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Abstract
In the long run, ongoing climate change is expected to alter fuel production as well as the 
frequency and severity of fire weather, which may result in an unprecedented frequency 
of extreme fire events. In this paper we propose a simplified and spatially explicit method 
to assess the probability of experiencing large fires, based on topography (slope length) 
as well as extent and aggregation of the forested area (fuel connectivity). We considered 
21 homogeneous pyroregions covering entire Switzerland as a study case and computed 
the length of the upslope paths within the forested areas, simulating ignition points on a 
systematic 100 × 100 m square grid. We then compared the obtained path lengths for each 
pyroregion with selected historical large forest fire statistics (e.g., mean area of the largest 
5% of fires, maximum burnt area per fire) collected over the course of the last 30 years. 
This resulted in rather high R2 values, ranging from 0.558 to 0.651. The proposed approach 
was shown to allow for an easy identification and geo-localization of potential hotspots in 
terms of the likelihood for large fires to occur in mountainous regions, which is a prereq-
uisite for a targeted planning of fire management measures aimed at preventing large fires 
and related post-fire gravitative natural hazards.
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1 Introduction

On a global scale, the observed wildfire regimes largely depend on the prevalent climate 
and weather conditions, which in essence determine the requirements for a fire event to 
occur (i.e., vegetation and related fuel buildup, fire-conducive environmental condi-
tions), sometimes also providing the cause of ignition through the presence of lightning 
(e.g., Krawchuk et al. 2009; Pausas and Ribeiro 2013). Human activity (land-use, ignition 
sources, and suppression activity) and the fire prevalence itself (feedback effects on the 
vegetation and post-fire fuel buildup dynamics) further modulate the resulting historical 
fire regimes (Bond and Keely 2005; Archibald et al. 2013; Kelley et al. 2019).

In the long run, however, ongoing climate change is expected to alter the fuel produc-
tion as well as the frequency and severity of fire weather (Jones et al. 2022). For instance, 
in some areas such as the Mediterranean and the Amazon, a human-induced increase of the 
fire weather indices’ values beyond the pre-industrial levels is already visible (Abatzoglou 
et al. 2019). In systems where biomass productivity is high and the fire activity is moisture 
limited, this may lead to a partial shift from a fire-resistant to a fire-sensitive landscape 
(e.g., McCarty et  al. 2020) or to a significant increase in fire activity (e.g., Hanes et  al. 
2019) as postulated by the intermediate fire–productivity hypothesis (Pausas and Bradstock 
2007). In these systems, severe fire weather combined with abundant fuel may in the future 
result in an unprecedented frequency of extreme fire events sensu Tedim et  al. (2020), 
which completely overwhelm the firefighting resources and represent significant threats 
to people and infrastructure. Regarding these dynamics, recent evidence suggests that in 
systems without fuel limitations, bottom-up variables such as the fuel characteristics (i.e., 
load, connectivity, and diversity) and topography largely influence the difficulty of control-
ling the spreading fire in severe fire weather conditions, fundamentally influencing the final 
fire size (e.g., DeAngelis et al. 2015; Fernandes et al. 2016; Francis et al. 2023). Accord-
ingly, even stationary fire–climate relationships that have remained largely unchanged over 
the past centuries may be altered, resulting in non-stationary dynamics with feedback loops 
which again involve vegetation, fuel load, and fuel connectivity, therefore potentially lead-
ing to an unprecedented relevance of these effects in determining future average fire sizes 
and burnt area on a regional scale (e.g., Williams and Abatzoglou 2016; Kitzberger et al. 
2017; Littell 2018).

