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Abstract
It is well known that the increase in coastal flood hazard is expected to continue due pri-
marily to climate change. While, previous studies have advanced probabilistic approaches 
for estimating future coastal flood hazard, two seminal issues have received little atten-
tion: (1) sea level trend projections that arise as a consequence of climate change not being 
incorporated in nonstationary coastal flood frequency analysis and (2) traditional station-
ary approaches that estimate return periods are not suited for analysis of nonstationary 
water levels. In this paper, a regression approach for sea level rise estimation is proposed 
to detrend water levels. The peak-over-threshold approach is used to analyze the probabil-
istic behavior of detrended water levels via a generalized Pareto distribution. Two inter-
pretations of return period—the expected waiting time until an exceedance event occurs 
and the time associated with the expected number of exceedance events equal to one—are 
elaborated in a nonstationary context. By incorporating the existing sea level trend projec-
tions and using two interpretations of return period, flood hazard curves with uncertainty 
(i.e., water levels vs. return periods) are developed to describe the probabilistic behavior of 
future coastal flood hazards. Two case studies are conducted: one for Boston, Massachu-
setts, and one for New York City, New York.

Keywords Coastal flooding · Sea level rise · Climate change · Return period · Peak-over-
threshold · Generalized Pareto distribution · Linear regression · Boston · New York City

1 Introduction

Coastal flooding can damage the lower portions of buildings, their contents, and other 
infrastructure. An accurate estimate of future water levels is needed to facilitate flood-
resistant design and performance evaluation (e.g., define the design flood level and esti-
mate the performance of structures under coastal flooding). Traditional methods to ana-
lyze extreme coastal water levels are often based on the assumption that coastal water level 
time series are stationary (ST) (e.g., Coles 2001). However, rising sea levels contribute to 
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coastal flooding, thereby invalidating this assumption (Tebaldi et  al. 2012; Zervas 2013; 
Kopp et al. 2014; Vitousek et al. 2016; Ghanbari et al. 2019, 2021; Taherkhani et al. 2020; 
Baldan et al. 2022). The global sea level has been increasing over the past century (Church 
and White 2006; Cazenave and Llovel 2010; IPCC 2014; Hay et al. 2015). The rate of sea 
level rise (SLR) is anticipated to increase globally and regionally, particularly under green-
house gas emission scenarios (Nicholls and Cazenave 2010; Parris et al. 2012; IPCC 2014; 
Kopp et al. 2014; Hall et al. 2016; Sweet et al. 2017; Taherkhani et al. 2020).

Several studies over the course of the past few decades have accounted for the impact 
of SLR in nonstationary (NS) coastal flood frequency analysis. Their methodologies can 
be classified into two types. One involves fitting NS probability distributions to water level 
data, where the parameters of the NS probability distributions are modeled as functions 
of time (e.g., Katz et al. 2002; Mudersbach and Jensen 2010; Obeysekera and Park 2013; 
Obeysekera and Salas 2014; Salas and Obeysekera 2014; Luke et  al. 2017; Razmi et  al. 
2017; Ghanbari et al. 2019, 2021; Baldan et al. 2022). The impact of SLR is implicitly and 
statistically incorporated in the parameters of the NS probability distribution. Flood haz-
ard curves (water levels vs. return periods) are developed by extrapolating the parameter 
functions of the NS probability distribution into the future. Note that this extrapolation is 
valid only if water level trends remain the same. However, sea level trend projections are 
likely to show an acceleration (Nicholls and Cazenave 2010; Parris et al. 2012; IPCC 2014; 
Kopp et al. 2014; Hall et al. 2016; Sweet et al. 2017), which can affect the probabilistic 
behavior of water levels in the future. As such, the estimated functions for NS probability 
distribution parameters are anticipated to change, rendering flood hazard curves developed 
using extrapolation idealized and unlikely to be practical. The other methodology involves 
detrending water levels (removing the SLR trend), and then fitting ST probability distribu-
tions to the detrended water level data (e.g., Kirshen et  al. 2008; Menéndez and Wood-
worth 2010; Tebaldi et al. 2012, 2021; Zervas 2013; Sweet et al. 2014, 2022; Taherkhani 
et al. 2020). An ST probability distribution is defined by parameters that are fixed (time 
independent). In this methodology, the nonstationarity is accounted by the detrended SLR. 
The limitation of this methodology is that the concept of return period (RP) in an NS con-
text is not considered. The developed flood hazard curves are only to report an RP for a 
given water level at a specific time, which is obtained from the fitted ST probability distri-
bution and an estimated SLR.

