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Abstract
The recent seismic activity on Türkiye’s west coast, especially in the Aegean Sea region, 
shows that this region requires further attention. The region has significant seismic hazards 
because of its location in an active tectonic regime of North–South extension with multiple 
basin structures on soft soil deposits. Recently, despite being 70 km from the earthquake 
source, the Samos event (with a moment magnitude of 7.0 on October 30, 2020) caused 
significant localized damage and collapse in the Izmir city center due to a combination 
of basin effects and structural susceptibility. Despite this activity, research on site charac-
terization and site response modeling, such as local velocity models and kappa estimates, 
remains sparse in this region. Kappa values display regional characteristics, necessitating 
the use of local kappa estimations from previous earthquake data in region–specific appli-
cations. Kappa estimates are multivariate and incorporate several characteristics such as 
magnitude and distance. In this study, we assess and predict the trend in mean kappa values 
using three–component strong–ground motion data from accelerometer sites with known 
 VS30 values throughout western Türkiye. Multiple linear regression (MLR) and multivar-
iate adaptive regression splines (MARS) were used to build the prediction models. The 
effects of epicentral distance  Repi, magnitude  Mw, and site class  (VS30) were investigated, 
and the contributions of each parameter were examined using a large dataset containing 
recent seismic activity. The models were evaluated using well–known statistical accuracy 
criteria for kappa assessment. In all performance measures, the MARS model outperforms 
the MLR model across the selected sites.

Keywords Machine learning · Statistical methods · Seismic attenuation · Site effects · 
Multivariate adaptive regression splines (MARS)

1 Introduction

Studying variations in ground motion amplitudes as a function of distance and frequency is 
essential for accurately assessing seismic hazards and risk levels densely populated urban 
areas. In this regard, kappa (κ) is a well–known and practical parameter that characterizes 
the exponential decay of the high–frequency spectral attenuation of shear waves. It has 
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been used for various purposes, including stochastic simulations, regional adjustments of 
ground motion models (Atik et al. 2014; Bora et al. 2017), and correlations with site prox-
ies, such as the average shear wave velocity of the top 30 m subsoil  (Vs30) (van Houtte 
et al. 2014; Ktenidou et al. 2015; Cabas et al. 2017).

κ values exhibit regional characteristics, necessitating local κ estimates from past earth-
quake data for region–specific applications. κ studies regarding sites located in Türkiye 
include predictive models and estimations for the following regions. In Northwestern Tür-
kiye, Askan et al. (2014) proposed a regional κ model for soil sites using a multivariate 
linear regression approach. Kurtulmus and Akyol (2015) analyzed ground motion data 
acquired from local small and moderate earthquakes to estimate regional κ values for cen-
tral west Türkiye. Tanırcan and Dikmen (2018) predicted κ values for downhole arrays and 
bedrock sites in western Istanbul using small earthquake records. In their latest study, Biro 
et al. (2022) performed κ estimations for the eastern Anatolian region in Türkiye using data 
from a single fault segment to mitigate the source effects in κ values. Altindal and Askan 
(2022) proposed regional κ models for Eastern, Western, and Northwestern Türkiye using 
two different modeling approaches within a probabilistic framework. Sertcelik et al. (2022) 
determined κ values for 161 strong–ground motion stations operated by Türkiye’s Disaster 
and Emergency Management Authority Presidential of Earthquake Department in the Mar-
mara Region.

Since the pioneering work of Anderson and Hough (1984), understanding what causes 
the amplitudes of Fourier spectra of strong–ground motion to begin to decay with increas-
ing frequency in the high‐frequency range (f >  fe) remains a challenge in engineering 
seismology. Previous studies have alternating views on the source and site dependency 
of κ (Petukhin and Irikura 2000; Tsai and Chen 2000; Ktenidou et al. 2013). Significant 
research has been published focusing on deriving predictive models for κ as a function 
of earthquake magnitude, the type of source mechanism, source–to–site distance, and site 
class (Anderson and Hough 1984; Purvance and Anderson 2003; Motazedian and Atkinson 
2005; Drouet et al. 2010; Iwakiri and Hoshiba 2012). In most of these applications, κ is 
assumed to be a linear function of distance and site effects, where a zero–distance kappa 
value (κ0) is defined to eliminate path dependencies. Ktenidou et al. (2014) discussed that 
κ is mostly site dependent; however, to represent the physical phenomena comprehensively, 
parameters regarding the source and epicentral distance effects could also be included in 
the predictive models.

The relationship between the independent variables and κ may not be sufficiently 
described using traditional linear regression models because of considerable scattering in 
the individual κr values. Along with the potential nonlinearities of site response influenc-
ing κ at the recording site, a nonlinear variation of the observed κ with distance is possible. 
Sotiriadis et  al. (2021) examined nonlinear regression analyses to relate κ, as computed 
for free–field and foundation motions, to magnitude, source–to–site distance, and  VS30. 
Recently, Gičev and Trifunac (2022) stated that the nonlinear behavior of soil and rock 
materials should be considered when predicting κ from greater than M > 5 events, and they 
proposed a physical model that κ can be associated with nonlinear site response. Moreover, 
various researchers have determined the average κ along the S–wave source–station paths 
using nonparametric inversion approaches (e.g. Anderson 1991; Fernández et  al. 2010; 
Castro et al. 2022).