Despite marked differences in regional fire regimes (e.g., Conedera et al. 2018; Galizia 
et al. 2022), Central Europe—and the Alps in particular—are among the regions in which 
climate change is likely to exacerbate the frequency and magnitude of fires in the future 
(Wastl et  al. 2012, 2013; Berčák et  al. 2023). For instance, an increased frequency has 
already been reported for lightning-induced fires, especially during summer drought years 
(Conedera et al. 2006), although the burnt area has usually nevertheless remained of lim-
ited extent for the time being (e.g., Müller et al. 2013). Anthropogenic fire activity, on the 
other hand, has been mitigated by other factors such as land-use change (fuel type and con-
nectivity across the landscape), legislation (ban of fire activities in the open), and fire sup-
pression (e.g., Zumbrunnen et al. 2012; Pezzatti et al. 2013). As a general rule of thumb, 
human-induced fire activity has increased in the last postwar period due to the abandon-
ment of the marginal rural areas, which subsequently underwent a transition to forest, 
intermittently becoming highly flammable fallow land (e.g., Gellrich et al. 2007). However, 
most fires remained rather small in size thanks to a significant improvement in firefighting 
strategies and the possibility of imposing fire bans in case of severe fire weather conditions 
(e.g., Pezzatti et al. 2013; Müller et al. 2020; Bardsley et al. 2021). Nevertheless, in recent 
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times, intense fires of relatively large size have increased in frequency (Valese et al. 2014; 
Müller et al. 2020), raising concerns regarding the subsequent post-fire risks related to nat-
ural hazards such as increased surface runoff, erosion, rockfall, debris flows, and shallow 
landslides, and the threats to humans and infrastructures which these entail (e.g., Conedera 
et al. 2003; Vergani et al. 2017; Melzner et al. 2019).

In the future, the higher frequency of severe fire weather conditions combined with the 
increasing flammability of the landscape may reduce the effectiveness of the traditional fire 
management and suppression activities, further increasing the likelihood of large fires to 
occur. Therefore, forest and fire managers are expected to be prepared for such scenarios, 
despite the fact that the complexity of the interactions between the evolving climate, veg-
etation, and related fuel load, as well as possible management interventions will make a 
spatially explicit forecasting of such fire regimes highly non-trivial (e.g., Schoennagel et al. 
2017; Jones et al. 2022).

The aim of this paper is to present a simplified and spatially explicit method to test 
the hypothesis that the likelihood of a region to experience large fires will to a large part 
depend on topography (i.e., the slope, which modulates the speed at which the fire spreads 
and induces an upslope convective heat flux) and fuel connectivity (i.e., the extent and 
aggregation of vegetation cover with significant fuel buildup). We in particular assume that 
future fire weather will be severe enough to sufficiently desiccate any type of fuel, making 
it highly flammable and prone to the contagious upslope evolution of the fire front.

For this purpose, we chose Switzerland as a case study which presents a remarkable 
variety of geographic environments (from the Plateau to the Alps) and related fire regimes. 
Based on fire statistics, topography, and dominant vegetation, we first divided the coun-
try into homogeneous subregions (pyroregions) for which we then calculated possible fire 
spread trajectories along the paths of steepest ascent. To validate the approach, the com-
puted lengths of the fire paths contained within areas covered by forest-like vegetation (i.e., 
forest, open forest stands, and shrubland) were then compared to the observed historical 
fire activity within each pyroregion, such as the largest forest fires which occurred in the 
last 30 years (i.e., 1990–2022).

2  Material and methods

2.1  Study area

The study area is the entirety of Switzerland, which extends over 41,285  km2 largely 
across the European Alps. The climate is strongly affected by the Alpine chain which 
acts as a natural divide for weather systems, with the northern slope mostly influenced 
by air masses from the Atlantic Ocean and the southern slope by those from the Mediter-
ranean Sea. The average temperature in the lowlands ranges from 8 to 12 °C and decreases 
with altitude. In the summer months (JJA), long and intense heatwaves may occur, with 
maximum daily temperatures above 30 °C. Precipitation is usually higher in the summer 
than in the winter and reaches yearly amounts ranging from 800 to more than 2000 mm 
depending on the region and altitude. The highest amount of precipitation occurs in the 
Alps, in the Alpine foothills (in particular on the southern slopes), and in the western Jura. 
The driest region lies in the central part of the canton of Valais. Prolonged meteorological 
droughts interrupted by heavy thunderstorms may occur in summer in the whole country, 
whereas prolonged winter/spring dry periods take place mostly south of the Alps, where 
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the desiccating effect of the drought may be additionally exacerbated by the dry katabatic 
foehn wind (Mofidi et al. 2015; MeteoSwiss 2023).

The forested area encompasses about a third of the territory (i.e., 13,271  km2, 32.1%) 
and ranges from 200 to 2400 m asl depending on the region and the aspect (Abegg et al. 
2023). Although strongly shaped by management, dominant forest vegetation is organized 
along an altitudinal gradient starting with mixed broad-leaved stands in the lowlands, fol-
lowed by forests dominated by beech and silver fir at mid elevation, and coniferous forests 
(mainly spruce followed by European larch) at higher elevation (Conedera et al. 2017).