The water level data for coastal flood frequency analysis is usually collected by one of 
two methods: annual maximum series and peak-over-threshold (POT). An annual maxi-
mum series is constructed using the highest recorded water level value for each year, which 
means that the sample size is equal to the number of years of data. The primary advantages 
of the annual maximum series method are its simplicity and the independence of extracted 
extremes (Tabari 2021). However, using only one data point per year will exclude poten-
tially useful information, as there might be more than one large recorded water level in a 
year relative to other years’ maxima (Lang et al. 1999; Bezak et al. 2014; Tabari 2021). An 
alternative to the annual maximum approach, the POT method, has been widely used in 
recent coastal flood frequency analyses (e.g., Tebaldi et al. 2012, 2021; Zervas 2013; Bezak 
et al. 2014; Ramzi et al. 2017; Talke et al. 2018; Ghanbari et al. 2019, 2021; Taherkhani 
et  al. 2020). The POT method consists of retaining all peak water level values above a 
certain truncation level, usually referred to as the threshold (Lang et al. 1999). Thus, the 
POT method is not limited to one data point per year and allows for a more rational selec-
tion of extreme events. The main challenges of the POT method are choosing an appro-
priate threshold value and assuring the independence of threshold-exceeding data (Bezak 
et al. 2014). The appropriate threshold can be selected via multiple approaches, including 
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mean excess plot (e.g., Davison and Smith 1990; Lang et al. 1999; Coles 2001; Bommier 
2014; Ramzi et  al. 2017) and average number of over-threshold events (e.g., Lang et  al. 
1999; Nadal-Caraballo et al. 2016). The independence of threshold-exceeding data can be 
satisfied by using physical bases to set the time interval between peaks (e.g., Lang et al. 
1999; Méndez et al. 2006; Nadal-Caraballo et al. 2016; Ghanbari et al. 2019, 2021). For 
threshold-exceeding data, a generalized Pareto distribution (GPD) is commonly used to 
model its probabilistic behavior (e.g., Davison and Smith 1990; Stedinger et al. 1993; Lang 
et al. 1999; Coles 2001; Méndez et al. 2006; Eastoe and Tawn 2010; Katz 2013; Silva et al. 
2014; Nadal-Caraballo et al. 2016; Ramzi et al. 2017; Salas et al. 2018; Baldan et al. 2022; 
Pan et al. 2022).

The primary goal of this paper is to develop a methodology for NS coastal flood fre-
quency analysis that produces flood hazard curves that can provide a complete probabilistic 
account for future coastal flood hazards. This involves (1) estimating SLR to detrend water 
level data, (2) using the POT method to estimate the probabilistic behavior of detrended 
water levels, (3) incorporating the existing sea level trend projections in RP calculation, 
and (4) describing the NS behavior of RPs. Critical features of this paper that distinguish 
it from previous studies are (1) incorporation of sea level trend projections, which arise 
from the consequences of climate change, in frequency analysis, and (2) consideration of 
the impact of NS behavior of RPs in flood hazard curve development. This methodology 
is applied to two case studies using water level data recorded by National Oceanic and 
Atmospheric Administration (NOAA) stations (NOAA 2023) near Boston, Massachusetts, 
and New York City, New York.

2  Methodology

In this section, the methodology for NS coastal flood frequency analysis that produces 
flood hazard curves is presented. This methodology includes SLR estimation, POT analysis 
for detrended water levels, annual exceedance probability estimation, and return period cal-
culation incorporated with sea level trend projection.

2.1  Sea level rise estimation

Analogous to NOAA (2023), the existing SLR trend is estimated using monthly mean sea 
levels recorded by NOAA stations. It is worth noting that regular seasonal fluctuations 
from coastal ocean temperatures, salinity, wind, atmospheric pressure, and ocean currents 
are removed from the monthly mean sea levels (NOAA 2023). The estimated SLR is used 
to detrend recorded water levels during coastal floods, as described in the next section. 
Analogous to Obeysekera and Park (2013), Goddard et al. (2015), Nadal-Caraballo et al. 
(2016), Razmi et al. (2017), Baldan et al. (2022), Sweet et al. (2022), and NOAA (2023), 
the SLR trend is estimated by linear regression as

where y is the sea level; t represents the recorded time; �0 and �1 are the regression inter-
cept and slope; and � represents regression residuals, which are assumed to be normal, 
homoscedastic (equality of variances), and independent (no serial correlation). However, 
based on the case studies shown in Sect. 3 (Results and Discussions), neither parametric 
(e.g., ordinary and weighted least squares) nor nonparametric (e.g., Theil-Sen (Theil 1950)) 

(1)y = �0 + �1 ∙ t + �
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estimators can yield the homoscedastic and independent residuals from the Breusch-Pagan 
test (Breusch and Pagen 1979) and correlogram (Serago and Vogel 2018). One way to miti-
gate the heteroscedasticity of regression residuals is through data transformation (Helsel 
et  al. 2020). Since, the SLR is estimated linearly, data transformation of time is accom-
plished by dividing Eq. (1) by t on each side:

Denoting 1
t
 as t′ , and y

t
 as y′ , Eq. (2) can be rewritten as

where �′ (equal to �
t
 ) is homoscedastic. To address the presence of serial correlation in 

�′ , Helsel et al. (2020) recommend grouping the data into time intervals and computing a 
summary statistic for the interval, such as mean or median, and then using these summary 
statistics in the regression. This is suggested because the dependence that exists in �′ is an 
indication of considerable redundancy in the data (Helsel et  al. 2020). In this paper, the 
mean values of sea levels at six-month intervals are used for regression.

2.2  Peak‑over‑threshold analysis for detrended water levels

A common practice when using the POT method is to remove the trend in the extreme 
dataset and then fit the probability distribution of the detrended extremes (e.g., Kirsten 
et al. 2008; Zervas 2013; Sweet et al. 2014, 2022; Nadal-Caraballo et al. 2016). The esti-
mated SLR trends are used to detrend the hourly water levels recorded at the NOAA sta-
tions, which are obtained from tide gauges that measure the water level with respect to a 
local, fixed reference point on land. As such, these hourly water levels include (in addition 
to the SLR and local vertical land motion) astronomical tide height, storm surge height, 
and limited wave setup (FEMA 2007). The detrended hourly water levels are calculated as

where zt is the hourly water level recorded at time t ; �0 and �1 are obtained by Eq.  (3). 
These detrended hourly water levels are used in frequency analysis.