An effective approach to estimate the complex nature of the κ parameter, influenced by 
multiple interrelated parameters, involves the use of robust data–driven methodologies such 
as Multivariate Adaptive Regression Splines (MARS). MARS is a nonparametric, multistage 
regression method that captures nonlinear interactions between variables in several dimensions 
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(Friedman 1991). The primary advantage of MARS is its ability to accurately estimate the 
contributions of the input factors to the response variable. The algorithm automatically identi-
fies the most salient qualities within the dataset and incrementally incorporates terms into the 
model. Each term represents a primary or interaction effect of a piecewise linear function that 
is included in the model if it improves the model’s goodness of fit. The approach iteratively 
incorporates additional terms until the model reaches a point where further improvement is no 
longer observed. MARS is a well–known statistical methodology that has been used in numer-
ous susceptibility evaluations of natural disasters such as floods, landslides, and wildfires (e.g. 
Felicísimo et  al. 2013; Conoscenti et  al. 2015; Hai et  al. 2023). Its effective application in 
several domains of geotechnical engineering, such as determining the elastic modulus of rocks 
(Samui 2013), analyzing soil liquefaction (Zhang et al. 2015; Zheng et al. 2020), assessing 
soil and wall characteristics in braced excavation (Zhang et al. 2017), and evaluating slope 
reliability (Deng et  al. 2021), has been well documented. To gain a thorough understand-
ing of the MARS technique and its practical applicability to geotechnical problems, please 
refer to Zhang (2020). The recent trend involves integrating AI–based techniques and other 
data–driven methods with the MARS methodology to achieve higher accuracy, improved 
interpretability, and valuable insights in diverse scientific fields (e.g. Zhang et al. 2021, 2022; 
Asare et al. 2023; Vaheddoost et al. 2023; Hong et al. 2024). Therefore, it may be possible to 
mitigate the inherent limitations of a singular technique, such as insufficient memory, overfit-
ting, and uncertainty, by using a convenient hybrid approach.

The recent seismic activity on the west coast of Türkiye, including the Aegean Sea region, 
indicates that a closer focus is necessary on this region. Located in an active tectonic regime 
of North–South extension with multiple basin structures on soft soil deposits, the Aegean Sea 
region in Türkiye has a high seismic hazard. Recently, as a combination of basin effects and 
building vulnerability, on October 30, 2020, the Samos event  (Mw = 7.0) caused localized 
major damage and collapses in the Izmir city center despite the 70 km distance from the earth-
quake source. Despite this activity, studies on site characterization and site response modeling, 
including local velocity models and κ estimates, are still limited in this region (Akyol et al. 
2013; Kurtulmus and Akyol 2015; Pamuk et al. 2018, 2019).

This study attempts to develop predictive κ models for western Türkiye with a particular 
focus on the Aegean Sea region. We used three–component strong–ground motion data from 
accelerometer stations with known  VS30 values throughout western Türkiye, including Aydın, 
Denizli, Izmir, Kutahya, Manisa, and Mugla in the Aegean region, as well as Balikesir and 
Canakkale provinces. Prediction models were built using multiple linear regression (MLR) 
and MARS techniques. According to the literature, MARS has not been previously used in 
the modeling of high–frequency spectral attenuation of shear waves. The impacts of epicentral 
distance  Repi, magnitude  Mw, and  VS30 (site class) are explored, and the contributions of each 
parameter are analyzed using a large dataset that includes recent seismic activity. In κ assess-
ment, models are validated using well–known accuracy metrics such as correlation coefficient 
(r), R–square, adjusted R–squared (Adj.  R2), mean absolute percentage error (MAPE), and 
mean squared error (MSE).

2  Study area and tectonic framework

The Aegean Sea and the basin–and–range system in the western part of Türkiye formed as a 
result of a long series of tectonic regimes, including the collision between the Arabian and 
Eurasian plates and the northward movement of the African lithosphere beneath Eurasia 
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(Jolivet et al. 2013; Şengör and Yazıcı 2020). The collision– and subduction–related mech-
anisms have led to the Anatolian block’s westward escape along the right–lateral North 
Anatolian and the left–lateral East Anatolian Fault Zones (NAFZ and EAFZ, respectively) 
and the subsequent African slab roll–back and trench retreat along the Aegean–Cyprian 
Subduction Zone (Şengör et  al. 1985; Dewey et  al. 1986; Bozkurt 2001; Le Pichon and 
Kreemer 2010; Barbot and Weiss 2021). As a result, the continental crust has expanded 
and volcanism has occurred in the overlying Aegean–west Anatolian region (Fig. 1) (Jol-
ivet et al. 2013). Although the origin and evolutionary history of the principal extensional 
features remain a matter of debate, western Türkiye is characterized by a complex array 
of grabens and basins bounded by large–scale extensional detachments and high–angle 
normal faults. (Brun and Sokoutis 2007; Çiftçi et  al. 2010). The horst–graben architec-
ture arises in different geographical trends, including EW–trending grabens (e.g. from the 
Gulf of Edremit to the north and toward the Gulf of Gökova in the south), NE–trending 
depressions (e.g. Gördes basin, Acıpayam and Burdur grabens), and intervening horsts, 
respectively (Bozkurt and Mittwede 2005; Çiftçi et al. 2010). All basins contain the Men-
deres core complex, Lycian nappes, and Tauride platform basements and are filled with 
lower–middle Miocene to Holocene continental deposits of more than 3000  m in some 
locations (Çiftçi et al. 2010; Özkaptan et al. 2021).