Taking into account this climatological and ecological heterogeneity, Gonseth et  al. 
(2001) proposed a subdivision of Switzerland into five main biogeographic regions (Fig. 1).

Natural disturbances of the Swiss forests are mainly caused by wind (59%) and insects 
(16%) (which do sometimes also interact), followed by snow and avalanches (15%). At pre-
sent, forest fires are responsible for a mere 1.2% of the disturbed forest area, a rate which 
is similar to drought-induced disturbances (1.6%), but less than the gaps caused by mass 
movements (5.7%) (Scherrer et al. 2022). In the last three decades (1990–2022), the aver-
age annual number of forest fires registered in Switzerland was ca. 1502, of which 12% 
are of natural origin (lightning-induced fires in the summer period). However, marked dif-
ferences among bioregions can be observed (Table 1). The average total burnt area is ca. 
260 ha per year, most of which (46%) is concentrated on the southern slope of the Alps, 
where fast-spreading winter surface fires greatly contribute to the total burnt area. As a 
consequence, overall average fire size keeps quite small (i.e., 2.9 ha), although again with 
significant regional differences as a function of prevalent climatological, vegetative, and 
topographic conditions (Table 1; Pezzatti et al. 2009). Based on this heterogeneity of pyro-
logical conditions and resulting fire regimes, Pezzatti et al. (2016) proposed dividing the 

Fig. 1  Map of Switzerland showing the extent of the five main biogeographic regions (JUR = Jura; 
PLA = Plateau; NOA = Northern Alps; WCA, ECA = Western and Eastern Central Alps; SOA = Southern 
Alps) and pyroregions (progressive numbers)
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country in 21 homogeneous fire regions (hereafter refereed as pyroregions; Fig. 1). Exist-
ing differences in flammability among dominant forest species under normal fire weather 
conditions tend however to disappear in the case of extreme fire weather, when any type of 
forest become highly fire-conducive (e.g., Cruz et al. 2022; Conedera et al. 2023), allowing 
fires to become relatively large, especially on steep slopes in mountainous regions. Nearly 
all historical large-scale events in the last 30 years in Switzerland took place under severe 
drought conditions (snow drought with lacking snowpack in the mountains in winter, pro-
longed “hot” droughts in summer). Despite the windy conditions such as foehn, which usu-
ally exacerbates the rate of spread and partially influences the initial fire front direction, 
nearly all of these large events were slope-driven fires which rapidly spread along the for-
est and shrubland vegetation on steep topography (see Supplementary Material 1), making 
the suppression efforts highly problematic for the fire brigades (e.g., Krättli 2017; Pezzatti 
et al. 2017; Gerold 2019; Gauye et al. 2023). In most cases, these fires implied the need to 
employ sylvicultural and technical measures to avoid post-fire natural hazards and related 
damage, which nevertheless could not be completely averted (e.g., Conedera et al. 2003; 
Melzner et al. 2022). Therefore, fire management strategies have been developed in Swit-
zerland at a federal (e.g., Reinhard et al. 2019) and cantonal level (e.g., Gerold 2019; Ghir-
inghelli et al. 2019) to avoid large fires and related post-fire risks.

2.2  Basic assumptions and methodological approach

Since it is expected that the frequency of extreme fire weather will increase, for this study 
we assume that in the future, topography (i.e., slope) and fuel connectivity (i.e., continuous 
forest and shrubland cover) will be the main limiting factors for successfully controlling 
fires, due on the one hand to the fast spread of the fire front on steep slopes with reduced 
accessibility and on the other hand to the upslope convective heat flux released by the fire 
(e.g., DeAngelis et al. 2015; Fernandes et al. 2016). Consequently, we conclude that the 
final size of a forest fire will be directly related to the length of the steepest path within an 

Table 1  General annual fire statistics by Swiss biogeographic region for the period 1990–2022

Region Winter fires Summer fires Total 
burnable 
area

Average 
fire size

Human-induced Human-induced Lightning-induced

Number Total area Number Total area Number Total area

N (± SD) ha (± SD) N (± SD) ha (± SD) N (± SD) ha (± SD) ha ha (± SD)

JUR 3.85 
(3.72)

1.17 (2.06) 4.15 
(5.06)

0.64 (0.89) 0.12 
(0.49)

0.01 
(0.03)

4′131 0.40 (1.40)

PLA 6.33 
(5.95)

1.04 (1.41) 8.18 
(11.6)

0.96 (1.65) 0.18 
(0.47)

