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Abstract

Two large earthquakes (Mw="7.7 and Mw="7.6) that occurred in Turkey on February 6,
2023, affected a very extent region and caused a lot of loss of life and property. This paper
presents preliminary results from geophysical measurements (Seismic Refraction Tomog-
raphy-SRT, Multi-Channel Surface Wave Analysis-MASW and Microtremor-MT) on eight
profiles in four provinces (Kahramanmaras, Hatay, Malatya, Gaziantep) to understand the
relationship between subsurface properties and the destruction that occurs immediately
after earthquakes. By analyzing the geophysical data, the dynamic-elastic properties of
ground and the soil classification according to Vs30 were determined. It is generally under-
stood that the near-surface (<~10-15 m) units in the measurement areas are very loose,
and the deeper ones (>~ 15-20 m) have a very porous/fractured structure. Soil classes were
defined as ZD (Malatya-1, Hatay-1 and Kahramanmaras-1) and ZC (Malatya-2, Hatay-2,
Gaziantep-1,2 and Kahramanmaras-2). In addition, by evaluating the information of strong
ground motion station closest to the measurement profiles, it is observed that the PGA val-
ues versus epicenter distances are higher at stations in the zone parallel to the direction of
both faults than those in the perpendicular zones. This leads directivity effect in the propa-
gation of earthquake waves. The results indicate that one of the basic reasons for the dam-
ages is that the earthquake-ground-structure relationship has not been fully and accurately
reflected in building designs. Therefore, future researches involving more geophysical data
and PGA values will provide more information about the structural, physical and geotech-
nical properties of subsurface and definitive results.
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1 Introduction

On February 6, 2023, two major earthquakes occurred in Turkey. As reported by the
Ministry of Interior Disaster and Emergency Management Presidency (AFAD 2023), the
first one was recorded at 4.17 am (01.17 GMT) in Kahramanmaras- Pazarcik (epicenter
coordinates: 37.288° N-37.043° E, Mw="7.7, H=8.6 km) on the NE-SW trending East-
ern Anatolian Fault Zone (EAFZ), and the second one was recorded at 13.24 pm (10.24
GMT) in Kahramanmas-Ekinozii (epicenter coordinates: 38.089° N—37.239° E, Mw=17.6,
H=7.0 km) on the D-W trending Cardak Fault (CF). These earthquakes occurred with a
time difference of about 9 h and affected 11 provinces in a wide area of about 400 km
from their epicenters. More than a hundred thousand buildings have been destroyed or
severely and moderately damaged, and more than 50,000 people have lost their lives. In
the studies prepared immediately after the earthquakes, it was stated that the total length of
rupture for the first earthquake (Kahramanmaras-Pazarcik earthquake) reached ~350 km,
and the second earthquake (Kahramanmaras-Ekinozii) reached~160 km (Melgar et al.
2023; Goldberg et al. 2023). However, according to the strong ground motion records of
the two events, field observations and information received from the people of the region,
it was reported that the first earthquake was more active in Kahramanmaras and Hatay,
and the second earthquake was more active especially in Malatya (AFAD 2023). In the
same report, the peak ground acceleration (PGA) of the first earthquake was recorded as
2039 cm/s? (2.039 g) at Kahramanmaras-Pazarcik station 4614, and the PGA of the second
earthquake was recorded as 635 cm/s> (0.635 g) at Kahramanmaras-Goksun station no.
4612. In addition, in formal institutional reports prepared by AFAD (2023), Bogazi¢i Uni-
versity, Kandilli Observatory and Earthquake Research Institute (KOERI 2023), Middle
East Technical University (METU 2023) based on post-earthquake field observations, the
main reasons why the earthquake was felt severely in such a wide area are summarized as
follows: inadequate earthquake-resistant construction, lack of engineering projects in many
buildings, wrong location choices for urbanization, and finally inadequate, incomplete
and faulty earthquake-ground-structure relationship including the physical properties and
behaviors of the earth. Moreover, several investigations reported that the main reason for
the damage observed in the buildings was the inconsistency between the earthquake code
requirements and the design/construction practices of the damaged buildings (Ozkula et al.
2023; Isik 2023). Especially, Ozkula et al. (2023) also specified that the concrete strength
of the damaged buildings was quite low (i.e., 6-10 MPa).

Before starting any engineering construction, it is very important to evaluate the suit-
ability of the site for the type of construction to be carried out. In this context, knowl-
edge of the depth profiles and physical properties of the earth is necessary to understand
the causes of damage after earthquakes as well as before earthquakes. Because, the most
important causes of destruction and damage in earthquakes are the deformations that occur
during the propagation of earthquake waves through any subsurface. Therefore, the dam-
age that occurs anywhere after earthquakes due to the behavior of the ground increases
the importance of knowing the soil properties in a sensitive manner. After many devastat-
ing earthquakes, geoscientific studies to investigate the causes of the damages have shown
that the amplitudes of the earthquake waves and the dominant periods increase especially
in weakly resistant soils and that liquefaction occurs in sandy soils where the groundwa-
ter level is shallower than 20 m. Moreover, it has been observed that earthquakes cause
resonance between soil and structure, causing significant structural damage and loss of life
even at distances of more than 100 km from the earthquake location (Tezcan and Ipek
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1973; Tezcan et al. 1978; Cassaro and Romero 1987; Kaptan and Tezcan 2012; Akkaya
et al. 2015; Kegeli and Cevher 2015; Cevher and Keceli 2018). The best examples of them
are Russia-Alma Ata in 1964, Turkey-Gediz in 1970, Romania-Vrancea in 1977, Mexico
City in 1985, Istanbul Golciik in 1999, Van in 2011, Elazig-Sivrice in 2019 and Aegean
Sea-Sisam Island in 2020. In addition, it has been determined that the concave and convex
structure of the underground bedrock topography causes earthquake waves to focus on the
center of the basin and the edges of the basin, respectively, while sand lenses and dykes
cause the earthquake waves to be channeled and therefore increase the amplitude of the
waves (Keceli 2012).