As one of the areas with the highest intensity and frequency of seismic activity and 
the most severe seismic and geological hazards on the Turkish mainland, numerous strong 
earthquakes of magnitude ≥ 6 have been observed in western Türkiye over the past ten 

Fig. 1  Location map showing the main tectonic elements of the Aegean and Anatolian regions (adapted 
from Barbot and Weiss (2021)). The black arrows indicate the direction of plate movement relative to Eura-
sia. The east–to–west increase in the size of the arrows reflects the documented 20 mm/yr increase in sur-
face velocity. The dashed black box denotes the location of the study area. The research region was divided 
into smaller sections as A1, A2, and A3 in accordance with the major seismotectonic domains identified by 
Duman et al. (2018). The major tectonic features on the map include BZS Bitlis–Zagros Suture, CAFZ Cen-
tral Anatolian Fault Zone, DSTF Dead Sea Transform Fault, EAF East Anatolian Fault, EFZ Ezinepazari 
Fault Zone, KTF Kefalonia Transform Fault, MAF Movri–Amaliada Fault, MOF Malatya–Ovacik Fault, 
NAF North Anatolian Fault, NAT North Anatolian Trough, and TIP Turkish–Iranian Plateau
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years, such as the 2014–M 6.9, Gökçeada; 2017–M 6.2 Karaburun; 2017–M 6.4 Kos; 
2019–M 6.0, Denizli; and 2020–M 7.0 Samos earthquakes. Large–magnitude earthquakes 
have also occurred in the study area since 1900, e.g. 1919–Soma M 6.9, 1928–Torbalı M 
6.3, 1933–Gökova M 6.8, 1956–Söke–Balat M 7.1, 1969–Alaşehir M 6.5, and 1970–Gediz 
M 7.2 earthquakes. Spatially distributed, relatively frequent, moderate magnitude–crustal 
earthquakes are concentrated in the western Anatolia graben systems, where normal fault-
ing mechanisms are associated with extensional tectonics (Duman et al. 2018). The seis-
mic pattern represents swarm–type activity with remarkable clusters (e.g. the Urla earth-
quakes swarm with M 5.0, 5.8, 5.5, and 5.9). Most of them were recorded as shallow and 
restricted to a seismogenic zone within the upper 30–40 km of the crust, except for the 
events that occurred in the southern Aegean area, which reached a depth of approximately 
180 km (Bocchini et al. 2018). The bulk of the moderate–to–large magnitude events accu-
mulated near the plate boundaries, which correspond to the northern and southern margins 
of the study area. Recent seismicity studies have identified that the dominant strike–slip 
stress regime is concentrated on the western branch of the NAFZ and its continuation in 
the Marmara Sea and the North Aegean Trough (Vamvakaris et al. 2016). This confirms 
the co–existence of active extension and strike–slip deformation along the coastal region 
of western Anatolia and the eastern Aegean Sea (Kiratzi et al. 2021). Moreover, the south-
ern Aegean domain includes large thrust earthquakes on adjacent Hellenic and Cyprus Arc 
segments as well as a mixture of normal, strike–slip, and splay–thrust faulting events.

In this study, we separated the study area into smaller parts on the basis of criteria 
mainly related to the spatial distribution of earthquakes and similar types of fault zones 
identified in the region. Using the major seismotectonic domains proposed by Duman et al. 
(2018), we divided the study area into three smaller sections: (1) the western branch of the 
NAFZ as Area 1 (A1), (2) the western Anatolia graben systems as Area 2 (A2), and (3) the 
Aegean arc as Area 3 (A3). Thus, we only selected data with epicentral distances less than 
200 km to avoid additional path complications.

3  Data

We compiled three–component strong–ground motion records obtained with 100 samples 
per second at accelerometer stations within the Turkish National Strong Ground Motion 
Observation Network operated by the Disaster and Emergency Management Presidency 
(AFAD). Raw versions of the data are available on the Turkish Accelerometric Database 
and Analysis System (TADAS, via https:// tadas. afad. gov. tr). Records were selected on 
the basis of stations with known  VS30 values, including Aydın, Denizli, Izmir, Kutahya, 
Manisa, and Mugla in the Aegean region and Balikesir and Canakkale provinces in west-
ern Türkiye (Fig. 2). The station details for all sites are listed in Supporting Information 
Tables S1, S2, and S3, respectively. The multichannel analysis of surface waves (MASW) 
method was used to calculate station velocity profiles and mean  VS30 values (Sandikkaya 
et al. 2010). Further details on the site characterization of these stations are available on 
the Strong Ground Motion Database of Türkiye (via https:// deprem. afad. gov. tr). Because 
earthquake magnitudes have been reported on several scales, including the duration, local, 
and moment magnitude scales, we converted all of them to  Mw, applying the conversion 
equation of Kadirioğlu and Kartal (2016) for consistency.

Figure  3a displays pairwise relationships among all selected independent variables, 
including epicentral distance  (Repi), depth, magnitude  (Mw), and κ for whole data set. Our 

https://tadas.afad.gov.tr
https://deprem.afad.gov.tr
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dataset consists of 1398 records (4194 components) measured at 58 strong–ground motion 
stations from 408 earthquakes recorded between July 2003 and November 2018. The data 
cover earthquakes with  Mw ranging from 3 to 6.5. Most of the records relate to events 
within  Mw range of 3.5–4.5, while the remaining data are evenly distributed to larger earth-
quakes. Moreover, a few earthquakes with  Mw over 5.5 are also included in the dataset. The 
epicentral distances range from 5.0 to 200 km, with most being between 10 and 100 km. 
The number of records decreases as  Repi increases. The strong–motion data cover various 
focal depths, from 1 to 78 km. Additional information regarding the earthquakes can be 
found in the Supporting Information (see Tables S4, S5, and S6 for each area, respectively).

Because the study area is divided into three smaller parts, all computations have been 
separately performed for these areas. Statistical distributions of recordings with respect to 
 Repi,  Mw, focal depths, and κ can be seen in Fig.  3b, c, and d for the A1, A2, and A3 

Fig. 2  Locations of the stations (triangles) and the distribution of earthquakes (circles) were used in this 
study. The yellow triangle–purple circle, black triangle–red circle, and red triangle–yellow circle pairs cor-
respond to the strong–ground motion station and earthquake couples used in κ calculations for A1, A2, and 
A3. The blue star represents the epicenter of the  Mw 7.0 Samos earthquake that occurred on October 30, 
2020. The blue beachball displays the focal mechanism solution provided by USGS
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areas. These figures also include histograms showing the number of records within the 
independent variable bins. The size of the datasets is approximately the same for A1 and 
A3, whereas it is almost six times larger for A2. It can be easily seen that the distance 
distribution is reasonably homogeneous for the three regions. The selected data subsets 
indicate that there is no obvious trend with either  Repi, depth, or  Mw, indicating that no 
bias is included during the κ calculations. The bulk of the data, which substantially origi-
nates from the central–western part of Türkiye, consists of small—to moderate–magnitude 
events (up to M < 5.5) and shallow depths within the range of 1–30 km, whereas significant 
events occurring at depths greater than 30 km originating from A3 are recorded.