The peaks of the detrended hourly water levels (extreme values) that are above an 
appropriate threshold need to meet the independence condition as a prerequisite for fre-
quency analysis and the Poisson process assumption (e.g., Davison and Smith 1990; Lang 
et al. 1999; Nadal-Caraballo et al. 2016; Ramzi et al. 2017). In this paper, the independ-
ence condition is defined from both a physical and statistical perspective. From a physical 
standpoint, Nadal-Caraballo et al. (2016) proposed to meet the independence condition of 
historical extreme water levels for the POT method by imposing a two-day time interval 
from the end of one storm to the start of the next. Note, that this imposed time interval 
does not define the time between peaks, which would be larger than two days. In this paper, 
a three-day time interval between peaks is selected to meet the independence condition, 
which is also recommended by Méndez et al. (2006), Sweet et al. (2014), Ghanbari et al. 
(2019), and Ghanbari et al. (2021). For a statistical approach, a correlogram (Serago and 
Vogel 2018) is used to evaluate the independence of peaks of detrended hourly water levels 
above the selected threshold (hereinafter referred to as POT water levels).

(2)
y

t
= �0 ∙

1

t
+ �1 +

�

t

(3)y� = �
0
∙ t� + �

1
+ ��

(4)z = zt − (�0 + �1 ∙ t)
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2.2.1  Threshold selection

In the POT method, it is important to select an appropriate threshold – one that is high 
enough to meet the model assumptions that the POT water levels are independent and the 
occurrence process can be described as a Poisson process. One commonly used method to 
select a threshold is interpreting the mean excess plot, also known as the mean residual life 
plot (e.g., Davison and Smith 1990; Lang et al. 1999; Coles 2001; Bommier 2014; Ramzi 
et al. 2017; Pan et al. 2022). A mean excess plot shows the threshold versus the mean value 
of threshold-exceeding peaks, which is

where u is the threshold, xi is the i POT water level larger than u , and nu is the number of 
POT water levels larger than u . If the GPD provides a valid approximation of the POT 
water levels larger than u , the mean excess plot should be approximately linear (Davison 
and Smith 1990; Lang et al. 1999; Coles 2001; Bommier 2014; and Ramzi et al. 2017). In 
addition to the mean excess plot, the average number of over-threshold events can provide 
guidance for threshold selection (Lang et al. 1999).

2.2.2  Generalized Pareto distribution

A GPD is used to model the probabilistic behavior of the POT water levels. The cumulative 
distribution function of the GPD for a given POT water level value is

where FX(x) is the probability of the POT water level ( X ) not exceeding a given value 
( x ); and � , � , and u are shape, scale, and threshold (also known as location) parameters, 
respectively. If an NS trend exists in the POT water levels (e.g., estimated using linear 
regression), two methods can be used to incorporate the NS trend in the GPD parameter 
estimation:

1) Derive the moments of the POT water levels conditioned on time, such as by mode-
ling the mean (conditioned on time) as a linear regression. Then, estimate the GPD param-
eters using these conditional moments via the method of moments. Examples can be found 
in Salas et al. (2018). Serago and Vogel (2018), Hecht and Vogel (2020), and Hecht et al. 
(2022). The uncertainty of GPD can be quantified using the prediction bounds of the con-
ditional moments of the POT water levels.

2) Model the GPD parameters and/or their transformations (e.g., exponential, logarith-
mic) as functions of time. Then, estimate each of these parameters using the maximum 
likelihood method. Examples can be found in Coles (2001), Obeysekera and Park (2013), 
Salas and Obeysekera (2014), and Ramzi et al. (2017). The uncertainty of GPD can be cal-
culated using the confidence bounds of GPD parameters.

If there is an ST trend in the POT water levels, it indicates that the GPD parameters are 
time independent. These parameters can be estimated using several approaches, such as the 
method of moments and the maximum likelihood method. More details about parameter 
estimation can be found in Hosking and Wallis (1987).

(5)
1

nu

nu∑

i=1

(xi − u)

(6)FX(x) = 1 −
[
1 + �

(
x − u

�

)]− 1

�
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2.3  Annual exceedance probability

In the POT method, assuming that the occurrence of events follows a Poisson process, the 
exceedance probability of an event for a given time interval can be estimated using a GPD 
(e.g., Davison and Smith 1990; Cole 2001; Méndez et al. 2006; Eastoe and Tawn 2010; 
Katz 2013; Salas et al. 2018; Pan et al. 2022). The probability that the POT water level 
exceeds a given value during a time interval ( ti ) is calculated using the total probability 
rule:

where P(X ≤ x|n) is the conditional probability that the POT water level ( X ) does not 
exceed a given value ( x ) for n water levels, which can be expressed as

and pti(n) is the probability that n POT water levels are observed during tiwhich is a rare 
event. Analogous to Davison and Smith (1990), Katz et  al. (2002), Eastoe and Tawn 
(2010), Katz (2013), Bezak et al. (2014), Bommier (2014), Jia and Sasani (2021), Baldan 
et al. (2022), pti(n) is assumed to follow a Poisson distribution

where � is the recurrence rate, also known as the average number of over-threshold events. 
For the Boston and New York City cases, � = 1.70 and 2.33, respectively. With ti defined 
as one year, the annual exceedance probability of X larger than x can be calculated as

