equilibrium V ∗ at μ = 0.145 for the
model (2) with control (32), while panel (b) of Fig. 19
depicts the equilibrium V ∗ is unstable at μ = 0.148.
A Hopf bifurcation emerges when μ passes through
the μ∗ = 0.1471. Panel (b) of Fig. 20 (δ = 0.15)
displays that the equilibrium point V ∗ loses stability
again at the value 0.145 of μ used in panel (a) of
Fig. 19. If μ = 0.135 < μ∗ = 0.1392, the equilibrium
V ∗ becomes stable (see panel (a) of Fig. 20). It can be
shown that if one chooses larger value of δ, the con-

trolled small-world network model may have a Hopf
bifurcation even for smaller values of μ (see Fig. 21).

Figure 22 displays a bifurcation diagram in terms
of the parameter μ for model (2) under control (32).

6 Low-pass filtering

It has been found that high-frequency modulations of
the control signal, due to additional high-frequency
components in the signal besides the main frequency,
can render the time-delayed auto-synchronization
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Fig. 20 Waveform plot of model (23) with δ = 0.15 and α = 0.6 (panel (a): μ = 0.135; panel (b): μ = 0.145)

Fig. 21 Waveform plot of model (23) with δ = 0.2 and α = 0.6 (panel (a): μ = 0.128; panel (b): μ = 0.135)

(TDAS) control method unstable [29]. As shown
in that work, an additional low-pass filter included
in the control loop can overcome this limitation,
and unstable periodic orbits can be stabilized [29].
On the other hand, in electronic signal processing
the finite response time of the circuit often im-
poses unavoidable low-pass filtering, and its effect
upon feedback control is not clear. In this section
we will show that a low-pass filter changes domain
of stability, and shifts the onset of Hopf bifurca-
tion to larger values. Note that low-pass filtering has
been successfully used to stabilize unstable steady
states by generating a control force from the dif-
ference of the current state to its filtered counter-
part [30].

The TDAS control force with an additional low-
pass filter can be written as

F(t) = α
(
V (t − τ) − V (t)

)
, (40)

where V denotes the filtered version of V defined by

V (t) = β

∫ t

−∞
V (σ)e−β(t−σ) dσ, (41)

with the cutoff frequency β . Equivalently, the convolu-
tion integrals can be replaced by one additional differ-
ential equations such that the original one-dimensional
system becomes two-dimensional,

⎧⎪⎪⎨
⎪⎪⎩

V̇ (t) = ξ + V (t − τ) − μξV 2(t − τ)

+ α(V (t − τ) − V (t)),

V̇ (t) = −βV (t) + βV (t).

(42)

This system of differential equations yields a charac-
teristic equation of the form
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Fig. 22 Bifurcation diagram of model (2) with control (32)

det

(
λ +√

1 + 4μξ2e−λτ α − αe−λτ

−β λ + β

)
= 0, (43)

which can be written as

λ2 + βλ + αβ + (√
1 + 4μξ2λ

+ β

√
1 + 4μξ2 − αβ

)
e−λτ = 0, (44)

or, equivalently, using λ = ρ + iω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ2 − ω2 + βρ + αβ + ωe−ρτ sin(ωτ)
√

1 + 4μξ2

+ e−ρτ cos(ωτ)
[
ρ
√

1 + 4μξ2

+ β
√

1 + 4μξ2 − αβ
]= 0,

2ρω + βω + ωe−ρτ cos(ωτ)
√

1 + 4μξ2

− e−ρτ sin(ωτ)
[
ρ
√

1 + 4μξ2

+ β
√

1 + 4μξ2 − αβ
]= 0.

(45)

Note that in the limit of large cutoff frequencies, i.e.,
β → ∞, (44) reduces to the characteristic equation (9)
of Sect. 3.

Theorem 11 When the parameter μ passes through
the critical value, μ = μ∗, where

μ∗ =
{[

βω0 + αβ sin(ω0τ)

ω cos(ω0τ) − β sin(ω0τ)

]2

− 1

}/(
4ξ2),

here ω0 is the root of

ω0 sin(ω0τ) + β cos(ω0τ)

ω cos(ω0τ) − β sin(ω0τ)

= −ω2
0 − αβ + αβ cos(ω0τ)

βω0 + αβ sin(ω0τ)
.