In the investigation of the physical properties and mechanical behavior of the ground,
fast and noninvasive geophysical measurements have been commonly used in recent years,
as opposed to traditional (drilling and open-pit) methods which are generally invasive,
noneconomic and time consuming. Parameters obtained by conventional methods are
static, whereas geophysical parameters are dynamic. Therefore, geophysical methods are
considered the most reliable methods for seismic site characterization (Azwin et al. 2013;
Sitharam et al. 2018) and are indispensable tools for seismologists and civil engineers to
obtain sufficient information about subsurface structure and lithology (Benson and Yuhr
2002).

The depth profile of the subsurface allows the layered structure of the ground and the
bedrock topography to be imaged. Besides, the physical properties and behavior of the
ground include the determination of parameters such as Poisson’s ratio, and modulus of
shear, elasticity (Young’s) and incompressibility (bulk) and the period of the soil vibra-
tion dominant, the soil amplification, the soil liquefaction and the available bearing capac-
ity of geological units. Therefore, damages from earthquakes are directly related not only
to structural characteristics but also to local geology and dynamic behavior of the soil.
The seismic soil response at a given location is greatly influenced by the local geology
and soil properties (Moustafa et al. 2007; Martinez-Pagén et al. 2018; Molina et al. 2018).
This highlights the importance of site classification in areas of high seismicity or seismic
vulnerability.

Shallow seismic refraction (SSR) and multichannel analysis of surface waves (MASWs)
techniques are widely used to evaluate the basic design parameters of buildings and to
explain soil and rock-related problems. Seismic refraction tomography (SRT) which is an
inverse solution techniques of first arrival times from SSR data, and MASW techniques are
time and cost effective in obtaining longitudinal wave (P-wave) and shear wave (S-wave)
velocities of the subsurface materials, respectively. The SRT technique allows to obtain the
2D and 3D velocity structure of the subsurface (Rucker 2000; Leucci et al. 2006; Raghu
Kanth and Iyengar 2007; Babacan et al. 2018), faults (Buddensick et al. 2008; Khalil and
Hanafy 2016) and soil/rock parameters (Azwin et al. 2013; Kegeli 2012; Maraio et al.
2014; Sheehan et al. 2005; Vanli Senkaya et al. 2020) without damaging the natural subsur-
face state. However, SRT technique is widely used in determining the interfaces between
layers with different seismic velocities, engineering purposes, environmental projects, geo-
technical investigations, dam safety and groundwater studies (Bridle 2006; Yilmaz et al.
2006; Hodgkinson and Brown 2005).

MASW is an active source method that is generally used to estimate the variation
of S-wave velocity with depth at shallow depths (30 m), and its average for 30 m depth
is called Vis30. It also helps to determine the engineering and elastic parameters of the
soil. However, while the application of the MASW technique in the field is less time
consuming, the processing of the recorded data requires high precision (Park et al.
1999). S-wave velocity (Vs) is calculated by inverse solution of the Rayleigh wave

@ Springer



5260 Natural Hazards (2024) 120:5257-5286

dispersion curve (phase velocity versus frequency) from the MASW data. Practically,
the subsurface velocity-thickness model that gives the best fit between the measured
and calculated dispersion curves is tried to be obtained (Xia et al. 1998, 1999; Miller
et al. 1999).

Therefore, SRT and MASW techniques are used to estimate the physical proper-
ties of the soil materials and the engineering parameters required for the design of
the structures to be built on it (Keceli 2012; Kanli 2009; Yilmaz et al. 2009; Uhle-
mann et al. 2016). P- and S-wave velocities (Vp and Vs) are recognized to provide use-
ful information for assessing liquefaction potential, natural vibration frequencies and
the performance of ground motion (Bauer et al. 2001; Hunter et al. 1993; Tinsley and
Fumal 1985). Hence, significant information about the stiffness of the soil is the key
parameter for understanding the ground shaking response of soils and is highly effec-
tive for predicting soil amplification (Borcherdt 1994).

In recent years, Single Station Microtremor (MT) measurements have been utilized
to determine local soil conditions. This method, developed by Nakamura (1989) and
commonly referred to as horizontal (H)/vertical (V) spectral ratio (HVSR), is widely
used as a fast, easy and highly reliable method for determining the dominant period
and soil amplification characteristics (Lermo and Chavez-Garcia 1994). In the method,
environmental noises (with frequency f< ~ 1.0 Hz) are recorded as three components
at a single station. A series of data processing operations such as detrending, filter-
ing, windowing and smoothing are applied to the recorded data to obtain the HVSR
curve, which is calculated as the ratio of the mean of the squares of the horizontal
components to the vertical component. The frequency value (f;;) corresponding to the
maximum amplitude of the HVSR curve is determined as the soil dominant frequency
(or period = 1/f;)) value (Lachet and Bard 1994; Bard 1998). In addition, HVSR value
is also used to determine the thickness of the soil layers on the bedrock by means
of experimental relationships (Field and Jacop 1993; Birgéren et al. 1998; Ozalay-
bey et al. 2011). After Nakamura (1989), the method has been widely used by many
researchers in engineering applications to analyses local soil conditions (Gallipoli and
Mucciarelli 2009; Akkaya 2015; Akin and Sayil 2016; Pamuk et al. 2017a-b; Oztiirk
et al. 2021).