We determine κ values using the original method proposed by Anderson & Hough 
(1984), where the high–frequency spectral decay is modeled as follows (e.g. Purvance and 
Anderson 2003; Castro et al. 2022; Lanzano et al. 2022):

where the amplitude A0 depends on the source and path properties and fe is the frequency 
above which the spectrum is approximated with a linear decay on a log (Amplitude) versus 
linear frequency plot.

Previous studies have mainly focused on the examination of horizontal κ values. How-
ever, it is critical to investigate the variability in κ values obtained from all three compo-
nents of a single record for certain purposes. Stochastic ground motion simulations may 
require vertical κ values to adjust the empirical horizontal–to–vertical curves used for site 
amplifications (Motazedian 2006). When three–component stations are not available, κ 
values obtained from the vertical components can be used as an initial estimate for this 
parameter. However, it may be necessary to make slight adjustments to the κ values derived 
from the vertical component (Douglas et al. 2010). In this study, the North–South (NS), 
East–West (EW), and vertical (Z) components for each triaxial acceleration record are pro-
cessed individually. We initially corrected the baseline for each time series by subtract-
ing the linear trend. The lengths of the S–wave and noise windows, which vary between 
3 and  40 s depending on the  Mw and source–to–site distances, are manually decided for 
each record for precision and consistency. Following 5% cosine tapering at both edges of 
the time window, the Fourier amplitude spectrum (FAS) of the S–wave (and noise signal) 
is computed and plotted in log–linear space after smoothing between 0.3 and 35 Hz. Then, 
κ factor is computed from the FAS by fitting a straight line with least–squares linear regres-
sion where the spectral decay starts  (fe) and ends  (fx). We note that the lower and upper fre-
quency bounds for the exponential decay are determined manually. While selecting these 
frequencies, the method requires satisfying the following conditions to avoid bias in κ esti-
mates: the frequency range chosen (1) must lie above the corner frequency  (fc) due to the 
relation between seismic moment and  fc, (2) should supply adequate bandwidth to ensure 
robustness to the regressions and to resolve source, path, and site effects where the instru-
ment’s response is considered flat (e.g. Ktenidou et al. 2017), and (3) should not exceed the 
high–frequency noise level (e.g. Douglas et al. 2010; Ktenidou et al. 2013).

On the basis of these criteria, we rejected events with  Mw lower than 3.5 to avoid 
biased–κ estimations caused by the source effect on the measurements. We calculated 
empirical  fc values of  Mw varying from 3.5 to 6.5 using the theoretical relationship among 
seismic moment, stress drop, and corner frequency described by Brune (1970). For  Mw 
3.5, we obtained typical estimates of fc ranging from 1.36 to 6.32  Hz with an average 
shear–wave velocity in the crust of 3.5 km/s and variable stress drop values between 1 and 
100 bars. Thus,  fe points greater than 6.5 Hz were selected for the events of  Mw between 

(1)A(f ) = A0e
−𝜋𝜅f , f > fe
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3.5 and 4 to limit the impact of  fc. Further details on the calculations can be found in Kte-
nidou et al. (2017). We also ensure that  fe >  fc on the displacement amplitude spectra in the 
log–log scale. Thus, we ensure  fe exceeds  fc for all considered events. Several studies have 
shown that resonance peaks in site transfer functions may cause inaccurate selection of the 
initial frequency value or high–frequency site amplification, leading to significant over-
estimation or underestimation κ (Parolai and Bindi 2004; Kishida et al. 2014). Therefore, 
empirical transfer functions estimated through the horizontal–to–vertical spectral ratio for 
the stations considered here are studied to confirm that the fundamental frequencies are 
consistently below  fe, where the exponential decay starts. In selecting  fx, we analyzed the 
signal–to–noise ratios (SNR) and used only data with SNR above 3. A value of fx equal 
to 35 Hz (70% of Nyquist frequency as a limit) was used to guarantee an entire frequency 
range in which the instrument has a flat response to ground acceleration. Furthermore, we 
only considered ground motions within a  Repi of 200 km to minimize the potential for cap-
turing multiple ray paths because of the structural complexity of the region (Kurtulmus and 
Akyol 2015). Finally, we selected stations with at least 15 or more suitable ground motion 
records per station.

The average value of  fe is around 10 Hz for both horizontal components and 12 Hz for 
the vertical one, but it has a wide range between 3 and 25 Hz for all components, which is 
consistent with previous studies such as (Anderson and Hough 1984; Douglas et al. 2010). 
Here, we observe that  fe is smaller for large earthquakes than for moderate and small earth-
quakes, and this could be related to a seismic moment dependency as discussed by Tsurugi 
et al. (2020). The value of  fx was found to vary between 20 and 35 Hz. Figure 4 displays 
the sample κ calculation, including the S–wave and noise spectra. The κ values eventually 
determined from the NS and EW components are then averaged to yield a single horizontal 
κ value per event and station to reduce the influence of propagation heterogeneity. Askan 
et al. (2014) stated that such an averaging assumes that the direction of the incoming waves 
does not affect the κ value. To improve our analyses, we excluded individual κ calculations 
with a difference greater than 25% between the 2 horizontal components (e.g. van Houtte 
et al. 2011; Ktenidou et al. 2013).