If

2ξ2√
1 + 4μ∗ξ2

[
βω0 sin(ω0τ) − (

β2 + 2ω2
0

)

× cos(ω0τ) − ατβ2]+ 2ξ2(τω2
0 − β + τβ2) 
= 0
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is satisfied, there is a Hopf bifurcation from the equi-
librium V ∗ to a periodic orbit for the controlled sys-
tem (42).

Proof Suppose (44) has a pure imaginary solution λ =
iω0(ω0 > 0), for some parameter value μ = μ∗. This
leads to the following equation:

−ω2
0 + iβω0 + αβ +

(
i
√

1 + 4μξ2ω0

+ β

√
1 + 4μξ2 − αβ

)
e−iω0τ = 0, (46)

which can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ω2
0 + αβ + ω0 sin(ω0τ)

√
1 + 4μξ2

+ cos(ω0τ)
[
β
√

1 + 4μξ2 − αβ
]= 0,

βω0 + ω0 cos(ω0τ)
√

1 + 4μξ2

− sin(ω0τ)
[
β
√

1 + 4μξ2 − αβ
]= 0.

(47)

So,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ∗ =
{[

βω0 + αβ sin(ω0τ)

ω cos(ω0τ) − β sin(ω0τ)

]2

− 1

}/(
4ξ2

)
,

ω0 sin(ω0τ) + β cos(ω0τ)

ω cos(ω0τ) − β sin(ω0τ)

= −ω2
0 − αβ + αβ cos(ω0τ)

βω0 + αβ sin(ω0τ)
.

(48)

From (45), we have

A
dρ

dμ

∣∣∣∣
μ=μ∗

− B
dω

dμ

∣∣∣∣
μ=μ∗

=C,

B
dρ

dμ

∣∣∣∣
μ=μ∗

+ A
dω

dμ

∣∣∣∣
μ=μ∗

=D,

(49)

in which

A=β − τω0 sin(ω0τ)
√

1 + 4μ∗ξ2

+ cos(ω0τ)
√

1 + 4μ∗ξ2 − τ cos(ω0τ)

× [
β
√

1 + 4μ∗ξ2 − αβ
]
,

B =2ω0 − τω0 cos(ω0τ)
√

1 + 4μ∗ξ2

− sin(ω0τ)
√

1 + 4μ∗ξ2 + τ sin(ω0τ)

× [
β
√

1 + 4μ∗ξ2 − αβ
]
,

C =−ω0 sin(ω0τ)
2ξ2√

1 + 4μ∗ξ2

− β cos(ω0τ)
2ξ2√

1 + 4μ∗ξ2
,

D =−ω0 cos(ω0τ)
2ξ2√

1 + 4μ∗ξ2

+ β sin(ω0τ)
2ξ2√

1+4μ∗ξ2
.

(50)

Therefore,

d

dμ
[Reλ]μ=μ∗ = dρ

dμ

∣∣∣∣
μ=μ∗

=
2ξ2√

1+4μ∗ξ2
[βω0 sin(ω0τ) − (β2 + 2ω2

0) cos(ω0τ) − ατβ2] + 2ξ2(τω2
0 − β + τβ2)

A2 + B2


= 0. (51)

This implies that the parameter μ passes through the
critical value μ∗, there is Hopf bifurcation from the
equilibrium V ∗ to a periodic orbit. �

Remark 7 It should be noted that in Theorem 11, bi-
furcation control for small-world network model (2)
can be achieved under the TDAS control force (40)
with an additional low-pass filter. Unlike the con-
trollers discussed in Sects. 3–5, this controller in-
creases the dimension of the original system. How-

ever, it has advantage of stabilizing unstable periodic
orbits.

