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Abstract In this paper, we analyze the interaction be-

tween friction-induced vibrations and self-sustained

lateral vibrations caused by a mass-unbalance in an

experimental rotor dynamic setup. This study is per-

formed on the level of both numerical and experimen-

tal bifurcation analyses. Numerical analyses show that

two types of torsional vibrations can appear: friction-

induced torsional vibrations and torsional vibrations

due to the coupling between torsional and lateral dy-

namics in the system. Moreover, both the numerical

and experimental results show that a higher level of

mass-unbalance, which generally increases the lateral

vibrations, can have a stabilizing effect on the torsional

dynamics, i.e. friction-induced limit cycling can dis-

appear. Both types of analysis provide insight in the

fundamental mechanisms causing self-sustained oscil-

lations in rotor systems with flexibility, mass-unbalance

and discontinuous friction which support the design of

such flexible rotor systems.
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1 Introduction

Rotating machinery such as turbines, pumps and fans

are very important components in many machines and

systems. Some examples are aircraft engines, power

stations, large flywheels in hybrid transmissions of cars,

etc. The behaviour of these rotor-dynamic components

can influence the performance of the system as a whole.

Namely, for certain ranges of the rotational speed, such

systems can exhibit various types of vibration which

can be so violent that they can cause significant damage

or be performance limiting factors.

There are many causes for such behaviour. Some

examples are friction or fluid forces in the bearings in

which a shaft is borne, mass-unbalance in a rotor which

can lead to whirling motions, flexibilities present in a

system, etc. Consequently, the dynamic behaviour of

such systems can be very complex (see, for example

[15, 23, 30, 31, 32]).

Krauter [13] analyzed torsional vibrations in water

lubricated bearings and authors in [2, 3, 16, 21, 24, 25]

analyzed torsional vibrations in drill-string systems. In

those papers, it is concluded that torsional vibrations

are caused by negative damping in the friction force

in the bearings [13], the friction force at the contact

between the bit and the borehole rotor [2, 3, 16, 21]

and by the friction force at the rotor [24, 25].
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Lateral vibrations in rotor systems have been ana-

lyzed extensively in [7, 8, 15, 23, 26, 30]. In the work

of Lee [15], Tondl [30] and Mihajlović [23], differ-

ent types of rotor systems are considered; however, in

all those systems, lateral vibrations are induced by the

mass-unbalance in the rotor. On the other hand, Fritz

[7, 8] and Muszynska [26] derived expressions for fluid

forces which can also induce lateral vibrations in sys-

tems with a long vibrating rotor which rotates in a stator.

Interaction between torsional and lateral vibrations

in different rotor systems is studied in [11, 15, 23, 30,

32]. In various mechanical systems, it is noticed that

the increase of the mass-unbalance can have both sta-

bilizing and destabilizing effects in the considered sys-

tem. For example, Tondl [30], Lee [15] and Mihajlović

[23] consider a simple disc with a mass-unbalance con-

nected to a shaft which is elastic in both torsional and

lateral directions. They noticed that in such systems,

under certain conditions, instabilities can appear if the

unbalance increases. However, in [11, 32], the oppo-

site effect has been noticed. Namely, the behaviour of

flexible rotor-bearing systems is analyzed and it is con-

cluded that the mass-unbalance can stabilize some rotor

systems.

In this paper, we focus on interaction between

friction-induced torsional vibrations in flexible me-

chanical systems and lateral vibrations in rotor sys-

tems caused by a mass-unbalance. When analyzing

the friction-induced vibrations, a discontinuous static

model for the friction is used. We choose such a model

and not a more complicated dynamical friction model

since it accounts for several essential friction character-

istics but avoids the inclusion of unnecessary complex-

ity. A discontinuous friction model leads to a discon-

tinuous model of the system dynamics which exhibits

both friction-induced vibrations and the interaction be-

tween friction-induced vibrations and vibrations due

to mass-unbalance. The discontinuity will have signif-

icant consequences for the analysis of the steady-state

behaviour of the system. The occurrence, prediction

and analysis of limit-cycling behaviour (vibrations) in

systems with discontinuities is currently receiving wide

attention (see, e.g. [4–6, 9, 14, 16–20, 28]) However,

most authors are studying such systems from a theo-

retical point of view.

Therefore, the focus of this paper is on an exper-

imental study of such system. For this purpose, we

constructed an experimental setup. This setup was in-

spired by a real drilling system which is used for the

exploration of oil and gas and which undergoes several

types of vibrations during drilling. The setup consists

of a DC-motor which is connected to a disc (the upper

disc) via a gear box. The upper disc is connected via

a low-stiffness string to another disc (the lower disc),

and at the lower disc, an additional brake is used. The

lower disc can rotate around its geometric centre and

can also move in lateral direction. Consequently, such

system can undergo torsional vibrations induced by the

friction, lateral vibrations due to an additional mass-

unbalance which can be established at the lower disc

and a combination of those two types of vibrations.

Moreover, the sticking phenomenon is observed due to

the presence of the friction, and therefore, a discontin-

uous nonlinearity (in the friction) plays a crucial role

in the dynamical behaviour of the system. Using this

setup, the obtained analytical results (on the nonlinear

dynamics and (nonsmooth) bifurcations) can be vali-

dated experimentally.

In Section 2, the setup is described and the model is

given. The dynamic model is described by differential

equations with discontinuous right-hand side (due to

the presence of friction). Then, the parameters of the

model are estimated. In Section 3, the system dynam-

ics are analyzed. The focus of the analysis is on the

steady-state behaviour of the system when a constant

input voltage is applied at the motor. Consequently, tor-

sional vibrations, lateral vibrations and the interaction

between those vibrations in flexible rotor systems with

discontinuous friction are modelled and analyzed. As

a result of such analysis, appropriate bifurcation di-

agrams are constructed. This analysis is aiming at an

improved understanding of, firstly, the cause of friction-

induced limit cycling and effects of interaction between

the torsional and lateral dynamics that influence this

type of limit cycling, and secondly, limit cycling in-

duced by the interaction itself. In Section 4, we com-

pare bifurcation diagrams based on the estimated model

to experimentally obtained bifurcation diagrams. We

also discuss the experimental results obtained for var-

ious mass-unbalance levels present at the lower disc.

Finally, conclusions are presented.

2 The experimental setup

2.1 Description of the setup

The experimental setup is shown in Fig. 1. The

setup consists of a power amplifier, a DC-motor, two
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Fig. 1 Experimental setup

rotational (upper and lower) discs, a low-stiffness

string and an additional brake applied to the lower

disc. The input voltage from the computer (u in Fig.