4  Methodology

4.1  Multiple linear regression (MLR) model

We employed a regression model to determine the correlation between κ estimates and 
independent variables, such as  Mw,  Repi, and  Vs30. This approach is widely accepted and 
frequently used in data–driven mathematical analysis, although it has several variations. 
The MLR model is extensively preferred in many applications because of its well–estab-
lished form and available computer packages. It is generally used to construct a relation-
ship between selected independent (explanatory) variables and a dependent (response) var-
iable. The standard MLR form (Neter et al. 1996), with N observations and p explanatory 
variables  (x1,  x2, …,  xp), is given as follows:

Fig. 3  Pairwise correlations among multiple variables including  Repi, depth,  Mw, and κ in the following: a 
whole data set, b A1, c A2, and d A3. Each diagonal also includes histograms that demonstrate the number 
of records within the independent variable bins

▸
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Fig. 3  (continued)
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The matrix–vector notation of this model can also be expressed as follows:

where

In short:

where y is an (N × 1) vector of the response variable, X is an (N × (p + 1)) matrix of explan-
atory variables, β is a ((p + 1) × 1) vector of unknown parameters, and ε is an (N × 1) vec-
tor of independent, identically distributed random errors. In this approach, to estimate 
unknown parameters, the least squares estimation method is used.

4.2  Multivariate adaptive regression splines (MARS) model

The commonly used MLR requires certain assumptions to be fulfilled. Therefore, its predic-
tion power is restricted to the estimation of general functions of high–dimensional and sparse 
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Fig. 4  Data from an  Mw 5.1 earthquake on May 27, 2017, at 15:53:23. Acceleration time–series and their 
corresponding spectra from station 3509. a Three–component records of S–wave and noise signals are high-
lighted and labeled in the time–series plot. b Examples of the FAS of the S–window (the upper jagged line) 
and the noise signal in gray (lower jagged line) for each component. Vertical dashed lines represent the 
picking of  fe, the lower bound, and  fx, the upper bound on the FAS. The black line represents the fit to the 
spectrum over the frequency band for the κ measurement
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data. In this study, we used a sophisticated nonparametric regression method called MARS, 
which makes no specific assumption about the underlying functional relationship between the 
response and input variables (Friedman 1991). The MARS model is represented by a linear 
combination of the basis functions (BFs) and the intercept as follows:

where Bm (m = 1, 2, ...,M) are BFs taken from a set of M linearly independent basis ele-
ments, and �m are the unknown coefficients for the mth BF ( m = 1, 2, ...,M ). BFs can be in 
the form of the main or interaction of two or more spline functions. The following piece-
wise linear functions given in Eq.  (7) that involve one independent variable with a knot 
value � show main effects and are reflected pairs of each other:

Figure 5 shows an illustration of these BFs with a knot value at τ = 3.
Because the MARS algorithm is an adaptive procedure, the selection of BFs is data–based 

and specific to the problem at hand. A special advantage of MARS is that it is also possible to 
estimate the response by the contributions of the BFs with the interaction effects of the inde-
pendent variables. For a given data 

(
xi, yi

)
(i = 1, 2, ...,N) , the form of the mth BF with the 

interaction effect is as follows:

where [q]+ ∶= max{0, q}, Km is the number of truncated piecewise linear functions multi-
plied in the mth BF, x�m

j
 is the input variable corresponding to the jth truncated piecewise 

linear function in the mth BF, ��m
j
 is the knot value corresponding to the variable x�m

j
 , and 

s�m
j
 is the selected sign + 1 or − 1. Figure 6 graphically represents an example of interaction 

(6)y = �0 +

M∑
m=1

�mBm(x
m) + �

(7)c+(x, �) = max{0, x − �}, c−(x, �) = max{0, � − x}

(8)Bm(x
m) ∶=

Km∏
j=1

[
S�m

j
.

(
x�m

j
− ��m

j

)]
+

Fig. 5  Pair of main BFs with a 
knot at τ = 3
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BF obtained based on two predictor variables  (x1 and  x2) and their knot values ( �1 = 0.5 
and �2 = 0.1 ) respectively.

The smoothness constraints in MARS are implemented using BFs to which a piecewise 
linear function is linked, as defined in Eq. (7). This function governs the contribution of a 
specific basis function over different parts of the input space. Smoothness constraints are 
inherent properties of these functions. The following factors affect the level of smoothness 
in the MARS–generated κ functions:

• Number of Basis Functions: increasing the number of basis functions allows the model 
to capture complex features and non–linear patterns in the data, but it may result in a 
less smooth overall fit.

• Number of Knots: an insufficient number of knots may result in an overly simplistic 
model, whereas an excessive number of knots might lead to a less smooth function.

• Interaction Terms: MARS allows the use of interaction terms, but it is important to 
note that multiple interactions may result in a less smooth response function.

• In the backward step of the MARS algorithm, the degree of pruning affects the overall 
smoothness of the response function.

The MARS algorithm consists of two parts (Friedman 1991): the forward stepwise 
algorithm searches for the BF, and at each step, the split that minimizes the residual sum 
of squares (RSS) criterion from all possible splits on each BF is chosen. The search for 
new BFs is restricted by the user–specified value  Mmax and the maximum interaction order. 

Fig. 6  Graphical representation of the interaction basis function based on    x1 and   x2 predictor variables
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In the backward stepwise algorithm, on the other hand, the purpose is to prevent over–fit-
ting by decreasing the complexity of the model without degrading the fit to the data by 
removing some BFs that contribute less to the model (i.e. the smallest increase in the RSS). 
MARS algorithm uses a generalized cross–validation (GCV) criterion to estimate an opti-
mal number of parameters in the model. GCV is used in both parts of the MARS algorithm 
and is defined as:

where the numerator is the RSS and Q(M) in the denominator represents the cost penalty 
measure of a model with M BFs. The final MARS model is obtained when the minimum 
value of the GCV is reached.