Using Maclaurin series (Zwillinger 2012), Eq. (10) can be simplified as

2.4  Return periods

The concept of RP is widely used to describe the occurrence of natural hazards, such as flood, 
wind, and earthquake. In this paper, RP is used to develop flood hazard curves under ST and 
NS conditions. Under the assumption of stationarity, RPs can be computed easily because 
the time to the next exceedance of a particular event follows a geometric distribution with a 
constant success probability. The RP is simply the inverse of the exceedance probability of 
the event of interest (Read and Vogel 2015). Under nonstationarity, however, the probabilistic 
behavior of RPs is much more complicated because the RP no longer follows a geometric 
distribution with a constant success probability. In fact, with even slightly NS behavior, the 
probability distribution of an RP looks nothing like a geometric distribution with a constant 
success probability, as shown by Read and Vogel (2015). Computing RP in an NS context 

(7)Pti(X > x) = 1 −

∞∑

n=0

P(X ≤ x|n) ∙ pti(n)

(8)P(X ≤ x|n) = [P(X ≤ x)]n =
[
FX(x)

]n

(9)pti(n) =
�n ∙ exp(−�)

n!

(10)PA(X > x) = 1 −

∞∑

n=0

{[
FX(x)

]n
∙
𝜆n ∙ exp(−𝜆)

n!

}

(11)PA(X > x) = 1 − exp
{
−𝜆 ∙

[
1 − FX(x)

]}
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requires a prediction of flood events for the selected future time span along with a careful 
uncertainty analysis.

Within both ST and NS contexts, an RP can be interpreted as 1) the expected waiting 
time until an exceedance event occurs, denoted as RP1 (Olsen et al. 1998; Cooley 2013; 
Cheng et al. 2014; Salas and Obeysekera 2014; Obeysekera and Salas 2014, 2016; Read 
and Vogel 2015; Salas et  al. 2018; Naseri and Hummel 2022) or 2) the time associated 
with the expected number of exceedance events equal to one, denoted as RP2 (Olsen et al. 
1998; Parey et al. 2007, 2010; Cooley 2013; Obeysekera and Salas 2014, 2016; Read and 
Vogel 2015; Salas et al. 2018). The interpretation and computation of RP in the ST and NS 
contexts are elaborated below.

2.4.1  Return periods under stationarity

In an ST context, the sea level is assumed not to change in the future. RP1 for a given water 
level follows a geometric distribution with a probability mass function of

where PA(XT > xt) is the annual exceedance probability that water level ( XT ) exceeds a 
given value ( xt ). XT is equal to the POT water level ( X , which is detrended) in relation 
to a sea level at a time of interest. Since sea level is assumed not to change in the future, 
PA(XT > xt) is consistent and equal to PA(X > x) . RP1 can be calculated as

For RP2 , the number of exceedance events ( E ) follows a binomial distribution with 
probability mass function given by

The expected value of E is

Setting the expected value of E equal to 1, RP2 can be calculated as

Note, that the two interpretations of RP are identical in the ST context (see Eqs. (13 and 
16)).

2.4.2  Return periods under nonstationarity

Under NS conditions, the sea level is assumed to be NS in the future. The probability mass 
function of RP1 in an NS context can be written as

(12)fRP1

(
rp1

)
=
[
1 − PA(XT > xt)

]rp1−1
∙ PA(XT > xt)

(13)RP1 =
∑∞

rp1=1
rp1 ∙ fRP1 (rp1) =

1

PA(XT > xt)

(14)fE(e) =

(
RP2
e

)
∙
[
PA(XT > xt)

]e
∙
[
1 − PA(XT > xt)

]RP2−e

(15)E[E] =
∑∞

e=1
e ∙ fE(e) = RP2 ∙ PA(XT > xt)

(16)RP2 =
1

PA(XT > xt)

(17)fRP1

(
rp1

)
=

{∏rp1−1

i=1

[
1 − PA

(
XT > xt

||i)
]}

∙ PA

(
XT > xt

||rp1)
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where PA

(
XT > xt

||i) and PA

(
XT > xt

||rp1) are the annual exceedance probabilities that XT 
exceeds xt in year i andrp1 , respectively. This can be calculated as PA(X > x) in relation 
to the corresponding sea levels in year i andrp1 , respectively. In other words, PA

(
XT > xt

)
 

is time-dependent. Analogous to Olsen et al. (1998), Cooley (2013), Cheng et al. (2014), 
Salas and Obeysekera (2014), Obeysekera and Salas (2014), Read and Vogel (2015), Obey-
sekera and Salas (2016), Salas et al. (2018),), and Naseri and Hummel (2022), Eq. (17) can 
be simplified as

For RP2 , E is expressed as

where I is the indicator function. I is equal to 1 when XT exceeds xt in year i . Conversely, 
I is equal to 0 if XT is less than or equal to xt in year i . According to Cooley (2013), the 
expected value of E can be calculated as

Setting the expected value of E equal to 1, RP2 in an NS context can be calculated 
numerically by solving

Note, that if there is an NS trend in the POT water levels, FX(x) and, in turn, PA(X > x) 
are not time independent. As such, two sources of nonstationarity (i.e., NS trends in 
both sea levels and POT water levels) need to be incorporated into the calculation of 
PA

(
XT > xt

||i).