1b) is fed into the DC-motor via the power am-

plifier. The motor is connected, via the gear box,

to the upper steel disc. The upper disc and the

lower disc are connected through a low-stiffness steel

string. The lower disc can rotate around its geo-

metric centre and is also free to move in lateral

directions.
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Fig. 2 The lower part of the
experimental setup

In order to induce torsional vibrations at the lower

disc, a brake and a small oil-box with felt stripes are

fixed to the upper bearing housing of the lower part

of the setup (see Fig. 2). With the brake, a range of

normal forces can be applied and the contact between

the brake and the brake disc produces a friction force

exerted on the brake disc. The brake contact material is

bronze. The steel brake disc is connected to the lower

brass disc via a very stiff shaft. The oil-box with the

felt stripes is constructed in order to add oil to the brake

disc in a reproducible way. Namely, when some liquid

is present in the box, the liquid can be added to both

sides of the brake disc due to the capillary effect of the

felt. This oil lubrication will prove to be crucial for the

existence of torsional vibrations in the setup.

Lateral vibrations are induced by fixing an additional

mass at the lower brass disc (Fig. 2). Consequently, a

mass-unbalance is introduced to the disc which leads to

motions in the lateral plane (whirl-type motion). How-

ever, to limit the complexity of the system, tilting of

the lower disc is avoided by means of two constraints;

one in x- and one in y-direction. The constraint in x-

direction consists of three flexible rods, a rigid body and

two leaf springs. Two upper flexible rods are, at one end,

connected to the upper bearing housing, and at the other

end, to the rigid body of the constraint. These (upper)

two rods suppress rotation of the upper bearing housing

around the vertical axis; note, in this respect, that the

brake is implemented at the bearing housing. The third

(lower) flexible rod connects the lower bearing housing

to the rigid body of the constraint. The combination of

these rods suppresses tilting of the lower disc around

y-axis. The rigid body of the constraint is connected

to the fixed world via two leaf-springs, which allow

movement in x-direction. The construction of the con-

straint in y-direction is similar, except that only two

flexible rods are implemented here: one fixed to the

upper bearing housing and other to the lower bearing

housing of the lower part. These rods suppress tilting

of the lower disc around the x-axis.

Both constraints can be fixed using appropriate

mechanisms, and when effected, the lower disc cannot

move in lateral direction but can only rotate around its

geometric centre. In such a way, an experimental setup

is created, which can only undergo torsional vibrations

(by fixing the constraints and applying the brake), only

lateral vibrations (by releasing the constraints and with-

out applying any normal force at the brake) and a com-

bination of those two types of vibrations (by releasing

the constraints and applying the brake).

The angular positions of the upper and lower disc

(θu and θl , respectively, in Fig. 1b) are measured us-

ing incremental encoders. The angular velocities of

both discs are obtained by numerical differentiation

of the angular positions and filtering the resulting sig-

nals using a low-pass filter with a cut-off frequency of

200 rad/s (31.8 Hz). The displacements of the geomet-

ric centre of the lower disc in x- and y-directions are

measured with two linear variable differential trans-

former (LVDT) displacement sensors. The displace-

ment sensors measure, in fact, the displacements of the

rigid bodies of the constraints in x- and y-directions

which equal the displacement of the lower disc in those

two directions.

2.2 Model of the setup

In order to derive a model of the setup, the Euler–

Lagrange equations are used and the eighth-order

system is obtained. The model of the setup is derived

in the co-rotating coordinate frame which is fixed to

the upper disc as shown in Fig. 3b. The main reason for
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Fig. 3 The drill-string
system

adopting a co-rotating coordinate frame is the follow-

ing: when both the upper and lower discs rotate with

constant velocity, a forward whirling motion is per-

formed by the lower disc (lateral vibrations), i.e. the

centre of the lower disc moves in the same direction

as the rotation of the disc, and this represents a peri-

odic solution in the fixed coordinate frame. The period

time of such periodic solution corresponds to the an-

gular velocity of the discs. Moreover, when torsional

vibrations appear in the system, then the ratio between

period time of torsional vibrations and of whirling mo-

tion is, in general, an irrational number. Therefore, such

motion represents a quasi-periodic motion in the fixed

coordinate frame. However, in the co-rotating coordi-

nate frame, in terms of which the model is formulated,

the whirling motion represents an equilibrium point.

Moreover, in terms of the co-rotating coordinate frame,

the quasi-periodic solution, in the case of fixed coordi-

nates, appears as a periodic solution.

The dynamics of the setup is independent of the an-

gular position of the discs (θu and θl), but only depends

on the difference α = θl − θu between these two an-

gular positions (see Fig. 3). Therefore, we replace θ̇u

with ωu , and after performing some equivalent transfor-

mations to the obtained dynamic model, the following

seventh-order system of differential equations can be

obtained:
Juω̇u − kθα + T f u(ωu) = kmu,

(mr + mt )ẍ − mr e α̈ sin(α) − (mr + mt )ω̇u y

−mr e ω̇u sin(α) + b ẋ − 2(mr + mt )ωu ẏ

−2 mr e ωu α̇ cos(α) − mr e α̇2 cos(α) + k x

−(mr + mt )ω
2
u x − b ωu y − mr e ω2

u cos(α) = 0,

(mr + mt )ÿ + mr e α̈ cos(α) + (mr + mt )ω̇u x

+mr e ω̇u cos(α) + bẏ + 2(mr + mt )ωu ẋ

−2 mr e ωu α̇ sin(α) − mr e α̇2 sin(α) + k y

−(mr + mt )ω
2
u y + b ωu x − mr e ω2

u sin(α) = 0,

−mr ẍe sin(α)+mr ÿe cos(α)+(mr e2+ JC )(α̈+ω̇u)

+mr ω̇ue(x cos(α)+y sin(α))+2 mr e ẋωu cos(α)

+2 mr e ẏ ωu sin(α) (1)

+T f l(ωu + α̇) + mr x e ω2
u sin(α)

−mr y e ω2
u cos(α) + kθα = 0,

T f u(ωu) ∈

⎧⎪⎪⎨⎪⎪⎩
Tcu(ωu) sgn(ωu),

for ωu �= 0,

[−Tsu + �Tsu, Tsu + �Tsu],

for ωu = 0,

Tcu(ωu) = Tsu + �Tsu sgn(ωu) + bu |ωu | + �buωu,

T f l(ωl) ∈
{

Tcl(ωl) sgn(ωl), for ωl �= 0,

[−Tsl , Tsl], for ωl = 0,

Tcl(ωl) = Tcl + (Tsl − Tcl)e−|ωl/ωsl |δsl + bl |ωl |,
ωl = ωu + α̇.
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Table 1 Description and estimated values of the parameters of the setup