The aim of this study is to obtain a preliminary knowledge about the relationship
between the damages and physical properties of subsurface in four provinces including
Kahramanmarag, Hatay, Gaziantep, and Malatya after devastating earthquakes. Geo-
physical data were acquisited by authors on date from February 19 to 23, 2023, in the
suitable locations in those provinces. In this context, SRT, MASW and MT measure-
ments were made at eight different locations and two in each province, and then by
analyzing the all data, physical, dynamic-elastic and geotechnical parameters of the
locations were obtained. In addition, site classification based on Vs30 value was done
according to TEBC code which is adapted from NEHRP. Furthermore, the information
(epicenter distance, maximum peak ground acceleration-PGA, Vs30) for the strong
ground motion station closest to the measurement profiles was evaluated and discussed
in terms of damages and the subsurface characteristics obtained in this study. It should
be noted that the data presented and conclusions drawn by the authors are the pre-
liminary findings. Therefore, future researches involving more geophysical data and
considering more PGA values will provide more comprehensive information about the
structure, physical and geotechnical properties of subsurface.
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2 Regional geology and seismotectonic

The locations of both earthquake and seismicity of the study area are shown in Fig. 1.
Immediately after the main shocks, a large number of aftershocks are observed within a
15-day period, and this aftershock activity clearly increased the background seismicity of
the region much more than before the main shocks. The region covering four provinces
(Fig. 1), where geophysical measurements are carried out and where earthquakes are most
effective, is within the influence area of the EAFZ, one of the most effective and active
fault systems in Turkey, and is also very active in terms of current tectonics. EAFZ is
approximately 580 km long (Duman and Emre 2013), NE-trending left-lateral strike-slip
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Fig. 1 Faults, earthquake locations, affected provinces and epicenter distributions of earthquakes (M >4.0)
that occurred between February 6, 2023, and February 20, 2023 (modified from AFAD (2023)). Red stars
and black triangles indicate the epicenter locations of the two earthquakes that occurred on February 6,
2023, and measurements locations in this study, respectively
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fault system consisting of many fault segments varying 50 km to 145 km (Duman and
Emre 2013; Sahin and Oksiim 2021) that lies and between Karliova triple junction point
in Bingol and Hatay Provincies (AFAD 2023; METU 2023). The EAFZ forms a major
boundary between the Anatolian and Arabian Plates (Reilinger et al. 2006; Moreno et al.
2011), and the Arabian plate is moving toward the north-east with respect to the Anatolian
plate at approximately 11 +2 mm/year according to GPS data (Cetin et al. 2003; AFAD
2023). Historically, many large earthquakes have occurred along the EAFZ (some of them
are Antakya, 1822, Ms="7.5; Karliova, 1866, Ms=7.2; Amik Lake, 1872, Ms="7.2; Hazar,
1875, Ms=17.1; Malatya, 1893, Ms=7.1).=7.1) occurred and caused loss of life and prop-
erty (Kartal and Kadiroglu 2013; Oztiirk 2020). However, during the instrumental period,
the devastating 1971 Bingol (Ms=6.5), 1975 Diyabakir-Lice (Mw =6.6) and 2020 Elaz13-
Sivrice (Mw=6.5) earthquakes occurred.

As reported in AFAD (2020), the region commonly contains Precambrian-Paleozoic
and Mesozoic aged South-east Anatolian autochthonous or Arabian Platform sediments.
On the platform sediments consisting of schist, gneiss, marble, limestone, sandstone,
quartzite and shale rock units, there are complex units including allochthones ophiolite
units, volcanic units and deep-sea sediments settled in the post-Upper Cretaceous region.
The geomorphology of the region is shaped by the movements of faults, and it is seen that
quaternary aged wide and thick alluvial materials (sand, clay, gravel and their alternations)
with weak strength character, reaching up to 300 m, are stratified between the high moun-
tains. However, sedimentary rocks dominate as the bedrock and the groundwater level is
quite shallow (Palutoglu and Sagmaz 2017).

3 Methods and data analysis

Within the scope of this study, well-known and widely preferred geophysical methods
were used to determine the geometric structure, physical properties and dynamic behaviors
of the earth. To evaluate the basic parameters for engineering structures and to explain
the problems related to subsurface materials (rock + soil), data were acquisited with SRT,
MASW and MT methods, which are applied quickly and economically and evaluated in
line with the principles of the methods. The SSR method includes the analysis of seismo-
grams recorded in receivers placed in an order on the earth’s surface, during the propaga-
tion of seismic energy sent into the ground from an artificial source, of directly incident
waves and critically refracted waves at the interfaces of lithological units with different
velocities. The first arrival times read from these seismograms are evaluated with the delay
time (minus-plus and/or generalized reciprocal time method-GRM) and SRT techniques,
and the seismic velocities of the lithological layers forming the ground structure (P-wave
velocity, Vp and S-wave velocity, Vs), thickness and 2D velocity model are obtained. The
SRT technique has a strong ability to characterize lateral and vertical velocity gradients
in the study area. Moreover, it is ideal in environments with extreme topography or com-
plex structures near the surface and where the operator has little or no prior knowledge of
the subsurface structure (Zhu and McMechan 1989). Therefore, in any site characteriza-
tion, the interpretation of SSR data with the SRT technique is highly effective compared
to delay time techniques (Redpath 1973; Azwin et al. 2013). Therefore, SRT sections are
widely used in determining the interfaces between layers, calculating the dynamic-elastic
parameters of the ground, engineering and environmental projects, geotechnical research,