2.5  Sea level trend projection incorporation

As discussed above, computing RP in an NS context requires a prediction of flood events 
for the selected future time span along with a careful uncertainty analysis. From a statisti-
cal standpoint, two characteristics of flood events in the future need to be predicted–proba-
bilistic behavior of the POT water levels discussed in Sect. 2.2.2 (Generalized Pareto dis-
tribution) and sea level trend. Considering the future sea level trend has been well studied, 
in this paper, the existing sea level trend projections with uncertainty (e.g., Yin et al. 2009; 
Kopp et al. 2014; Sweet et al. 2017, 2022) are incorporated in the RP calculation under NS 
condition.

3  Results and discussions

The proposed methodology for NS coastal flood frequency analysis is applied to two 
case studies using the NOAA recorded water level data near Boston, Massachusetts, 
and New York City, New York (NOAA 2023). The NOAA station locations in Boston 
Harbor, Massachusetts, and New York Battery Bay, New York are shown in Fig. 1. The 

(18)RP1 =
∑∞

rp1=1
rp1 ∙ fRP1

(
rp1

)
= 1 +

∑∞

rp1=1

∏rp1

i=1

[
1 − PA

(
XT > xt

||i)
]

(19)E =
∑RP2

i=1
I
(
XT > xt

||i)

(20)E[E] =
∑RP2

i=1
E
[
I
(
XT > xt

||i)
]
=
∑RP2

i=1
PA

(
XT > xt

||i)

(21)1 =
∑RP2

i=1
PA

(
XT > xt

||i)
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stations’ information is shown in Table  1. For Boston, monthly mean sea levels (for 
SLR estimation) and hourly water levels (for POT analysis of detrended water levels) 
have the same record range. However, for New York City, the records for monthly mean 
sea levels begin in 1856 but are incomplete between 1879 and 1892. The records for 
hourly water level for New York City start in 1927. To be consistent with the frequency 
analysis for the Boston case, the SLR for the New York City case is estimated using the 
monthly mean sea levels from 1927 to 2022. All the water level data presented in this 
paper uses the North American Vertical Datum of 1988 as a benchmark.

3.1  Sea level rise

The estimated �1 , i.e., the slope in Eq. (1), and the statistics of the estimated SLR trends 
for Boston and New York City obtained via the ordinary least squares method are shown 
in Table 2. In both cases, the p-value for the estimated �1 is less than the 5% significance 
level. Accordingly, the null hypothesis that there is an ST trend in sea levels is rejected. 
�′ is normal, homoscedastic, and independent (see the regression residual analysis in 
Appendix 5.1). The estimated sea levels and corresponding 95% prediction intervals are 
shown in Fig. 2. 

Boston

Powered by Esri

New York City

Powered by Esri

(a) (b) 10 km10 km

Fig. 1  NOAA water level station locations near a Boston and b New York City. (Map data from Esri | 
USGS, NOAA, Tiles © Esri — Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aero-
grid, IGN, IGP, UPR-EGP, and the GIS User Community)

Table 1  NOAA water level station information

Location Station ID Latitude Longitude Record range for both monthly 
mean sea levels and hourly water 
levels

Boston 8,443,970 42° 21.2’ N 71° 03.0’ W 1921 ~ 2022
New York City 8,518,750 40° 42.0’ N 74° 00.9’ W 1927 ~ 2022

Table 2  �
1
 and the statistics of the estimated SLR trends

Location Estimated �
1

p-value Diagnostic result Standard deviation of �′

Boston 0.00288 m/yr (2.88 mm/yr) < 0.001 ST trend is rejected 0.00017 m/yr (0.17 mm/yr)
New York City 0.00325 m/yr (3.25 mm/yr) < 0.001 ST trend is rejected 0.00018 m/yr (0.18 mm/yr)
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3.2  Probability behavior of the peak‑over‑threshold water levels

For the Boston and New York City cases, the mean excess plots are shown in Fig.  3. 
According to Davison and Smith (1990), large fluctuations observed at high threshold 
values are the result of sampling variation in the data extremes and are not significant in 
determining the threshold (i.e., threshold values higher than 2.38 and 1.63 m for the Bos-
ton and New York City cases, respectively). In Fig. 3, the linearized portion of the mean 
excess plots (preceding the large fluctuations) are generated using the method outlined in 
Joyner et  al. (2022). Similar to Davison and Smith (1990) and Ramzi et  al. (2017), the 
thresholds are selected to equal the starting point of the last linear segment (i.e., u = 2.04 m 
and 1.19  m for the Boston and New York City cases, respectively). The developed cor-
relograms (Fig. 11) in Appendix 5.2 illustrate that the selected POT water levels meet the 
independence condition.

In addition to the mean excess plot, the average number of over-threshold events can 
provide guidance for threshold selection (Lang et al. 1999). For the Boston and New York 
City cases, the average numbers of over-threshold events (using u = 2.04 m and 1.19 m) 
are 1.70 and 2.33, respectively. These average numbers of over-threshold events are com-
parable with those estimated by Nadal-Caraballo et al. (2016) – 1.50 and 2.00. The differ-
ence is due primarily to differing independence conditions (three days between peaks vs. 
two days between the ends of one storm to the start of the next used by Nadal-Caraballo 
et al. 2016) and the use of different threshold selection methods (mean excess plot vs. the 

Fig. 2  Estimated sea levels and corresponding 95% prediction intervals developed using ordinary least 
squares estimators. a Boston and b New York City

Fig. 3  Mean excess plots a Boston and b New York City
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quantile–quantile optimization method used by Nadal-Caraballo et  al. 2016). Using Eqs. 
(11 and 13), the RPs resulting from the selected threshold and corresponding average num-
bers of over-threshold events under ST condition are 1.22- and 1.12-year for the Boston 
and New York City cases, respectively, which are comparable to the RPs discussed in Lang 
et al. (1999)–1.15-year and 1.20- to 2.00-year.