Parameter Description Estimated value

Ju (kg m2) Moment of inertia of the upper disc with respect to its centre of mass 0.4765

km (N m/V) Motor constant 4.3228

Tsu , �Tsu (N m) Tsu + �Tsu and −Tsu + �Tsu are the maximum and minimum value of T f u(ωu)

for ωu = 0

0.37975, −0.00575

bu, �bu

(kg m2/rad s)

bu + �bu and bu − �bu are the viscous friction coefficients for positive and

negative velocity ωu

2.4245, −0.0084

kθ (N m/rad) Torsional stiffness coefficient 0.0775

JC (kg m2) Moment of inertia of the lower disc with respect to its centre of mass 0.0412

e (m) Distance between the centre of mass of the lower disc and its geometric centre 0.00489

mr (kg) Mass of all parts of the lower part of the setup that can rotate around the

geometric centre of the disc

9.9137

mt (kg) Mass of all parts of the lower part of the setup, which do not rotate around the

centre of the disc but move in the same (x or y) direction during motion of the

lower disc (i.e. one constraint, the brake, the oil box, the upper bearing

housing, the lower bearing housing and the encoder at the lower disc)

3.3202

k (N/m) Bending stiffness coefficient in lateral direction 2974.25

b (N s/m) Damping coefficient in lateral direction 25

Tsl (N m) Static friction torque at the lower disc (T f l (ωl )) 0.2781

Tcl (N m) Coulomb friction torque in T f l (ωl ) 0.0473

ωsl (rad/s) Stribeck velocity in T f l (ωl ) 1.4302

δsl Stribeck shape parameter at T f l (ωl ) 2.0575

bl (kg m2/rad s) Viscous friction coefficient at the lower disc 0.0105

A description of all symbols and variables is presented

in Table 1. A detailed derivation of the dynamic model

(1) is given in [23]. In (1), T f u(ωu) represents the fric-

tion torque at the upper disc caused by friction in the

bearings of the upper disc and by the electro-magnetic

effect in the DC-motor. Furthermore, T f l(ωl) is the

friction torque at the lower disc and it comprises the

friction in the bearings of the lower disc and the fric-

tion induced by the brake mechanism. It can also be

seen that the friction torques T f u(ωu) and T f l(ωl) are

modelled using set-valued force laws. Consequently,

the model of the system represents a set of differential

inclusions.

2.3 Parameter estimation

In order to analyze the dynamics of the experimental

setup, we need to estimate the parameters of a non-

linear model (1). Parameter estimation is performed

using a nonlinear least-squares technique [10]. Since

good starting values are needed for the parameters of

the setup, we perform the estimation procedure in the

following way:

1. We disconnect the upper disc from the lower disc and

estimate the parameters of the upper part of the setup

(km , Ju) and the parameters of the friction torque

T f u(ωu) (Tsu , �Tsu , bu , �bu).

2. We connect the upper and lower discs, fix the lower

disc in order to avoid motion in lateral direction,

and do not apply any normal force at the brake at

the lower part of the setup. Then, we estimate the

stiffness parameter of the string (kθ ) and the moment

of inertia of the lower disc (JA = JC + mr e2).

3. We apply a normal force of 20.5 N to the brake at

the lower disc, use ondina oil 68 as lubrication fluid

and estimate the friction force the lower disc (Tsl ,

Tsl , ωsl , δsl and bl).

4. We release the lower disc–so it can move in the

lateral direction–and estimate the remaining pa-

rameters of the model (e, mr , mt , k and b),

and based on those estimates, we determine JC

using

JC = JA − e2mr . (2)

In order to estimate the parameters of the setup using the

nonlinear least-squares method, a quasi-random input
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Fig. 4 Estimated friction models

signal u is used [23]. To objectively asses the accuracy

of the estimated parameters, the following R2
y-criterium

is introduced [22]:

R2
y = 1 −

∑Ny

k=1

(
ŷ(k) − y(k)

)2∑Ny

k=1

(
ŷ(k) − ȳ

)2
, ȳ = 1

Ny

Ny∑
k=1

ŷ(k).

(3)

In (3), y ∈ R is an output signal of the system. Fur-

thermore, ŷ(k) in (3) represents the measured data and

y(k) the simulation data when the same input signal

is applied both to the system and to model (1). Next,

the superscripts in ŷ(k) and y(k) indicate the output is a

discretized signal obtained at discrete time instants tk ,

k = 1, 2, . . . , Ny . Furthermore, from (3), it can be seen

that the maximum value for R2
y is 1. Namely, a value

of R2
y close to 1 indicates a high quality of the obtained

parameter estimates.

Using those steps, the parameters of the model are

estimated and the obtained values are given in Table 1.

Estimated friction torques are shown in Fig. 4. From

Equation (1) and from Fig. 4a, it can be seen that we

model the friction at the upper disc as a combination of

static friction and viscous friction and that it is asym-

metric. Next, from Equation (1) and from Fig. 4b, it can

be seen that a negative damping is present at the fric-

tion torque at the lower disc for low angular velocities.

Validation results, obtained when the quasi-random in-

put signal is applied at the input [23], are given in

Fig. 5. The related R2 criteria are R2
θl

= 0.9962 and

R2
r = 0.8859, where r =

√
x2 + y2 represents the ra-

dial displacement of the geometric centre of the lower

disc (point A in Fig. 3b). The comparison between

the responses of the experimental setup and estimated

model indicates the high quality of the obtained param-

eter estimates. A more detailed description of param-

eter estimation procedure and more validation results

(using other input signals) are given in [23].

3 Analysis of nonlinear dynamic behaviour

We already noticed that when both the upper and lower

discs rotate with a constant angular velocity, a forward

whirling motion is performed by the lower disc (lateral

vibrations) and this represents an equilibrium point in

the co-rotating coordinate frame, in terms of which the

model is formulated. Moreover, when torsional vibra-

tions appear in the system, then such motion repre-

sents a periodic motion in the co-rotating coordinate

frame. Therefore, both the equilibrium points (sets)

and the limit cycles of the model as well as the re-

lated stability properties are analyzed. Here, we only

discuss the results for positive constant input voltages,

since the results for negative voltages are qualitatively

comparable.