@ Springer



Natural Hazards (2024) 120:5257-5286 5263

determining the locations of covered faults, surveying dam sites and investigating the
groundwater aquifer (Bridle 2006; Yilmaz et al. 2006; Lankston 1989).

The most important cause of damage occurring during an earthquake is the dynamic
behavior of the ground during the passage of shear and surface waves. Shear stress, the
basic parameter that determines the behavior of the ground under dynamic loads, is calcu-
lated from the shear wave velocity (Vs); therefore, this velocity value is extremely vital in
the static project design of the structure. The most commonly and safely used method for
determining Vs is MASW (Xia et al 1999; Park et al. 1999). In this method, the near-sur-
face shear wave velocity structure is obtained as a function of depth (1D-Vs) by inverting
the dispersion curve (change of phase velocity against frequency) of surface waves (Ray-
leigh and Love) recorded using an active source. Three basic steps of the method include
data acquisited, data processing and inversion. Rayleigh type surface waves are analyzed
when vertical component receivers are used in data acquisited. However, for Love type sur-
face waves, horizontal component receivers are used. According to the 1D-Vs change, geo-
technical characterization of the place, including the density-stiffness evaluation, soil-rock
distinction and soil class, is performed. In particular, the Vs30 value is the key parameter
used all over the world and taken into account in soil classification tables (NEHRP 2003;
CEN 2005; TEBC 2018).

It is based on the principle of recording environmental vibrations (amplitudes varying
between 0.1 and 1.0 microns and periods varying between 0.05 and 2 s) for a certain period
of time (mostly>30 min) in three components (East—West, North—South and Vertical).
Since the single station MT method offers practical application opportunities, it has found
widespread application in earthquake engineering applications and microzonation studies
in recent years. The method is also known as the Nakamura (1989) HVSR method and is
used to determine the ground dominant vibration period and ground amplification charac-
teristics. In particular, it is used to obtain the resonance frequency, which is an important
cause of collapse in earthquakes, and to estimate the bedrock depth using empirical formu-
las between frequency and thickness (Birgoren et al. 2009; Zor et al. 2010; Ozalaybey et al.
2011; Tun et al. 2016; Molnar et al. 2018; Buyuksarac et al. 2021).

3.1 Data acquisition

In this study, SSR, MASW and MT (approximately at the midpoint of the profiles) data
were acquisited in eight profiles, two different profiles in each of the four provinces where
the earthquake caused heavy damage. Six of the profiles were determined in places that
exemplify the subsurface structure where there are buildings that were completely demol-
ished or partly destroyed and damaged to different degrees. In these areas, since the streets
and avenues are asphalt and concrete paved surfaces, geophones are placed on the ground
with holder boxes. During data acquisited, especially, MT measurements were nega-
tively affected by noise from working machinery, human mobility and traffic due to wreck
removal activities in the surrounding area. One of the other two profiles is located at the
place where the large landslide (splitting/opening) occurred in the olive grove in Tepehan
Village of Hatay Province Altinozii District after the Pazarcik earthquake, and the other is
on the surface trace of the fault line in Tevekkeli Village of Kahramanmarag Dulkadiroglu
Municipality. Some images from the data acquisited locations are presented in Fig. 2.

A 24-channel PASI 16S24-U model seismograph and a 4.5 Hz vertical component
geophone, a 10 kg hammer and hardened plastic (chestamite) table with 20 cm diameter
and 5 cm thick were used to acquisited the SR and MASW data. MT data were recorded
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Fig.2 Images from measurement locations: (a-1,2) Malayta-Yesilyurt, (b-1,2) Hatay-Defne and Tepehan,
(c-1,2) Gaziantep-Ibrahimli and Nurdag: and (d-1,2) Kahramanmaras-Tevekkeli and City Center. The slip
of EAF in this place was observed as 4 m

for 30—45 min with a three component CMG 6-TD Giiralp seismometer. Images of the
equipment and connections used in seismic and microtremor data acquisition at the time
of measurement are shown in Fig. 3.

The field source-receiver layouts of SR and MASW data are given in Fig. 4, and the
data acquisition parameters of all measurements are given in Tables 1 and 2. To gather
the MASW data, the end-on (S,) and end-off (S,) shots in the SR profile were done, and
only the recording time and sampling time were updated.