To evaluate, whether there is an NS trend in the POT water levels, which can affect the 
following probability distribution fitting, a linear regression is fitted to the POT water lev-
els. Figure 4b shows an outlier for the New York City case resulting from Hurricane Sandy 
in 2012. To mitigate the effect of outliers, Theil-Sen (Theil 1950) estimators – which, in 
contrast with ordinary least squares estimators, are not overly sensitive to outliers (Helsel 
et al. 2020)–are used to fit the linear trend in the POT water levels. For both the Boston and 
New York City cases, the p-values for the estimated �1 , i.e., the slope in Eq. (1), are higher 
than the 5% significance level (see Fig. 4). Therefore, the ST trend in the POT water levels 
is not rejected.

A GPD is used to model the probabilistic behavior of the POT water levels. Since, 
the ST trend in the POT water levels is not rejected, it is reasonable to assume that the 
GPD parameters are time independent. These parameters can be estimated using several 
approaches, such as the method of moments and the maximum likelihood method. More 
details about parameter estimation can be found in Hosking and Wallis (1987). For both 
the Boston and New York City cases, the method of moments fits the POT water levels bet-
ter than the maximum likelihood method does. As such, the method of moments is used in 
this paper. The quantile–quantile plots between the POT water levels and those estimated 
via the method of moments are shown in Fig.  5 using the Gringorten plotting position 
(Gringorten 1963) as recommended by Kim et al. (2008). The Pearson correlation coef-
ficient ( � ) between the POT water levels and the estimated POT water levels is used as a 
measurement for goodness-of-fit (see Fig. 5).

3.3  Sea level trend projection with uncertainty

Since, there is an ST trend in the POT water levels, it is reasonable to assume that 
the probabilistic behavior of the POT water levels in the future remains constant (see 
Fig. 4). Thus, only one characteristic of flood events in the future–sea level trend projec-
tion – needs to be estimated. Three sea level trend projections between 2000 and 2200 
estimated by Kopp et al. (2014) are used for flood event prediction in this paper. These 

Fig. 4  Linear trends of the POT water levels developed using Theil-Sen estimators. a Boston and b New 
York City
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three projections are developed for low, intermediate, and high greenhouse gas emission 
scenarios, corresponding to representative concentration pathways (RCPs) of 2.6, 4.5, 
and 8.5, respectively. RCPs 2.6, 4.5, and 8.5 describe three twenty-first century path-
ways of greenhouse gas emissions and atmospheric concentrations, air pollutant emis-
sions, and land use (IPCC 2014). Note that the sea level trend projections estimated by 
Kopp et al. (2014) are presented as the sea level changes in 2030, 2050, 2100, 2150, and 
2200 with respect to the sea level in 2000. In this paper, the sea level in 2000 is obtained 
by the SLR trend estimated using Eq. (1). As a user-defined parameter, the future time 
span is selected to be the current year through 2200, which is consistent with Kopp et al. 
(2014). Figure 6 shows these sea level trend projections.

Regardless of the method used to project sea level trends, the projection always 
exhibits uncertainty. For sea level trend projections estimated by Kopp et  al. (2014), 
the uncertainty is presented as the estimation’s 2.5th–97.5th percentile, calculated using 
local sea level probability distributions. As mentioned in Kopp et al. (2014), local sea 
level probability distributions are calculated using samples from time-dependent prob-
ability distributions of cumulative contributions to sea level rise for each of the indi-
vidual components (i.e., ice sheet components, glacier and ice cap, global mean thermal 
expansion and regional ocean steric and dynamic effects, land water storage, and long-
term, local, nonclimatic sea level change due to factors such as glacial isostatic adjust-
ment, sediment compaction, and tectonics). The uncertainty of sea level trend projec-
tions is shown in Fig. 6 as shaded areas.

3.4  Flood hazard curves

In this section, two RPs are used to develop flood hazard curves under different sea level 
trend projections with uncertainty. The developed flood hazard curves can be used to 
define the design flood level, estimate the performance of structures under coastal flood-
ing, and assess community resilience.

Fig. 5  Quantile–quantile plots for the detrended POT water levels. a Boston and b New York City
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3.4.1  A retrospective comparison with other studies and historical flood events

Figure 7 shows the flood hazard curves developed under projected sea level trends for three 
greenhouse gas emission scenarios estimated by Kopp et al. (2014). For comparison pur-
poses, the flood hazard curves under ST conditions and those developed by extrapolating 
the estimated SLR trend (see Fig.  2) are also shown in Fig.  7. The flood hazard curves 
in this paper, which can support conclusions about future RPs, are compared with other 
studies that report either the 100-year water level or the RP corresponding to a particular 
event. Under ST conditions, the 100-year water levels reported by other studies are shown 
in Fig. 7 to be compared with the developed ST flood hazard curves. Under NS conditions, 
however, no direct comparison is available. Because there are no previous studies incorpo-
rating RPs in an NS context to perform frequency analysis for Boston and New York City.