Figure 23 shows the dependence of μ∗ upon
the feedback gain α according to the controlled
model (42) for ξ = 3 and τ = 1. The solid, dotted,
dash-dotted curves correspond to a cutoff frequency
of β = 20,5, and 1, respectively. For a small cutoff
frequency, i.e., β = 1, μ∗ varies around 0.05 as α in-
creases, which is similar to the case without low-pass



Time-delayed feedback control of dynamical small-world networks at Hopf bifurcation 341

Fig. 23 The fluctuation of
μ∗ depending on α for
ξ = 3 and τ = 1 as given by
controlled system (42)

Fig. 24 Waveform plot of controlled model (42) with β = 1 and α = 0.6 (panel (a): μ = 0.051; panel (b): μ = 0.053)

filter (see Figs. 4–6) indicating that the filter has only
little effect. For larger β , however, filtering control sig-
nal strengthens the stability and raises the value of μ∗.
Increasing α postpones the onset of Hopf bifurcation
and reduces the instability.

In the case of a combination of ξ = 3, τ = 1 and
α = 0.6, the values 0.0527, 0.1099 and 0.1512 of μ∗
correspond to β = 1, 5 and 20, respectively. Panel
(a) of Fig. 24 (β = 1) shows trajectories converge to
the equilibrium V ∗ at μ = 0.051 for the controlled
model (42), while panel (b) of Fig. 24 depicts the equi-

librium V ∗ is unstable at μ = 0.053. A Hopf bifurca-

tion emerges when μ passes through the μ∗ = 0.0527.

Panel (a) of Fig. 25 (β = 5) displays that the equilib-

rium point V ∗ becomes stable at the value 0.053 of

μ used in panel (b) of Fig. 24. If μ = 0.13 > μ∗ =
0.1099, the equilibrium V ∗ loses stability again (see

panel (b) of Fig. 25). Further, if one chooses larger

value of β , the controlled small-world network model

may have a Hopf bifurcation even for large values of

μ (see Fig. 26).
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Fig. 25 Waveform plot of controlled model (42) with β = 5 and α = 0.6 (panel (a): μ = 0.053; panel (b): μ = 0.13)

Fig. 26 Waveform plot of controlled model (42) with β = 20 and α = 0.6 (panel (a): μ = 0.13; panel (b): μ = 0.17)

7 Conclusion

We have discussed the effects of time-delayed feed-
back control upon the Hopf bifurcation for a small-
world network model. We have computed the domain
of stabilization and the onset of Hopf bifurcation at
the equilibrium point. Through the complex analysis,
we have derived analytically the main features of the
stability domain and the critical value of μ∗ by inves-
tigating the characteristic equation of the equilibrium
point. We find that increasing feedback gain α post-
pones the onset of Hopf bifurcation and strengthens
the stability, and thus a stationary total influenced vol-
ume is guaranteed for a large measure parameter μ.
For extended time-delayed feedback, we have shown
that increasing delay τ1, which is different from orig-
inal delay τ , increases the critical value of μ∗ and re-
duces the instability. Taking nonzero control loop la-
tencies into account, we have displayed that decrease

of latency time raises the value of μ∗. Similarly, an
additional low-pass filter in the control loop causes
a shift of μ∗, as well. This suggests that filtering
with a cutoff frequency β has a similar effect as a
latency delay time β−1. A low-pass filter with large
cutoff frequency shifts the onset of Hopf bifurcation
to large values. Nevertheless, the described theoretical
approach is valid for any dynamical system close to
the bifurcation point and allows a complete analytical
treatment. We believe that theses results are of gen-
eral importance for optimizing the control technique
of Hopf bifurcation and will stimulate the search for
further modifications aiming at the improvement of the
control performance.

Up to now, controlling bifurcation via delayed feed-
back for small-world network model has not yet been
fully investigated, which is still open. Due to the fi-
nite speed of information processing, various types of
time delays, including constant or time-varying de-
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lays, discrete and/or distributed delays, should be con-
sidered in modeling small-world network. It has also
been realized that the communication transmission in
real network systems can be viewed as a noisy process
brought on by random fluctuations from probabilistic
causes. Thus, stochastic disturbances should be also
added into small-world network model. Consequently,
the stability analysis problem for various neural net-
works with stochastic disturbances and time delays has
stirred increasing research interests, and relevant re-
sults have begun to be published, see e.g. [37–39]. The
problem of bifurcation control based on delayed feed-
back will be studied for small-world network model
including stochastic disturbances and/or both discrete
and distributed (also called “mixed”) time delays in
our future works.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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