3.1 Equilibria and related stability analysis

3.1.1 Equilibrium points and equilibrium sets

In the equilibria, the time derivatives of all vari-

ables in (1) are zero, i.e. ω̇u = α̈ = α̇ = ẍ = ẋ =
ÿ = ẏ = 0, for u = uc, with uc a constant. Then it

holds that (ωu, α, x, y) = (ωeq, αeq, xeq, yeq). Fur-

thermore, since ωl = ωu + α̇, then ωl = ωeq in
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Fig. 5 Validation signals in terms of θl and r : R2
θl

= 0.9962, R2
r = 0.8859

equilibrium. According to (1), in an equilibrium the

following holds:

kmuc − T f u (ωeq)−T f l (ωeq)

− b e2m2
r ω

5
eq

(mr + mt )2ω4
eq + b2ω2

eq − 2 k(mr + mt )ω2
eq + k2

= 0,

αeq = − T f l (ωeq)

kθ

− b e2m2
r ω

5
eq

kθ ((mr + mt )2ω4
eq + b2ω2

eq − 2 k(mr + mt )ω2
eq + k2)

, (4)

xeq =
e mr ω

2
eq

(
k − (mr +mt )ω

2
eq

)
cos(αeq) + b e mr ω3

eq sin(αeq)

(mr + mt )2ω4
eq + b2ω2

eq − 2 k(mr + mt )ω2
eq+k2

,

yeq =
e mr ω

2
eq

(
k − (mr + mt )ω

2
eq

)
sin(αeq) − b e mr ω

3
eq cos(αeq)

(mr + mt )2ω4
eq + b2ω2

eq − 2 k(mr + mt )ω2
eq + k2

.

Consequently, in order to find equilibria of the system,

first ωeq should be computed by solving the first non-

linear equation in (4). Next, αeq can be computed using

the second equation, and finally, xeq and yeq can be

determined using the last two equations of (4). Since

friction torques T f u(ωu) and T f l(ωl) are modelled us-

ing set-valued friction models, the first two relations in

(4) represent an algebraic inclusions and the following

situations should be considered:

• equilibria for ωeq > 0, i.e. both the upper and the

lower disc rotate with the same constant angular ve-

locity ωeq and

• equilibria for ωeq = 0, i.e. both the upper and the

lower disc stand still.

For ωeq > 0, T f u(ωeq) = Tcu(ωeq) and T f l(ωeq) =
Tcl(ωeq) (see (1)). Consequently, such an equilibrium

point satisfies the algebraic equations

kmuc − (Tsu + �Tsu) − (bu + �bu)ωeq − Tcl (ωeq)

− b e2m2
r ω

5
eq

(mr + mt )2ω4
eq + b2ω2

eq − 2 k(mr + mt )ω2
eq + k2

= 0,

αeq = − Tcl (ωeq)

kθ
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− b e2m2
r ω

5
eq

kθ

(
(mr +mt )2ω4

eq+b2ω2
eq−2 k(mr + mt )ω2

eq+k2
) ,

(5)

and the last two equations of (4). From (1), the first al-

gebraic equation of (5) and due to the fact that ωeq > 0,

it can be concluded that the system has such an equi-

librium point when

uc > uE p := Tsu + �Tsu + Tsl

km
. (6)

In general, the first equation in (5) can have more than

one solution. However, if

− b e2m2
r ω

4
eq((mr + mt )

2ω4
eq + 3 b2ω2

eq − 6 k(mr + mt )ω
2
eq + 5 k2)

((mr + mt )2ω4
eq + b2ω2

eq − 2 k(mr + mt )ω2
eq + k2)2

−bu − �bu − dTcl

dωl

∣∣∣∣
ωl =ωeq

≤ 0, (7)

then it has one unique solution. Since condition (7) is

satisfied for the estimated model, the system has only

one equilibrium point for uc > uE p.

Since, in the setup, both torsional and lateral vibra-

tions appear, we are interested in the angular velocity

ωl and radial displacement r of the lower disc in steady

state for different constant input voltages uc. As already

discussed before, when uc > uE p, ωl in steady state can

be obtained by solving the first algebraic equation in

(5). The corresponding radial displacement of the cen-

tre of the lower disc (in equilibrium) can be derived

from the third and fourth equation in (4) as

req =
√

x2
eq + y2

eq

= mr e ω2
eq√

(mr +mt )2ω4
eq+b2ω2

eq−2k(mr +mt )ω2
eq+k2

,

(8)

since (mr + mt )
2ω4

eq + b2ω2
eq − 2 k(mr + mt )ω

2
eq +

k2 > 0 for every ωeq ∈ R for the estimated parameters

of the setup. If we analyze expression (8), the following

is obtained:

req = 0, for ωeq = 0,

req → mr e

mr + mt
, for ωeq → ∞.

(9)

Moreover, the so-called critical speed ωc [15], i.e. the

angular velocity at which the amplitude of lateral vi-

brations due to an unbalance at the lower disc reaches

a local maximum, is given by:

ωc =
√

2 k2

2 k(mr + mt ) − b2
. (10)

For that angular velocity, radial displacement of the

lower disc in steady state is

rc = 2 k mr e

b
√

4 k(mr + mt ) − b2
, (11)

and the corresponding input voltage is

ucc = (bu + �bu)ωc + Tsu + �Tsu + Tcl(ωc)

km

+ b e2m2
r ω

5
c

km((mr +mt )2ω4
c +b2ω2

c − 2 k(mr +mt )ω2
c +k2)

.

(12)

The equilibrium branches, with respect to ωeq, can

be constructed by solving the first algebraic nonlinear

equation from (4), for various uc. In general, that equa-

tion can only be solved numerically. Then based on the

solution, we can construct the equilibrium branch with

respect to req.

For ωeq = 0, equilibrium points are such that

(ωeq, αeq, xeq, yeq) ∈ Ei and such equilibria exist when

the input voltage is 0 ≤ uc ≤ uE p, where Ei represents

the equilibrium set defined by

Ei = {(ωeq, αeq, xeq, yeq) ∈ R4 | ωeq = xeq = yeq =0,

αeq ∈ [αmin, αmax]}, (13)

where αmin and αmax are defined by

αmin =max

(−kmuc−(Tsu − �Tsu)

kθ

, −Tsl

kθ

)
,

αmax =min

(−kmuc+(Tsu + �Tsu)

kθ

,
Tsl

kθ

)
.