For the Boston case, the 100-year water levels estimated by FEMA (2016) and Nadal-
Caraballo et al. (2016) are slightly lower than the ones estimated by the ST flood hazard 
curves in this paper (see Fig. 7a and c). This is primarily because (1) FEMA (2016) used 

Fig. 6  Sea level trend projections with uncertainty estimated by Kopp et al. (2014) for three greenhouse gas 
emission scenarios (shown as RCP) with corresponding 2.5th–97.5th percentile intervals for Boston (left 
column) and New York City (right column); a, b RCP 2.6, c, d RCP 4.5, and e, f RCP 8.5
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historical water level data for frequency analysis without considering sea level trend, and 
(2) Nadal-Caraballo et al. (2016) used different water level data (hourly water levels and 
monthly maximum water levels) for sea level trend estimation. As compared with Nadal-
Caraballo et al. (2015), the 100-year water level estimated by the ST flood hazard curve is 
lower, with a relative difference of 3% (see Fig. 7a and c). This is because Nadal-Caraballo 
et al. (2015) used water level data derived from thousands of simulated storms obtained by 
storm surge models instead of using historical water level data. As expected, in comparison 
with thousands of simulated storms, the historical record is relatively minimal and includes 
fewer extreme storm occurrences, resulting in limited water level data for hazard analysis.

For the New York City case, a result similar to that of the Boston case is observed (see 
Fig. 7b and d). The 100-year water level estimated by Nadal-Caraballo et al. (2016), which 
used historical water level data, is lower than the one derived using the ST flood hazard 
curve. Conversely, the 100-year water levels estimated using data from thousands of simu-
lated storms (FEMA 2014; Nadal-Caraballo et al. 2015) and hundreds of simulated storms 
(FEMA 2013) are higher than the ones derived using the ST flood hazard curve. The cor-
responding relative differences vary from 29 to 45%, which are much larger than the 3% 
relative difference resulting from Nadal-Caraballo et  al. (2015) for the Boston case. The 
main reason for this discrepancy is the different geographical locations. Compared with 
Boston, New York City has a lower latitude (see Table 1), which indicates that New York 
City is more easily hit by tropical cyclones (e.g., Hurricane Sandy 2012). Tropical cyclones 
tend to produce higher surge than extratropical cyclones (e.g., Blizzard of’78 1978) since 
they typically exhibit higher intensity (Nadal-Caraballo et al. 2015). Considering that most 
simulated storms developed by FEMA (2013), FEMA (2014), and Nadal-Caraballo et al. 
(2015) are tropical cyclones, the resulting water levels could have more extreme values, 

Fig. 7  Flood hazard curves developed under different sea level trend projections (stationary, extrapolating 
the estimated SLR trend, and three greenhouse gas emission scenarios estimated by Kopp et  al. (2014)) 
compared with other studies and historical flood events for Boston (left column) and New York City (right 
column) interpreted using a, b RP

1
 and c, d RP

2
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compared with the Boston case. Also, the historical record has limited water level data and 
relatively sparse extreme storm occurrences. Therefore, the 100-year water levels estimated 
by FEMA (2013), FEMA (2014), and Nadal-Caraballo et al. (2015) are much higher than 
the one derived using the ST flood hazard curve and close to the water levels from NS 
flood hazard curves.

The historical flood events that resulted in the highest water levels–Blizzard of’78 
(1978) for Boston and Hurricane Sandy (2012) for New York City–are shown in Fig. 7. For 
ease of comparison, the RPs for these two events obtained by the flood hazard curves under 
different sea level trend projections are shown in Table 3. For both the Boston and New 
York City cases, the RPs decrease as the slope of the sea level trend projections increases 
(see Fig.  6). It can be concluded that the use of this paper’s approach to NS frequency 
analysis can lead to considerably lower estimations of historical flood event RPs.

The highest water levels are outliers that affect the trend of POT water levels, the prob-
ability distribution of POT water levels, and, in turn, the flood hazard curves (see Figs. 4, 
5, and 7). If Hurricane Sandy had hit Boston at high tide, which is 5.5 h earlier than it did, 
a 3-m storm surge could have been recorded (CBS New Boston 2012), and more than 6% 
of Boston would have been underwater (Loth 2013; Friedman et  al. 2019). This would 
have resulted in a water level higher than the one caused by the Blizzard of’78 and would 
have affected the behavior of the flood hazard curve developed here. As such, if a Hur-
ricane Sandy-level event were to hit Boston at high tide, the flood hazard curves shown in 
Fig. 7 would likely be underestimated. Considering the time interval between high tide and 
storm surge can affect water level, an alternative NS frequency analysis can be performed 
focusing on storm surges, as opposite to the water levels discussed in this paper. The storm 
surges can be obtained by removing the astronomical tide heights from the historical water 
levels. The probability distribution of detrended storm surges can be modeled using the 
proposed methodology and incorporated with different tidal levels and sea level trend pro-
jections. Compared with the flood hazard curves shown in Fig. 7, the resulting flood hazard 
curves can account for the effect due to storm landfall time.

In terms of the different interpretations of RP, both RP1 and RP2 are used for develop-
ing flood hazard curves in an NS context (Olsen et al. 1998; Cooley 2013; Obeysekera and 
Salas 2014; Read and Vogel 2015). As shown in Table 3, RP2 is larger than RP1 for a given 
water level. In other words, the water level estimated using RP1 is higher than the one esti-
mated using RP2 . Similar observations are reported by Olsen et al. (1998) and Read and 
Vogel (2015). While, the RP1 value results in a more conservative water level estimation, 
it requires that the trends to be indefinitely extrapolated. The RP2 calculation, however, 
requires extrapolation only over the RP2 years, and therefore it is considered a more suit-
able choice.