Summaries of the advantages of the MLR and MARS models used in this study are as 
follows: MLR is a statistical model used to analyze the relationship between a dependent 
variable and multiple independent variables. This model is simple and easy to understand. 
Compared with more complex models, linear regression models have better training and 
forecasting speeds. However, it is crucial to note that MLR may not be suitable for com-
plex relationships or situations that involve significant non–linearities. Conversely, MARS 
excels at capturing non–linear correlations in the data. Unlike some complex machine 
learning models, it provides an interpretable and transparent representation of the relation-
ship between the predictors and the response variable. The explicit functional form, which 
includes linear segments and breakpoints, allows for a precise understanding of the model’s 
behavior. During model construction, the MARS algorithm identifies the most significant 
variables and their relationships while disregarding the less impactful ones. This can result 
in models that are more comfortable and easier to understand, and better generalizations to 
new data.

5  Application and results

The findings of the MLR and MARS models for predicting κ values in western Türkiye 
were analyzed to validate the study. The majority of research in the existing literature 
illustrates the correlation between κ and distance. In this area, where most earthquakes 
occur in the shallow crust, various earthquake distance measurements, such as epicen-
tral and hypocentral distances, do not have a significant impact. We experimented with 
several statistical metrics and observed that the outcomes did not differ substantially. 
Hence, we have chosen to use  Repi as the main distance metric in the models. A limited 
number of studies argue that magnitude could influence κ as well, implying the exist-
ence of source–related effects on high–frequency spectral amplitudes (e.g. Purvance 
and Anderson 2003). To investigate the potential influence of magnitude, this study 
employs the MLR and MARS methodologies, where  Mw is considered an independent 
variable in the κ model predictions. Moreover, the  Vs30 value, denoting the time–aver-
aged shear wave velocity within the initial 30 m of depth, is the most common proxy for 
site classification globally. Therefore, in this study,  Repi,  Mw, and  Vs30 are input vari-
ables included in the evaluation process. Tables  1, 2, 3 present  the descriptive  statis-
tics for all variables related to each area. The tables show that the variables have a var-
ied range of values. Hence, all input data are normalized so that each has a mean of zero 

(9)GCV =
1

N

∑N

i=1

�
yi − f̂M

�
�, xi

��2

(1 − Q(M)∕N)2
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and a variance of one to overcome variable scale impacts on the findings while perform-
ing MLR and MARS modeling. Some well–known statistical performance indicators, 
such as the correlation coefficient (r), R–square, adjusted R–squared (Adj.  R2), mean 
absolute percentage error (MAPE), and mean squared error (MSE), were generated to 
assess the effectiveness and accuracy of the models. The following section compares the 
subsets based on the model metrics.

After the MLR and MARS prediction models were built for A1, some measures for 
the prediction performance of the models were computed, as listed in Table 4. The fol-
lowing results show that the MARS model performs quite well for the given dataset. 
Here, the smaller values of MSE and MAE and the higher values of  R2, Adj.R2, and r 
show better performance of the associated model. Moreover, scatter plots of the pre-
diction models for both the MLR and MARS models are shown in Fig.  7 shows the 
performances by using the correlation between predicted and actual values. This figure 
indicates that the MARS model results for both the horizontal and vertical components 
have a better prediction of true values. The BFs in the MARS model use all predictor 
variables in the following order of importance:  Repi,  Vs30, and  Mw.

If we compare the MARS and MLR performance results for A2, the prediction capa-
bility of the MARS model is again stronger and the model captures the main structure 

Table 1  Descriptive statistics of 
variables for A1

Statistics κh(s) κv(s) Mw Repi(km) Vs30(m/s)

Minimum 0.0243 0.0111 3.5 29 192
1st Quartile 0.0542 0.0314 4 89.3 321
Median 0.0655 0.0396 4.3 110.8 330
Mean 0.0678 0.0399 4.468 116.5 372
3rd Quartile 0.0794 0.0481 4.875 144.3 403
Maximum 0.1189 0.0718 6.5 199.6 683

Table 2  Descriptive statistics of 
variables for A2

Statistics κh(s) κv(s) Mw Repi(km) Vs30(m/s)

Minimum 0.0136 0.0109 3.5 5.2 131
1st Quartile 0.0429 0.0355 3.9 55.5 270
Median 0.0529 0.0445 4.2 75.4 340
Mean 0.0561 0.0467 4.316 82.8 396.1
3rd Quartile 0.0662 0.0558 4.6 105 460
Maximum 0.1375 0.1109 6.5 191.6 875

Table 3  Descriptive statistics of 
variables for A3

Statistics κh(s) κv(s) Mw Repi(km) Vs30(m/s)

Minimum 0.0126 0.01634 3.5 11.1 248
1st Quartile 0.0434 0.0346 3.7 43 338.8
Median 0.0539 0.046 4.2 62 372
Mean 0.0602 0.0498 4.22 69.3 398.4
3rd Quartile 0.0693 0.0594 4.5 86.2 393
Maximum 0.1487 0.1179 6.5 183.6 696
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of the given dataset well (see Table 5 and Fig. 8). The variable importance of the MARS 
model obtained according to the use of variables in the model is  Repi,  Vs30, and  Mw in 
order.