(14)

In order to obtain local stability conditions for

the equilibrium points (for ωeq �= 0), we can use

Lyapunov’s indirect method. The method can only be
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applied when ωeq > 0 (i.e. condition (6) should be sat-

isfied). Therefore, the model of the system (1) is lin-

earized around the equilibrium point and the stability

of the linear model is analyzed. Furthermore, in order

to analyze the stability properties of the equilibrium

set (13), Lyapunov’s stability theorem can be used (see

[23]). The results of such analysis are shown in the

sequel.

3.1.2 Bifurcation diagram (nominal case)

Since, in the setup, both torsional and lateral vibrations

appear, we are interested in the angular velocity ωl and

radial displacement r of the lower disc in steady state

for different constant input voltages uc. More specifi-

cally, two bifurcation diagrams (for ωl and r ) are con-

structed, with uc as a bifurcation parameter for the

estimated parameters given in Table 1. The equilibria

are discussed in the previous section. Limit cycles are

obtained numerically using a path following technique

in combination with a shooting method [1, 27] for the

estimated model of the system. Herein, the so-called

switch model [17] is used to properly deal with the dis-

continuities in the dynamics, related to the set-valued

nature of the friction models.

The results of an extensive bifurcation analysis are

shown in the bifurcation diagrams in Figs. 6 and 7. In

these figures, the maximal and minimal values of ωl

and r are plotted when a limit cycle is found. The Flo-

quet multipliers, corresponding to these limit cycles,

are computed numerically and used to determine the

local stability properties of these limit cycles. With re-

spect to the obtained results, the following remarks can

be made:

• For 0 < uc ≤ uE p, with uE p given by (6) (point A
in Fig. 7), the system in steady state is in the stick

phase, i.e. the system has a locally asymptotically sta-

ble equilibrium set described by (13) and (14) (equi-

librium branch e1 in Fig. 7) (see [23] for a detailed

stability argument).

• For uc = uE p (point A in the bifurcation diagrams),

the locally asymptotically stable equilibrium set (13)

reduces to a locally asymptotically stable isolated

equilibrium point and no change of stability prop-

erties occurs. The system has a unique equilibrium

point for uc > uE p since condition (7) is satisfied.

Moreover, according to the local stability analysis, a

locally asymptotically stable equilibrium branch e2

appears (Fig. 7), for which ωeq and req increase for

increasing uc.

• From bifurcation point B, an unstable equilibrium

branch e3 and an unstable periodic branch p1 arises

(see Fig. 7). At that point, a pair of complex conju-

gate eigenvalues, related to the linearization of the

nonlinear dynamics of (1) around the equilibrium

point, cross the imaginary axis. Therefore, a Hopf

bifurcation occurs at this point. Point B represents

a smooth subcritical Hopf bifurcation point [12, 29]

because the unstable periodic branch p1 consists of

limit cycles without stick-slip.

• The unstable periodic branch p1 occurs for input

voltages which are smaller than input voltages corre-

sponding to the point B. The branch p1 is connected

to a locally stable periodic branch p2 at the point

D (uc at point D is smaller than uc at the point

B), which represents a discontinuous fold bifurcation

point, since the periodic branch p2 consists of stable

limit cycles which represent torsional vibrations with

stick-slip (see Fig. 7a). Moreover, a Floquet multi-

plier crosses through the point +1 in the complex

plane.

• For some higher constant input voltage uc (point E
in Fig. 6), the locally stable periodic branch p2 loses

stability and an unstable periodic branch appears (pe-

riodic branch p3 in Fig. 6) through another discon-

tinuous fold bifurcation (point E in Fig. 6).

• The unstable periodic branch p3 is connected to the

unstable equilibrium branch e3 and the stable equi-

librium branch e4 in the smooth subcritical Hopf bi-

furcation point C . At that point, a pair of complex

conjugate eigenvalues, of the linearized model, cross

the imaginary axis.

• For input voltages uc higher than that at point E ,

the asymptotically stable equilibrium branch con-

tinues. For increasing uc, the steady-state veloc-

ity at the lower disc ωl increases. Note that for

such high angular velocities, viscous friction is

dominant in the friction at the lower disc (see

the estimated friction torque T f l(ωl) in Fig. 4b),

which induces the local stability of the equilibrium

branch e4.

The bifurcation diagram shown in Fig. 6 also

shows various branches of steady-state solutions for

input voltages uc > 5 V, which is, in fact, outside

the working region of the experimental setup. How-

ever, since a rich variety of interesting qualitative
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Fig. 6 Bifurcation diagram
of the model of the
experimental setup when
both torsional and lateral
vibrations are present

changes in the dynamic behaviour can appear for those

voltages, a detailed bifurcation analysis is provided in

Appendix A.1.

The friction-induced vibrations, occurring for uc ∈
[0 and 3.6 V] are discussed in more detail in the next

section.

3.2 Friction-induced vibrations

We have already concluded that the vibrations, which

are observed in the model for uc ∈ [0 and 3.6 V], are

induced by friction. Such vibrations are analyzed in

more details in [24] when the lower disc is fixed in
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Fig. 7 Bifurcation diagram as in Fig. 6b for low input voltages

lateral direction. The main cause for lateral vibra-

tions is the presence of the mass-unbalance. More-

over, it appears that this mass-unbalance also affects

the friction-induced torsional limit-cycling. Therefore,

we analyze the influence of the level of mass-unbalance

to the steady-state behaviour of the system for uc ∈
[0 and 4 V].

Hereto, we add additional mass �m at a distance

of d� = 0.1 m from the centre of the lower disc in

the direction of the already existing unbalance. Conse-

quently, the parameters e, mr and JC of the estimated

model (see Table 1) are changed and the new related

parameters e�, mr� and JC� are as follows:

e� = mr e + d��m

mr + �m
,

mr� = mr + �m, (15)

JC� = JC + d2
��m.

In Fig. 8, bifurcation diagrams are shown for the es-

timated system (light-grey line), for �m = 5 kg (dark-

grey line) and �m = 50 kg (black line). Of course,

adding an additional mass �m = 50 kg to the lower

disc, with the estimated mass being mr = 9.9137 kg,

is practically impossible. However, we analyze that

case in order to observe the effect of additional mass-

unbalance to the steady-state behaviour of the setup.

According to the obtained results the following can be

concluded:

• Due to an additional mass-unbalance, the region (in

terms of the input voltage) where friction-induced

torsional vibrations appear, decreases (see Fig. 8a).