Fig.3 Images of the measurement equipment during the field operation: a and b SR and MASW and ¢ MT
equipment and connection cables
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S, dx=2m s, S, S, S5 S,

Fig.4 The layout of the source-receivers for SR and MASW data acquisition: S}, Xg;,  and Xj;,  show
source points, source and geophone distance. dx and MT show geophone interval and location of the MT
measurement, respectively

Table 1 The data recorder parameters for SR, MASW and MT measurements

Method Record time, 7(s) Sampling time, Shots in Fig. 4, S, Vertical stack, N
dr (ms) (k=1,2,...7) and MT points

SR 1.0 0.25 All 3

MASW 2.0 1.0 S, and S, 3

MT 1800 10 S,

3.2 Data processing

All data obtained from each measurement method were evaluated according to the theoreti-
cal principles of the methods used. The 2D P-wave velocity model and geometry (layered
structure, discontinuities and bedrock depth) of the subsurface were obtained from tomo-
graphic inversion of the first arrival times peaked from SSR data and will be referred to as
seismic refraction tomography (SRT). One-dimensional shear wave velocity (1D-Vs)-depth
profile was obtained from MASW data, and Vs30 value was calculated for soil classifica-
tion. By applying a series of data processing to the three component MT data at each meas-
urement point, the soil dominant vibration frequency (or period) and H/V ratio (HVSR) of
the study area were determined. Analysis of SSR and MASW data was carried out with
SeisImager/SW (2022), and analysis of MT data was implemented by Geopsy (2020)
software.

An evaluation summary of SSR data is shown in Fig. 5 for an example data (Gaziantep-
Nurdagi data) recorded within the scope of this study. First arrival times (direct and
refracted waves) from each shot data are peaked (first arrivals for all shots are shown with
green and red lines on the middle shot data in Fig. 5a) and plotted against receiver dis-
tances (blue lines in Fig. 5b). For an initial model, a 2D P-wave velocity model is obtained
by iterative tomographic inversion (Fig. 5c). The solution starts with a homogeneous initial
velocity model laterally; the solution is iterated until the root mean square (RMS) error
between the measured time values and the calculated time values (black lines in Fig. 5b)
is minimized. In our inversion analysis, generally, the RMS errors were below 5% within
the 10 iterations. While the velocity-depth model (Fig. 5c¢) obtained when the minimum
error is reached is interpreted physically according to lateral and vertical velocity changes,
if there is drilling information about the profile, geophysical information can be interpreted
geologically. However, since there is no drilling information in this profile, the interpreta-
tion was physically made only. Accordingly, the 2B-Vp section in Fig. 5c is interpreted
as three layers including loose soils at first layer (Z= ~0-5 m, 300-1000 m/s), changing
from medium tight to very tight at the second layer (Z= ~5-17 m, 1000-1800 m/s) and
changing from soft to hard rock at the third layer (Z>17 m, Vp> 1800 m/s). However, a
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Fig.5 The evaluation of the Gaziantep-Nurdag:i (Gaziantep-2 in Table 4) SSR data: a picking on first
arrival times on shot data, b the graph of the measured and calculated first arrival times and ¢ 2D-Vp sec-
tion obtained by SRT inversion and its interpretation

covered normal fault anomaly was detected in the X=5-20 m distance range of the sec-
tion. In addition, it is seen that the bedrock depth decreases from Z= ~20 m at X=0 m to
Z=~15m at X=62 m, that is, it becomes shallower.

The evaluation steps of MASW data are shown in Fig. 6 for the measurement profile
in the Central Tevekkeli village of Kahramanmaras Province. The steps include firstly
the acquisition of the data from the field (Fig. 6a), imaging through frequency—phase
velocity (f—c) transformation (Fig. 6b) and secondly peaking the fundamental mode dis-
persion curve (phase velocity values versus frequency) in the widest frequency range
(Fig. 6¢). Finally, Fig. 6d indicates the 1D-Vs depth profile by inverting this dispersion
curve. The phase shift technique (Park et al. 1998) was used for the f—c transforma-
tion of the time record in Fig. 6a, and the damped least squares algorithm was used for
the inversion process, with 20 iterations. Thus, by taking advantage of the change of
the 1B-Vs depth profile up to a depth of 30 m, the Vs30 value, which is a very impor-
tant and necessary parameter in the calculation of the dynamic-elastic and engineering
parameters of the ground, geotechnical designs and earthquake hazard assessment stud-
ies, was calculated with the following formula.

V= 30

i=1 v:l_

where, h; and V; present, respectively, thickness and shear wave velocity of the ith layer for
30 m depth, and N is the number of layers.

By analyzing the MT data, the steps of determining the soil dominant vibration fre-
quency f, (or Ty=1/f,) and H/V ratio are presented in Fig. 7 for three component (Ver-
tical-V, North—South-NS and East-West-EW) data with 30 min recorded in Malatya-2
location. The data were processed with the open and freely available "Geopsy" program.
In data processing, trending and a band-pass filter with a cutoff frequency of 0.5-20 Hz
were applied to the raw data, respectively. Then, the spectra of all three components
(Fig. 7b) were calculated for 25-s windows (Fig. 7a) (each colored line represents the
spectrum of one window) in accordance with the SESAME criteria. These spectra were
proportioned according to Nakamura’s technique, and the H/V curve was obtained
(Fig. 7¢). By evaluating the H/V curve together with the spectra of each component (red
frame area in b), the soil dominant frequency value (f)) on the H/V curve was deter-
mined (vertical gray bars in c¢). The black thick line in Fig. 7c shows the average of the
spectra from each window, and the dashed lines show the standard deviation limits.
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MASW data, b f-c image, ¢ Rayleigh wave dispersion curve and d 1D-Vs depth profile produced from the
inversion of the dispersion curve. The Vis30 is calculated as 303 m/s, and this value represents ZD soil class
according to TEBC