3.4.2  Uncertainty of flood hazard curves

The uncertainty of flood hazard curves arises from two sources: probability distributions 
of POT water levels and sea level trend projections. As discussed above, it is reasonable 
to assume that the probability distribution of future POT water levels is constant. There-
fore, the uncertainty arising from the probability distributions of POT water levels is not 
included in this paper. Only the uncertainty arising from sea level trend projections is 
considered (see Fig.  6). The uncertainty of the flood hazard curves is quantified by the 
same statistical interval as the uncertainty of the sea level trend projections and is shown in 
Figs. 8 and 9 as shaded areas. 
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4  Conclusions

A straightforward approach for NS coastal flood frequency analysis is presented to 
address two important issues: (1) sea level trend projections that do not incorporate in 
frequency analysis and (2) the impact of NS behavior on the widely used RP concept. 
This NS coastal flood hazard analysis can be conducted in four main steps: (1) estimat-
ing SLR to detrend water level data, (2) fitting probability distributions to POT water 
levels, (3) incorporating the existing sea level trend projections in RP calculations, and 
(4) describing the NS behavior of RPs ( RP1 and RP2 ). The final result is flood hazard 
curves with uncertainty that describe the probabilistic behavior of future coastal water 
levels.

Two case studies are conducted, one for Boston and one for New York City. The results 
demonstrate that, compared with frequency analysis under ST conditions, the use of this 
NS coastal flood frequency analysis can lead to considerably lower estimates of the RPs 

Fig. 8  Flood hazard curves with uncertainty interpreted using RP
1
 under sea level trend projections (shown 

as RCP) estimated by Kopp et al. (2014) for Boston (left column) and New York City (right column) a, b 
RCP 2.6, c, d RCP 4.5, and e, f RCP 8.5
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posed by historical flood events. The comparison between the two interpretations of RPs 
shows that, for a given water level, RP2 is larger than RP1.

Notable advantages of this NS coastal flood frequency analysis include. 

(1) As opposed to extrapolating the estimated SLR trend, which is based on a purely sta-
tistical approach, sea level trend projections that model various future climate change 
scenarios with physical bases (e.g., greenhouse gas emissions scenarios in Kopp et al. 
2014) are used in the development of flood hazard curves. This can provide users with 
a better understanding of the probabilistic behavior of future coastal flood events under 
climate change.

(2) Two interpretations of RP ( RP1 and RP2 ) are evaluated in an NS context. Both RP1 and 
RP2 are well suited to the development of flood hazard curves. Normally, flood hazard 
curves do not include RPs in an NS context and, thus, are representative of only a par-

Fig. 9  Flood hazard curves with uncertainty interpreted using RP
2
 under sea level trend projections (shown 

as RCP) estimated by Kopp et al. (2014) for Boston (left column) and New York City (right column) a, b 
RCP 2.6, c, d RCP 4.5, and e, f RCP 8.5



Natural Hazards 

1 3

ticular moment in time. In contrast, engineers can use the flood hazard curves presented 
in this paper in conjunction with a planning horizon for coastal infrastructure design, 
evaluation of infrastructure performance, and community resilience assessment.

(3) This NS coastal flood frequency analysis is a user-friendly approach for engineers 
because advanced training in statistics is not needed to perform it. This approach can 
be applied to any city with sufficient historical water level data and extended to other 
hazard measures (e.g., streamflow, precipitation).

(4) The improvements derived from this NS coastal flood frequency analysis include a 
method to account for the uncertainty of probability distributions of POT water levels 
and the estimation of sea level trend projections that combine historical water levels 
with various climate change scenarios.

Appendix

Regression residual analysis

The normality of regression residuals in Eq. (3), �′ , is evaluated using Shapiro–Wilk test 
(Shapiro and Wilk 1965). The test results are shown in Table 4. For Boston and New York 
City cases, the obtained p-values are larger than 0.05. It indicates that the null hypothesis 
that �′ are normal is not rejected.

The homoscedasticity of �′ is evaluated using Breusch-Pagan test (Breusch and Pagen 
1979). The test results are shown in Table 5. For Boston and New York City cases, the 
obtained p-values are larger than 0.05. It indicates that the null hypothesis that �′ are homo-
scedastic is not rejected.

Figure 10 shows the lags of serial correlation coefficient of �′ along with 95% confi-
dence intervals. Since, most data points fall between 95% confidence intervals, it is reason-
able to assume that �′ are independent (no serial correlation).

Table 4  Shapiro–Wilk test 
(Shapiro and Wilk 1965) results 
for �′

Location p-value Diagnostic result

Boston 0.671 Normality is NOT rejected
New York City 0.396 Normality is NOT rejected

Table 5  Breusch-Pagan test 
(Breusch and Pagen 1979) results 
for �′

Location p-value Diagnostic result

Boston 0.245 Homoscedasticity is NOT rejected
New York City 0.053 Homoscedasticity is NOT rejected
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Independence of peak‑over‑threshold water levels

Figure  11 shows the lags of serial correlation coefficient of the POT water levels along 
with 95% confidence intervals. Most data points fall between 95% confidence intervals, 
which indicates that the independence condition of POT water levels is met.
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