Namely, if the mass-unbalance increases, the first

fold and Hopf bifurcation points occur at the higher

input voltages. Furthermore, the second fold and

Hopf bifurcation points occur at significantly lower

input voltages (compare the fold bifurcation points

E ′ and E ′′, and the Hopf bifurcations at C ′ and C ′′ in

Fig. 8a). Therefore, the region in which the torsional

friction-induced vibrations can occur is smaller when

the mass unbalance is increased. In Fig. 9 we present

the position of the first and the second Hopf bifurca-

tions for various levels of the added mass-unbalance,

i.e. we show the region, in which unstable equilib-

ria occur for various �m and for uc ∈ [0 and 5 V].

This figure clearly display the influence of the level

of mass unbalance on friction induced instabilities in

torsional direction.

• From Fig. 8b it can be concluded that when the mass-

unbalance increases, the amplitude of lateral vibra-

tions increases both for the input voltages where tor-

sional vibrations occur (compare periodic branch p′
2

with periodic branches p′′
2a , p′′

2b, p′′
2c and p′′

2d in Fig.

8b) and where no torsional vibrations appear (com-

pare equilibrium branches e′
4 and e′′

4 in the same

figure).

• In Fig. 8, we see that the periodic branch p′
2, for

�m = 5 kg, splits to four branches p′′
2a , p′′

2b, p′′
2c and

p′′
2d , for �m = 50 kg. The periodic branches p′′

2a and

p′′
2c consist of torsional vibrations with stick-slip, the

branch p′′
2d represents torsional vibrations without
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Fig. 8 Bifurcation
diagrams for various levels
of mass-unbalance for
uc ∈ [0 and 5 V]

stick-slip. The branch p′′
2b represents torsional vibra-

tions where the lower disc starts to rotate in the oppo-

site direction during every period (i.e. min(ωl) < 0

in a limit-cycle on p′′
2b).

• In Fig. 8a, we notice that for �m = 50 kg, ∂ωl/∂uc

decreases in steady state for increasing uc, see the

equilibrium branch e′′
4 . In Appendix A.2, we ana-

lyze that phenomenon when addressing the vibra-

tions which occur at higher input voltages (uc > 5 V)

and are purely due to the coupling between the tor-

sional and lateral modes of vibration in the system.

The effect of the decrease of the friction-induced

torsional vibrations when the mass-unbalance is in-

creased can be explained in the following way. When no

mass-unbalance is present at the lower disc, the range
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in which friction-induced torsional vibrations can oc-

cur is determined by a subtle balance between nega-

tive damping at lower velocities and viscous friction at

higher velocities (see [23]). Namely, the energy which

is released due to the negative damping in the friction

characteristics at the lower disc is mainly transformed

to the kinetic energy at the lower disc (i.e. ωl) and to

the potential energy in the low-stiffness string (i.e. α)

and torsional vibrations occur. When mass-unbalance

is present at the lower disc, then the energy released due

to the negative damping is also transformed to the po-

tential energy stored in the leaf springs and rods (i.e. r )

and kinetic energy related to the translational motion

of the lower disc in lateral direction. Consequently, less

energy is transformed to kinetic energy of the lower disc

in torsional direction and torsional vibrations decrease.

In this respect, it is important to notice that, when the

level of mass-unbalance is higher, the lateral vibrations

increase for angular velocities which are lower than

the critical angular velocity, and consequently, less en-

ergy can be transformed to kinetic energy of the disc

in torsional direction. Hence, torsional vibrations de-

crease further or they even disappear.

4 Experimental results

4.1 Validation of steady-state behaviour of the setup

The model of the setup, when ondina oil 68 is used

as a lubrication fluid, a normal force of a 20.5 N is

applied at the brake and the x- and y-constraints are re-

leased, is given by (1) and the parameter estimates are

given in Table 1. That setup undergoes both torsional

and lateral vibrations. As mentioned earlier, the pre-

dictive quality of the estimated model in steady state

is of great interest. Therefore, a constant voltage is ap-

plied at the input of the DC-motor of the setup and

each experiment lasted long enough to guarantee that

all transient effects have disappeared; the last 50 s of

the angular velocity ωl and radial displacement sig-

nal r are recorded. However, due to the limited volt-

age range (u ∈ [−5 and 5 V]) we can only observe the

friction-induced vibrations in the setup. Some of the

obtained results are shown in Fig. 10. In that figure,

the experimental signals (solid black line) and the sig-

nals obtained using the estimated model (dashed grey

line) in steady state are shown for different constant

input voltages. The time-series shown in Fig. 10a–c

Fig. 9 The regions for which the equilibrium point of the system
are locally asymptotically stable and unstable

represent stick-slip limit-cycling (torsional and lateral

vibrations) and Fig. 10d represents an equilibrium point

(constant velocity at the lower disc and whirling motion

of the disc – r is constant). From the comparison be-

tween the numerical and experimental results, it can be

concluded that with the suggested model, the steady-

state behaviour of the setup is modelled accurately.

The same type of bifurcation diagrams, as shown in

Fig. 6, are constructed experimentally. However, due

to limitations in the DC-motor, the experimental bi-

furcation diagram is constructed by applying differ-

ent constant input voltages in the limited voltage range

uc ∈ [0 and 5 V]. When no torsional vibrations are ob-

served (as in Fig. 10d), the mean value of the recorded

angular velocity and radial displacement are computed

and the obtained data are plotted using the symbol

“x”. Next, when torsional vibrations are observed at

the lower disc (as in Fig. 10a–c), the mean values of

local maxima and minima of the vibrations are com-

puted. Then, these experimentally obtained data are

plotted using the symbol “o”. Experimental results, to-

gether with the bifurcation diagram obtained by nu-

merical analysis of the estimated model, are shown in

Fig. 11a and b. Furthermore, when torsional vibrations

are observed in the setup, the period time T of the vi-

brations is determined as well. The experimental results

are compared to the period time of the numerically ob-

tained limit cycles in Fig. 11c. The results, shown in

Fig. 11, illustrate the predictive quality of the obtained

model.

Both in the numerical and the experimental bifurca-

tion diagram, we recognize the regions which are also
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Fig. 10 Experimental and simulated angular velocity (ωl signal) and radial displacement (r signal) for various constant input voltages
and various initial conditions

present when only torsional vibrations are possible in

the setup [23, 24]:

• a sticking region, for very low input voltages,

• a region in which only torsional vibrations (i.e. stable

limit cycles) appear,

• a region in which torsional vibrations (stable limit

cycles) and a constant angular velocity at the lower

disc (stable equilibrium points) coexist, and

• a region in which no torsional vibrations can appear

in the system in steady state.