4 Results and discussions
4.1 Evaluation and interpretation of profiles

Since there is no previously reported borehole information for measurement locations in
this study, lithological soil and rock identification could not be done. In contrast, S-wave
velocity information was attributed according to TEBC (2018) and Karsh et al. (2021).
SRT sections and 1D-Vs depth profiles are given in Figs. 8 and 9. By correlating 2D-Vp
velocity sections and 1D-Vs depth profiles, approximate velocity interfaces were deter-
mined, generally three layer subsurface models were created and the average P and S-wave
velocities of each layer were obtained. However, using these seismic velocities, elastic
(density, the modulus of Young’s, Shear and Bulk) and geotechnical (soil classification in
Table 2 according to Vs30 value, available bearing capacity, soil dominant vibration peri-
ods and amplification) parameters for each layer were calculated according to the formulas
given in Table 3 and listed in Table 4. The soil dominant vibration periods were also cal-
culated based on the Vs30 value empirically for comparison with those obtained from MT
data.
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Even though they are located quite far from each other, SRT sections clearly present
similar subsurface velocity models. In general, loose and less stiff soil units from the sur-
face to a depth of ~7 m (Vp=0.3-1.0 km/s, Vs=0.16-0.3 km/s) and below that~7-18 m
thick (Vp=1.0-1.8 km/s, Vs=0.3-0.6 km/s) medium stiff-stiffer soil units are common.
In the deeper part, the geological units with high weathering levels or soft rocks with
Vp>1.8 km/s, Vs>0.6 km/s are placed. According to Vs30 values, the soils in the study
areas are classified as ZD (Malatya-1, Hatay-1 and KMaras-1) meaning the moderate stiff
and ZC (Malatya-2, Hatay-2, Gaziantep-1, 2 and KMaras-2) meaning fractured weak rock.

The ratio of P- and S-wave velocities, Vp/Vs, is a key parameter that provides infor-
mation about the physical properties, lithological changes, mineral compositions, clay
contents, grain sizes, fracture densities, porosity, fluid saturations and types of soil and
rocks (Tatham 1982; Salem 2000; Uyanik 2011), and recently, it has been widely used for
the characterization of soil and rocks (Keceli 2012). According to Telford et al. (1976),
Poisson’s ratio is calculated based on the Vp/Vs ratio, and these two parameters are lin-
early related. Therefore, while the Poisson ratio approaches zero for very hard and solid
rocks, it approaches 0.5 for very loose soils, highly weathered sediments and fluids (friable
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sediments or fluids). For moderate stiff materials, it is generally around ~0.25. The Vp/Vs
and Poisson values vary between 2.19-4.43 and 0.37-0.47, respectively. However, weak
materials and high porosity rocks have high Poisson’s ratio and vice-versa. Accordingly,
for the subsurface models obtained in all profiles, the first layer corresponds to weakly
resistant, the second layer to moderately resistant and the third layer to resistant but pos-
sibly porous rock units.

The densities of lithological units were calculated with the empirical formula proposed
by Uyanik and Catlioglu (2015, 2019), which allows the combined use of P- and S-wave
velocities and better represents low-velocity subsurface units. Thus, density values vary
between 1.72 and 2.20 gr/cm?, indicating low-density subsurface units in the~0-18 m
depth range and partially dense sedimentary rocks at deeper depths.

In order to understand the level of resistance (endurance) of the geological units in
the study areas against earthquake dynamic forces, thanks to seismic velocities, the elas-
tic modulus including the shear (a measure of the solidity of the material), elasticity (or
Young’s, a measure of the hardness and strength of the material) and bulk (or incompress-
ibility, a measure of compression under forces) modules is calculated and presented in
Table 4.

When the obtained values are evaluated according to Bowles (1996), the geologi-
cal units can be defined in three groups as: (1) loose (x <600 kg/cmz, E <2000 kg/cm2),
(2) moderately stiff and medium solid (600<u <3000 kg/cm?, 2000<E<10,000 kg/
cm?) and (3) strong to stronger (x>3000 kg/cmz, E>10,000 kg/cmz). However, accord-
ing to ASTM (1978), the incompressibility levels of these units are can be defined
as low (400<K<10,000 kg/cmz), medium (10,000 < K <40,000 kg/cmz) and high
(40,000 < K < 100,000 kg/cm?).

Allowable bearing capacity, Qa, is the load that the ground can carry without being
exposed to any excessive deformation (collapse, settlement, sprain, shear fracture, shear,
etc.) (Tezcan et al. 2009; Keceli 2012; Uyanik and Gordesli 2013). The allowable bearing
capacity values calculated for this study are lower than 10 kg/cm? (~1 MPa). Values of
Q, less than 4.0 kg/cm? generally correspond to layers containing slightly to moderately
compacted near-surface geological units, while values of Q, between 4.0 and 8.0 kg/cm?
represent layers containing more compacted soil units and mostly highly weathered rocks.

Soil amplification values calculated according to Midorikawa (1987) vary between
1.5 and 2.30. On the other hand, the ground dominant periods (T, and MT,) calculated
from Vs30 and directly determined by MT (HVSR) are generally consistent, except for
Malatya-1 and 2 profiles, and vary between 0.12 and 0.40 s. When evaluated according to
Ansal et al. (2001, 2004), these values indicate that the soil amplification and soil dominant
vibration periods in the study areas are at low-medium levels. Moreover, for the soil domi-
nant vibration period values according to Kanai and Tanaka (1961), it is defined as “rock-
stiff sandy gravel units” and/or “alluvium consisting of sandy-gravelly stiff clay” and is
in harmony with soil classifications based on velocities obtained from seismic profiles. In
addition, the periods suggest that especially collapsed/seriously damaged 4-5 floor build-
ings are under the effect of resonance.