Table 4  Comparison of 
performance measures for MLR 
and MARS in A1

MSE MAE r R2 Adj.R2

Horizontal MLR 0.0292 0.1322 0.5194 0.2698 0.2563
MARS 0.0167 0.1006 0.7634 0.5828 0.5501

Vertical MLR 0.0354 0.1508 0.545 0.297 0.284
MARS 0.0139 0.0922 0.8513 0.7247 0.7031

Fig. 7  Comparison of MLR and MARS predictions for A1. All plots show actual κ vs predicted values. Cir-
cles and squares correspond to the horizontal and vertical components, respectively. Blue lines represent the 
case when predicted κ equals to actual κ
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Similar results were obtained for A3. Although the form and size of the datasets are 
changed, the MARS model performance is much better than that of MLR because it 
can produce a model suitable for the data structure (see Table 6 and Fig. 9). The BFs in 

Table 5  Comparison of 
performance measures for MLR 
and MARS in A2

MSE MAE r R2 Adj.R2

Horizontal MLR 0.0182 0.1053 0.4214 0.1776 0.1753
MARS 0.0118 0.0845 0.6848 0.469 0.448

Vertical MLR 0.0203 0.1108 0.4025 0.162 0.1596
MARS 0.0134 0.0898 0.6682 0.4465 0.4269

Fig. 8  Comparison of MLR and MARS predictions for A2. All plots show actual κ vs predicted model 
values. Circles and squares correspond to the horizontal and vertical components, respectively. Blue lines 
represent the case when predicted κ equals to actual κ
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the MARS model use all predictor variables in the following order of importance:  Repi, 
 Vs30, and  Mw.

Although MLR and MARS are both regression techniques used for prediction tasks 
in this study, the results show that they have distinct characteristics and prediction 

Table 6  Comparison of 
performance measures for MLR 
and MARS in A3

MSE MAE r R2 Adj.R2

Horizontal MLR 0.0213 0.1139 0.5779 0.334 0.3224
MARS 0.0147 0.0919 0.7345 0.5395 0.5145

Vertical MLR 0.0273 0.1279 0.5377 0.2891 0.2767
MARS 0.0221 0.1172 0.6514 0.4243 0.4074

Fig. 9  Comparison of MLR and MARS predictions for A3. All plots show actual κ vs predicted model 
values. Circles and squares correspond to the horizontal and vertical components, respectively. Blue lines 
represent the case when predicted κ equals to actual κ
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performances. MARS can handle both linear and nonlinear relationships with the help of 
piecewise linear functions. It also adaptively models different segments of the data, making 
it more flexible in capturing complex nonlinear patterns. Moreover, MARS automatically 
captures interactions between variables by creating line segments that allow for varying 
relationships between different subsets of the data. Thus, MARS is likely to provide better 
prediction performance because of its ability to adaptively capture such relationships. For 
all these reasons, in the next part of the application, detailed modeling of the dataset is per-
formed using the MARS approach.

In this part of the application, all of the areas are divided into 3 groups according to the 
 Mw as follows: the first group includes  Mw values between 3.5 and 4, the second group 
includes  Mw values between 4 and 5, and the third group includes  Mw values between 5 
and 6.5. In each area, the number of observations and  Mw values are different; thus, the 
corresponding number of observations differs according to each  Mw bin. For example, 
for A1, the total number of observations is 166. The first group contains 38 observations, 
accounting for 22.89% of the total observations. The second group includes 89 observa-
tions, accounting for 53.61% of the total observations. On the other hand, 39 observations 
fall in the third group, accounting for 23.50% of the total observations. Table 7 presents the 
performance outcomes of the MARS models for A1. The findings demonstrate the high-
est performance values for group  Mw = 4–5, particularly for horizontal κ. However, they 
exhibit the highest performance values for vertical κ in the  Mw = 3.5–4 group. The data 
are more abundant within that particular range of  Mw. Machine learning algorithms fre-
quently exhibit outstanding performance when used on extensive datasets characterized 
by irregular structures, such as κ datasets, because of their ability to extract information 
directly from the data. Therefore, we attribute the algorithm’s achievement in this particu-
lar category to the greater volume of data. Overall, the findings suggest that MARS models 
may attain optimal performance independent of the data structure and  Mw. In other words, 
MARS models tend to be more successful when used with  Mw groups that have well–struc-
tured data dispersion.

For A2, the total number of observations is 1056, and the first bin contains 310 observa-
tions, accounting for 29.36% of the total observations. The second bin includes 614 obser-
vations, accounting for 58.14% of the total observations. On the other hand, 132 obser-
vations fall in the third bin, accounting for 12.50% of the total observations. In the area 
with the most data, the MARS model demonstrates superior outcomes for the largest–sized 
earthquakes when considering horizontal κ. Conversely, its effectiveness is more pro-
nounced for the medium–sized earthquake group when considering vertical κ (see Table 8).

For A3, the total number of observations is 176, and the first bin contains 69 observa-
tions, accounting for 39.20% of the total observations. The second bin includes 88 observa-
tions that account for 50.00% of the total observations. On the other hand, 19 observations 

Table 7  Performance results of 
the MARS models according to 
different  Mw bins for A1

Component Mw range MSE MAE r R2 Adj.R2

Horizontal 3.5–3.9 0.0199 0.1117 0.7236 0.5236 0.4659
4.0–4.9 0.0120 0.0844 0.7965 0.6344 0.5821
5.0–6.5 0.0202 0.1074 0.6681 0.4464 0.3989

Vertical 3.5–3.9 0.0068 0.0683 0.9288 0.8627 0.8362
4.0–4.9 0.0212 0.1161 0.7693 0.5919 0.5566
5.0–6.5 0.0239 0.1137 0.6808 0.4635 0.4336
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fall in the third bin, accounting for 10.80% of the total observations. Based on the results 
in Table 9, it can be observed that most model performances were more significant for the 
group  Mw = 4–5. However, it is noteworthy that the vertical κ model achieved the most 
favorable results in the  Mw = 4–5 category for all performance metrics.