For the input voltages uc ∈ [3 and 3.5 V], we notice

that the estimated model is less accurate (see specifi-

cally Fig. 11b). The reasons for this fact is that some

unmodelled dynamics is present in the setup such as a

position-dependent friction at the lower disc (T f l(ωl)),

presence of the sticking behaviour in lateral direc-

tion due to LVDT displacement sensors (see Fig. 2),

anisotropic characteristics of the lower part of the setup

in lateral direction. A detailed discussion on unmod-

elled dynamics in the setup is presented in [23].

4.1.1 Disappearance of torsional vibrations

In Fig. 11, with a light-grey line we show the bifur-

cation diagram of the setup when only torsional and

no lateral vibrations are possible, i.e. when x- and y-

constraints are fixed. If we compare that bifurcation

diagram with the bifurcation diagram obtained when

lateral vibrations are present in the setup (dark-grey

line), we see that the second fold bifurcation point

moves towards lower velocities when mass-unbalance

and lateral vibrations are present in the system (as pre-

dicted in Section 3.2). Namely, when the constraints

are fixed, the second fold bifurcation point is observed

for uc ∈ (3.9 and 4.0 V) and when the constraints are

released the second fold bifurcation point is observed

for uc ∈ (3.5 and 3.6 V).
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Fig. 11 Comparison of the numerical and experimental bifurcation diagrams

Fig. 12 Indication of disappearance of torsional vibrations when
the lower disc moves in lateral direction: experimental results for
uc = 3.7 V

In order to show that torsional vibrations can really

disappear, for some voltages, due to the existence of lat-

eral vibrations, the following experiment is performed.

We fix the constraints, apply a constant input voltage

of uc = 3.7 V and wait long enough to obtain torsional

stick-slip vibrations (see Fig. 12). Then, at time instant

t1, we release the constraints and the lower disc starts to

vibrate in lateral direction. After a while, the torsional

vibrations disappear even though at time instant t2, we

tried to induce those vibrations manually, by stopping

the lower disc for a very short time in torsional direc-

tion. Finally, when we fix again the constraints and stop

the lower disc manually (time instant t3 in Fig. 12), the

system continues with stick-slip vibrations. This ex-

periment provides additional evidence for the fact that

torsional vibrations can, indeed, disappear due to the

presence of lateral vibrations. In the next section, this
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effect is evidenced quantitatively in both experiments

and simulations.

4.2 Bifurcation analysis for various levels of

mass-unbalance

Since the input voltage which can be applied to the

DC-motor is limited (u ∈ [0 and 5 V]), we can only

observe the influence of various mass-unbalance to the

friction-induced torsional vibrations.

In order to do so, additional masses �m =
0.6032 kg or �m = 1.2152 kg are added to the existing

mass-unbalance (see Fig. 2) at a distance of approxi-

mately d� = 10 cm. Next, for each added mass, no nor-

mal force is applied at the brake, the lower disc is fixed

using the x- and y-constraints (shown in Fig. 2). Next,

Fig. 13 Simulated and
experimental bifurcation
diagrams for various levels
of mass-unbalance applied
at the lower disc
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we estimate the distance d� in (15), assuming that all

other parameters of the setup are known. In such a way,

we obtain that

d� = 10.85 cm, for �m = 0.6032 kg,

d� = 8.98 cm, for �m = 1.2152 kg.
(16)

Then, for both mass-unbalances ondina oil 68 is

used, a normal force of 20.5 N is applied, and the model

(1), (15) with parameter estimates shown as in Table 1

and Equation (16) is validated. The comparison be-

tween the responses of the experimental setup and esti-

mated model indicates the good quality of the obtained

parameters for both mass-unbalances.

For each added mass-unbalance, we construct nu-

merical and experimental bifurcation diagrams in the

same way as described in Section 4.1 (i.e. when var-

ious constant voltages are applied at the input of

the DC-motor). The obtained diagrams are shown

in Fig. 13.

From those bifurcation diagrams, one can conclude

that due to an additional mass-unbalance the region,

in which friction-induced torsional vibrations occur

(see Fig. 13a), reduces. Namely, for �m = 0.6032 kg,

the second fold bifurcation point occurs between uc =
3.2 V and uc = 3.3 V, and for �m = 1.2152 kg, the

fold bifurcation occurs between uc = 3.1 V and uc =
3.2 V. The same conclusion is derived in Section 3.2,

where we discussed the influence of various levels

of mass-unbalance to the friction-induced torsional

vibrations.

Fig. 14 Bifurcation diagram as in Fig. 6b of radial displacement r , for uc ∈ (8.6 and 9.2 V)
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5 Conclusions

The aim of this paper is to provide an improved under-

standing on the interaction between torsional and lat-

eral vibrations in rotor systems with flexibility, mass-

unbalance and dry friction effects. For that purpose,

we have analyzed an experimental setup, consisting of

two discs interconnected by a low-stiffness string, in

which torsional vibrations are induced by friction at

the lower disc and lateral vibrations are induced by the

presence of a mass-unbalance at the lower disc. How-

ever, the results obtained here are relevant for many

other engineering systems with friction, unbalance and

flexibility. In this context, one can think of drilling sys-

tems which are used for exploration of oil and gas,

electrical shavers, various turbines, pumps, fans, etc.

According to the presented results, the following con-

clusions are drawn:

• The dynamics of the setup, which is described by

differential equations with discontinuous right-hand

side (since the friction is modelled with a set-valued

force law), is experimentally validated. With these

differential inclusions, we successfully modelled

equilibrium sets, isolated equilibria and stick-slip

limit cycling phenomena (and the related stability

properties) which are also observed in the setup. We

also observe a discontinuous fold bifurcation both

in simulations and experiments. Note that the exper-

imental verification of such nonlinear phenomena,

which are explicitly due to the discontinuities in the

system, is relatively rare in literature.

• The influence of various levels of mass-unbalance

to the steady-state behaviour of the system is stud-

ied on a theoretical, numerical and experimen-

tal level. Results on all levels confirm that if the

level of mass-unbalance increases, the region, in

which friction-induced torsional vibrations occur,

decreases. Moreover, numerical results show that if

the mass-unbalance is high enough, the torsional vi-

brations can disappear entirely.

• In this class of systems, two types of torsional vibra-

tions can appear:

– friction-induced torsional vibrations,

– torsional vibrations due to a coupling between tor-

sional and lateral dynamics in the system.

Friction-induced vibrations are induced due to a sub-

tle balance between negative damping at low veloc-

ities and viscous friction at higher velocities. When

the disc rotates with an angular velocity where nega-

tive damping is present in the friction, an instability

occurs in the system and the lower disc cannot ro-

tate with a constant angular velocity. Consequently,

torsional vibrations occur. Moreover, the amplitude

of lateral vibrations increases with respect to the am-

plitude of the lateral vibrations when no torsional

vibrations are present in the system.