4.2 Possible relations between ground properties and damage observations

The findings of the present study provide more important clues that the damage levels that
occurred after the earthquake and were directly observed in the field by the authors of this
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Fig.9 2D-Vp velocity sections and 1D-Vs depth profiles: a, b Malatya-2, ¢, d Hatay-2, e, f Gaziantep-2 p
and g, h Kahramanmaras-1. The dotted black curve in b, d, f, and h indicates Rayleigh wave phase velocity
variation. In g, considering the direction perpendicular to the plane of the screen or paper, the cross sign
(®) and the dotted circle (O) indicate a block moving away and a block approaching, respectively

paper may be related to subsurface characteristics and behavior. Observations and relation-
ships are summarized in Table 5.

Table 6 presents some information about strong ground motion (acceleration) stations
located close to the measurement profiles. Information about the stations was obtained
from AFAD. The selected stations are the closest stations that have both acceleration
records for both earthquakes (M,,=7.7 and M,,=7.6) that occurred on February 6, 2023,
and Vs30 values determined for the installation of the stations. Although the distances
between measurement profiles and stations are less than 30 km, except for Malatya-1 and
2 profiles, other stations are very close to our measurement profiles. According to the epi-
center distances in Table 6, the closest station to the epicenter locations of both the first and
second earthquakes is station no. 4625 (R, =28.40 km and R,=65.22 km), while the far-
thest station is station no. 3136 (R, =148.38 km and R,=231.36 km). When the Vs30 val-
ues obtained previously for the installation of earthquake recording stations and the Vs30
values determined in this study are compared, except for the Vs30 value of station no. 4406
(Vs30=815 m/s), all the other values are in compliance with the Vs30 values obtained in
this study, and inherently, it is seen that they are in the same soil class. The two closest
measurement profiles (Malatya-1 and 2) to station no. 4406 are at a distance of ~28.0 km,
and normally, the geological units within this distance may differ. Therefore, the Vs30
value (Vs30=815 m/s) at this station shows ZC soil class which means less weathered
or moderate hard rock according to Table 2. However, the distance between Gaziantep-1
measurement profile location and station no. 2703 is~3.5 km, and while the Vs30 value
of the station is 758 m/s, the Vs30 value obtained in this study is 578 m/s. Normally, both
values represent ZC soil class (360-760 m/s) as defined in Table 2. However, the value of
Vs30="758 m/s is very close to the upper limit of the ZC soil class and therefore indicates
a stiffer soil or less weathered rock than the measurement profile location (Vs30=578 m/s).
Thus, this difference of ~ 180 m/s between both Vs30 values can be considered as a result
of variability in local soil properties (degree of weathering, compactness, porosity, subsur-
face topography, etc.) at very close distances.

Figure 10a shows the distribution of maximum PGA values listed in Table 6 for the first and
second earthquakes. The difference between the magnitudes of earthquakes is as AM,,=0.1.
The energies of both events are calculated by using the formula, logE=5.24+1.44M,,
(URL-1  https://www.usgs.gov/programs/earthquake-hazards/earthquake-magnitude-energy-
release-and-shaking-intensity (Accessed on November 17, 2023), Mw: moment magni-
tude). When the energies of both earthquakes are proportioned (E, for M,,=7.7 and E, for
M, ,=7.6), it is seen that E,/E;~1.40. According to this difference, although the energy of
the first earthquake was approximately 1.40 by times more than the second earthquake, it can
be said that they produced similar amounts of energy. In this context, in the epicenter dis-
tance-PGA distribution in Fig. 10a, the accelerations of the first earthquake were less than
PGA =250 cm/s? at stations no. 4406 and 2703, but larger at other stations, and it was quite
high PGA =638.32 cm/s? at station no. 3124 which is 140.11 km away. On the other hand,
the highest acceleration value of the second earthquake was observed at station no.4406
(467.20 cr/s?), while it was less than 100 cm/s? at other stations. However, while acceleration
values in general tend to decrease significantly with distance, it is seen that the acceleration
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Table 3 Definition of elastic and geotechnical parameters used in this study

Parameter Equation References
Density (p) p=0.7(V,V)°%® Uyanik and
Catlioglu (2015),
Uyanik (2019)
Poisson ratio (o) _osv-wvt Telford et al.
- (Vﬁ*V?) (1976), Geldart
and Sheriff
(2004)
Elastisite or Young’s modulus (E) E= 2pVS2(1 +0)
Sh igidit dulus — 2 _ _E_
ear or rigidity modulus (x) u=pViorpu T
Bulk modulus (K) K=E/3(1-20)
Allowable bearing capacity (g,) Qa=p*Vs/F (F: safety factor is used as  Tezcan et al. (2009)
VplVs ratio in this study)
Soil dominant vibration period (7}) Ty=4%H/Vsy, Kegeli (2012)
Soil amplification (A) A= 68*VS30_0‘6 Midorikawa (1987)

values at stations 3124 and 3136 increased abnormally for the first earthquake. Nevertheless,
it is understood that the epicenter distance-PGA change of the stations listed in Table 6 does
not show a linear behavior. For example, station no. 3124 is 140.11 km away from the first
earthquake location, PGA =638.32 cm/s?, and 226.42 km away from the second earthquake
location, PGA=32.18 cm/s%. Similarly, station 3136 is 148.38 km away from the first earth-
quake and 236.36 km away from the second earthquake, and the peak acceleration values
are PGA=534.22 cm/s> and PGA=22.79 cm/s’, respectively. Although there is a distance
of ~88 km between the epicenter distances of both earthquakes for station no. 3136, the dra-
matic decrease in PGA values of the second earthquake at the same stations is quite strik-
ing. Another interesting observation in Fig. 10a is that, although they are approximately at the
same distance, the PGA values at stations 2703-8002-4625 and 4625-4406 are quite different
from each other. It is clear that these differences cannot be explained only by epicenter dis-
tances and shallow subsurface characteristics of the station locations.