Finally, the entire dataset, which includes all areas, is randomly split into train (80% 
of all data) and test (20% of all data) datasets, and the MARS model is obtained on the 
train dataset. The best MARS model obtained for the horizontal component is given in 
Table S7, and the highest degree of interactions between the variables and the maximum 
number of BFs are defined as 3 and 500, respectively. The best MARS model obtained 
for the vertical component is given in Table  S8, and the highest degree of interac-
tions between the variables and the maximum number of BFs are defined as 2 and 500, 
respectively. The results in Table 10 indicate that the prediction capability of the MARS 
models built both for horizontal and vertical κ are excellent for train and test datasets 
for most of the performance measures, and the train models capture the main struc-
ture of the train data well. It is important to keep in mind that the evaluation of model 
performance is not solely based on performance measures. For this purpose, to show 
the prediction ability of the MARS model, three different scatter plots (in Figs. 10, 11, 
12, 13) that show MARS model performance using (1) the correlation between the pre-
dicted and actual response values, (2) the relationship between fitted values and stand-
ardized residuals, and (3) the plot of standardized residuals versus observation order are 

Table 8  Performance results of 
the MARS models according to 
different  Mw bins for A2

Component Mw range MSE MAE r R2 Adj.R2

Horizontal 3.5–3.9 0.0088 0.0744 0.6555 0.4296 0.3859
4.0–4.9 0.0115 0.0832 0.6884 0.4740 0.4402
5.0–6.5 0.0133 0.0941 0.7297 0.5324 0.4853

Vertical 3.5–3.9 0.0105 0.0798 0.6664 0.4442 0.4158
4.0–4.9 0.0119 0.0830 0.7227 0.5223 0.4889
5.0–6.5 0.0138 0.0961 0.6584 0.4335 0.3967

Table 9  Performance results of 
the MARS models according to 
different  Mw bins for A3

Component Mw range MSE MAE r R2 Adj.R2

Horizontal 3.5–3.9 0.0122 0.0831 0.4003 0.1602 0.1348
4.0–4.9 0.0176 0.0996 0.7614 0.5797 0.5429
5.0–6.5 0.0223 0.1215 0.6636 0.4404 0.4075

Vertical 3.5–3.9 0.0183 0.1102 0.4878 0.2380 0.2028
4.0–4.9 0.0240 0.1166 0.6991 0.4888 0.4576
5.0–6.5 0.0265 0.1245 0.6229 0.3879 0.3519

Table 10  Train and test data 
performance results of the 
MARS models for horizontal and 
vertical κ responses

Component Patterns MSE MAE r R2 Adj.R2

Horizontal Train 0.0105 0.0779 0.7134 0.5091 0.4850
Test 0.0130 0.0840 0.6247 0.6972 0.6284

Vertical Train 0.0130 0.0869 0.6654 0.4428 0.4161
Test 0.0173 0.0980 0.4949 0.6313 0.5495
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obtained both for the train and test datasets. In a scatter plot representing the correlation 
between predicted and actual response values, the best result is typically achieved when 
the predicted values align closely with the actual values along a diagonal line. This 
diagonal line represents a perfect correlation, where the predicted values are exactly 
equal to the actual values. In the case of modeling horizontal κ, if the points on the scat-
ter plot around the diagonal line are examined, the MARS model’s predictions are close 
to the true values, and there is a good relationship between the predicted and actual 
responses. Furthermore, the best result in the scatterplot occurs when the standardized 
residuals are randomly scattered around the horizontal line at 0 (the x–axis). In Figs. 10, 
11, 12, 13, the second subplot indicates that the residuals have no systematic patterns or 
biases. In other words, the model effectively captures the underlying patterns in the data 
for both the training and testing datasets, and the errors are evenly distributed across 
the range of fitted values. Finally, a more efficient result is obtained for the scatter plot 
for standardized residuals versus observation order because the residuals are randomly 
scattered around the horizontal zero line, indicating a well–behaved and unbiased model 
that meets the assumptions of error independence. Considering the performance results 

Fig. 10  Scatter plots of the prediction MARS model for the horizontal κ response on the train dataset
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of the MARS model obtained for vertical κ, the results obtained from the train data are 
generally good, but  R2 and Adj.  R2 values obtained for the test data are higher than the 
train data results. This shows that the MARS model obtained in vertical κ can be used 
for future prediction.

6  Conclusions

In this study, classic MLR models and MARS–based predictions are developed for the 
high–frequency spectral attenuation parameter κ. Horizontal and vertical κ models were 
created for three areas within the Aegean Sea region of Türkiye. The selection of areas is 
contingent on the tectonic and geological characteristics present within the given area. The 
predictive capabilities of the methods were tested in terms of selected, well–known perfor-
mance measures. Based on the numerical results of this study, the following conclusions 
are drawn:

Fig. 11  Scatter plots of the prediction MARS model for the horizontal κ response on the test dataset
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• In the MLR models, in terms of  Mw,  Repi, and  VS30, the performance measures indi-
cate poor predictive capability regardless of the area.

• The MARS model, which employs piecewise continuous basis functions, demon-
strates significantly enhanced predictive performance compared with the MLR 
model. This improvement can be attributed to the MARS model’s capacity to 
dynamically capture and represent the unique properties inherent in the dataset.

• The performance of the MARS model is shown to be nearly equivalent across all 
areas, regardless of whether it is applied to horizontal or vertical components.

• The findings indicate that optimal MARS performance may be achieved irrespective 
of the data structure and earthquake magnitude bins.

• The MARS–based prediction equations developed in this study may be used to per-
form more precise and reliable κ estimations in the Aegean Sea region. The κ mod-
els developed here can be used in future studies concerned with stochastic ground 
motion simulations, site characterization, and ground motion models in the Aegean 
Sea region of Türkiye.

Fig. 12  Scatter plots of the prediction MARS model for the vertical κ response on the train dataset
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• Finally, the findings of this study indicate that MARS–based models are promising 
for capturing the complex characteristics of κ datasets globally.
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