Torsional vibrations due to coupling between tor-

sional and lateral motions occur for input voltages

which are higher than the critical voltage related to

the critical angular velocity inducing a resonance in

lateral direction. In that working region, torsional vi-

brations can occur even if no negative damping is

present in the friction at the lower disc.

Appendix

A.1 Bifurcation diagram for uc > 5 V

When input voltage uc increases from uc = 5 V, the

velocity at the lower disc ωl in steady state continues

to increase. For such high angular velocities, viscous

friction is dominant in the friction at the lower disc (see

the estimated friction torque T f l(ωl) in Fig. 4b). How-

ever, according to the steady-state analysis, the follow-

ing periodic solutions are observed in the bifurcation

diagrams in Fig. 6 for even higher input voltages:

• At point F , the equilibrium point loses stability and

an unstable equilibrium branch e5 occurs (Fig. 6) as

well as a stable periodic branch p4 (see Fig. 14a).

Point F represents a supercritical Hopf bifurcation

point since a pair of complex conjugate eigenvalues,

of the linearisation of the nonlinear dynamics of (1)

around the equilibrium point, cross the imaginary

axis.

• The stable periodic branch p4 is connected to an

unstable periodic p′
4 via a period doubling bifurca-

tion point [12, 29]. Consequently, from that point,

a stable period-doubled branch p5 arises, as shown

in Fig. 14a. The periodic branch p5 is connected to

an unstable periodic branch p′
5, via another period

doubling bifurcation point (Fig. 14b). Then, from

that point, a stable period-doubled periodic branch

p6 arises, which is again connected to an unstable

branch p′
6 via another period doubling bifurcation
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point (Fig. 14b). The periodic branches p4–p5–p6

form a so-called periodic doubling cascade that, ac-

cording to Strogatz [29], leads to a chaos. If we in-

crease uc even further, unstable periodic branches

p′
7 and p′

8 appear. The unstable branch p′
7 is con-

nected to a stable branch p7 via a period doubling

bifurcation point, as shown in Fig. 14b. The unsta-

ble branch p′
8 and the stable period-doubled branch

p7 are connected to a stable periodic branch p8 via

another period doubling bifurcation (p8 and p′
8 have

the same period time in the bifurcation point). Conse-

quently, p8–p7 represents a period doubling cascade

which leads to chaos (see [29]). The stable branch

p8 is connected to an unstable periodic branch p9 via

a fold bifurcation point (see Fig. 14c). An unstable

branch p10 is connected to a stable p11 branch, via

a secondary Hopf bifurcation (Fig. 14c). Branches

p10 and p11 consists of limit cycles which have the

same period time in the bifurcation point. The stable

branch p11 is connected to an unstable p12 branch,

through a period doubling bifurcation. Then, p12 is

connected to a stable periodic branch p13 via another

period doubling bifurcation point. The branches p11

and p12 have the same period time in the bifurcation

point. The same holds for the branches p12 and p13.

• At the point H , the stable periodic branch p13 is

connected to an unstable branch p14 through a fold

bifurcation point (Fig. 6).

• The unstable periodic branch p14 is connected to the

unstable e5 and the stable equilibrium branch e6 in

the subcritical Hopf bifurcation point G, i.e. a pair

of complex conjugate eigenvalues, related to the lin-

earisation of the nonlinear dynamics of (1) around

the equilibrium point, cross the imaginary axis.

Since all periodic branches from p4 to p14 consist of

periodic solutions which do not touch the line ωl = 0,

all related bifurcation points in that region are smooth

bifurcations.

The bifurcation diagrams certainly do not show

all periodic branches that exist. For example, not all

period-doubled branches are calculated and also other

branches may be missing in the bifurcation diagram.

However, the presented bifurcation analysis shows that

for input voltages outside the working region of the

experimental setup, a rich variety of interesting qual-

itative changes in the dynamic behaviour can appear

when the input voltage is changed.

In Appendix A.2, we provide additional insight in

the origin of these vibrational phenomena due to the

coupling of the torsional and lateral dynamics.

A.2 Vibrations due to coupling between torsional and

lateral dynamics

For input voltages uc > 5 V, we observe vibrations

which are not induced by friction. Namely, when we

remove the negative damping in the friction T f l(ωl)

and assume that only viscous friction is present at the

lower disc, i.e. T f l(ωl) = blωl , with bl as in Table 1,

the torsional friction-induced vibrations disappear for

uc ∈ [0 and 5 V]. However, the vibrations for uc > 5 V

are practically unchanged (see [23]).

Due to limitations in the DC-motor, we cannot study

torsional vibrations due to the coupling experimentally.

Mihajlović [23] has analyzed, numerically, the influ-

ence of various levels of mass-unbalance, the stiffness

of the low-stiffness string and the damping and stiffness

of the construction in lateral direction to the torsional

and lateral vibrations which occur due to the coupling

between torsional and lateral modes. As a result of this

analysis, it is concluded that those torsional vibrations

appear almost immediately when the input voltage be-

comes higher than a so-called critical voltage related to

a critical angular velocity ucc, given by (12), inducing

a resonance in lateral direction (ucc = 8.65 V in Fig.

6b). If we increase the input voltages beyond this res-

onance, in steady state, the potential energy stored in

the leaf springs and rods (related to r ) and the poten-

tial energy stored in the low-stiffness spring (related

to −α = ωu − ωl) both significantly decrease, despite

the fact that extra energy is supplied to the system (due

to an increase of uc). Now, the extra supplied energy

is stored in torsional and lateral vibrations (induced by

the Hopf bifurcation at point F in Fig. 6. In [23], more

detailed discussion can be found about torsional vi-

brations due to coupling between torsional and lateral

dynamics.

Numerical analyses also shows that a higher level

of mass-unbalance, a higher stiffness of the string or

a higher damping in lateral direction or a lower level

of stiffness of the construction in lateral direction de-

crease the instability region (i.e. decrease the region in

which torsional vibrations occur) (see [23]). Moreover,

if the levels of all those parameters are such that no tor-

sional vibrations are present in the system, the param-

eter changes influence in various ways the steady-state

Springer
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behaviour of the system. Nevertheless, as a result of

the performed analysis in [23], it is concluded that only

if the damping in lateral direction increases, both tor-

sional and lateral vibrations decrease which is not the

case if we change other parameters.
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