Considering the locations of the acceleration recording stations in Fig. 10b and the direc-
tions of the faults (or rupture direction) where the earthquakes occurred, it can be said that the
direction of the fault and the PGA values are related. Namely, while station no. 2703 is in the
zone approximately perpendicular to the direction of movement of NF+PF and EAF (first
earthquake), stations no. 8002 and 4625 are located in the zone almost in the direction of the
rupture direction. Similarly, while station 4425 is in the zone perpendicular to SF+CF (sec-
ond earthquake), station 4406 is seen to be located in the same zone which is approximately
parallel to the direction of these faults. Thus, these observations support that the magnitude of
the accelerations and therefore the damages caused by earthquakes may be related not only to
subsurface properties but also to the directivity effect in the propagation of earthquake waves
(especially destructive surface waves).
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Fig. 10 The PGA distribution and location of the stations: a variation of epicentral distance-PGA for near-
est station locations in Table 6 and b locations of the station and profile according to fault directions. Faults
are digitized from Melgar et al. (2023) in order to present their general directions. EAF: East Anatolian
Fault, CF+ SF: Cardak and Siirgii Faults and NF +PF: Nurdag: and Pazarcik Faults. M, G, H and K let-
ters present profile locations in Malatya, Gaziantep, Hatay and Kahramanmaras Provinces, respectively. The
numbers of the ground motion stations closest to the survey profiles are indicated

5 Conclusions

The aim of this study was to investigate the soil character after two large earthquakes
that occurred on February 6, 2023, and affected 11 provinces in the vicinity. For this
reason, SRT, MASW and Microtremor measurements were carried out in eight different
profiles in four provinces (Kahramanmaras, Hatay, Malatya and Gaziantep) where the
damage and loss of life after earthquakes were intense, and the first results obtained are
presented. Also, the results obtained were correlated with the station information (epi-
central distance, maximum PGA, Vs30) closest to the measurement profiles. SRT tech-
nique provided P-wave 2D velocity-depth models, MASW technique provided 1D-Vs
depth profiles and MT (HVSR) technique provided soil dominant period values. Using
the velocity information, physical and geotechnical parameters of the earth materials
were calculated, and soil classification was made. All but two of the measurements
(Hatay-2 (Tepehan) and Kahramanmarag-1 (Tevekkeli)) were made in settlements.
However, these two points are located very close to settlements (such as villages).
According to the soil classification using Vs30 values, ZD (Malatya-1, Hatay-1 and
Kahramanmaras-1) and ZC (Malatya-2, Hatay-2, Gaziantep-1,2 and Kahramanmarag-2)
soil classes were determined. In all profiles, the subsurface model was determined as
three-layered using SRT sections and evaluated together with the 1B-Vs depth pro-
files, and the P- and S-wave velocities of each layer were assigned as average. In gen-
eral, the high velocity ratios (Vp/Vs>2.5) and Poisson’s ratios (¢ >0.35) explain that
the near-surface geological units are very loose and the deeper rocks are very porous/
fracture-cracked. The variation of dynamic-elastic parameters indicates weakly resist-
ant geological units to depths of ~ 15-20 m in Malatya-1 (Yesilyurt), Hatay (Defne) and

@ Springer
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Kahramanmaras (Tevekkeli), and moderately hard geological units to depths of ~10 m
in Malatya-2 (Yesilyurt), Gaziantep (ibrahimli and Nurdagi), Hatay (Defne) and
Kahramanmaras (City center). However, in all profiles, the soil units close to the surface
have very low available bearing capacities (less than 4 kg/cm? or 0.4 MPa) and moder-
ate (between 4—8 kg/cm? or 0.4-0.8 MPa) toward deeper depths. Although there is no
drilling data to define the lithology, all geophysical parameters show that the deep layers
(usually Z>15 m) in the studied locations consist of porous, weathered sedimentary
rocks, while above these units, mostly very loose soil materials (clay, silt, sand, gravel
and their mixture) are present. However, regardless of the soil class, according to the
station information close to the measurement profile, it has been observed that stations
at close epicentral distances but within the zone parallel to the direction of movement
of the faults have higher acceleration values than those in perpendicular zones. These
observations indicate that there is a directivity effect in the propagation of earthquake
waves.

Finally, all the findings of this study reinforce the view that the damages caused by
earthquake-soil structure relationship was not fully and accurately reflected in the building
designs, beyond the poor quality of construction materials, subsequent interventions to the
buildings and structural defects. In order to improve the results obtained in this study, both
the measurement profile and the number of stations to be considered should be increased,
and geophysical measurement studies should be carried out to image deeper geological
structures.
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