0.00 
(0.01)

9′750 0.31 (0.78)

NOA 4.70 
(4.00)

1.60 (3.07) 7.97 
(10.4)

1.24 (2.64) 1.33 
(2.47)

0.14 
(0.46)

8′077 0.28 (0.92)

WCA 4.61 
(6.57)

13.3 (34.2) 7.39 
(5.07)

13.1 (55.4) 1.97 
(2.16)

0.17 
(0.33)

3′303 0.18 (0.39)

ECA 2.97 
(2.98)

2.49 (4.69) 7.00 
(4.75)

1.40 (2.07) 2.15 
(2.32)

0.10 
(0.14)

4′648 5.39 (30.9)

SOA 28.3 
(20.1)

192 (360) 20.8 
(18.5)

28.6(65.4) 7.03 
(8.15)

12.9 
(36.0)

3′389 2.38 (19.0)
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area covered by woody vegetation. Here we define a steepest path as the 3D polyline or 
linestring which starts at the point of ignition, proceeds up the slope following the direction 
of maximal elevation gradient (i.e., gaining the most elevation across the shortest possible 
horizontal distance), and stops where the path encounters large open areas which make it 
possible or easier for the fire brigades to stop the fire front and extinguish the flames (e.g., 
grassland, farmland, and rock faces).

Foehn winds usually blow with strong and irregular gusts, which only partially lead to 
a deviation of the main fire front from the upslope trajectory, contrary to the case in which 
winds exert a constant strong lateral pressure (see Supplementary Material 1, Fig. SM1.1 
and SM1.18). In conclusion, we assume that the future likelihood for a region to experi-
ence large fires is positively correlated with the lengths of the steepest paths along a for-
ested slope.

To test this hypothesis, we simulated fire ignitions at each forested point (at most 40 m 
away from the forest edge) on a systematic 100 × 100 m square grid and, for each point, 
computed the steepest path within the forested area. We then compared the resulting path 
lengths for each pyroregion with selected large fire statistics (e.g., total burnt area, mean 
area of the largest 5% of fires, and maximum burnt area per fire) of the last 30 years (i.e., 
1990–2022) as documented in the forest fire database “Swissfire” (https:// www. wsl. ch/ 
swiss fire; Pezzatti et al. 2019). Here, each fire record includes the date and time at which 
the fire was detected (i.e., when the fire was discovered) as well as the spatial coordinates 
and/or municipality within which the fire ignition point occurred, allowing us to assign 
each fire record to a pyroregion on the basis of the coordinates or the municipality of 
the ignition point. Note that all large fires which occurred in the study region during this 
period are registered in this dataset, i.e., including fires which did not occur entirely within 
the forest. However, as one can see from Supplementary Material 1, these large fire events 
were in nearly all cases associated with a forest-like vegetation cover and steep topographi-
cal conditions.

2.3  The steepest paths algorithm

Over the past decades, several techniques and applications have been implemented in GIS 
for the computation of vector features representing the lines of greatest slope both downhill 
and uphill (e.g., Moore et al. 1988; Mitasova et al. 1995; Zhou et al. 2011) and different 
terms are in use to indicate these particular terrain geometries (e.g., flow lines, flow trajec-
tories, streamlines, fall line, steepest ascent lines, and surface flow path). Currently, flow 
lines are exploited in multiple scientific fields such as the study of water runoff (Freitas 
et al. 2016), the forecast of lava flow paths (Favalli et al. 2005), or the detection of ridges 
(Koka et  al. 2011). To our knowledge, however, this type of vector data has never been 
intersected with forest cover distribution data for the purpose of estimating the likelihood 
of fire occurrence over vast territories.

The steepest paths algorithm represents a highly simplified approach for modeling the 
spread of a slope-driven fire front assuming the presence of a homogeneous and highly 
fire-conducive forest fuel bed. The input data for the algorithm are thus the topography 
(slope, as derived from a digital elevation model—DEM in raster format) and the fuel con-
nectivity (joint vector map representing the forest, open forest stand, and shrubland cover).

The algorithm consists of a two-step approach (Fig. 2). In a first step, it determines the 
ignition points on a regular grid (in our case of mesh size 100 × 100 m). It then computes 
all steepest paths from these points along the slope until a summit (e.g., a mountain top) 

https://www.wsl.ch/swissfire
https://www.wsl.ch/swissfire
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or a large flat region is reached. In a second step, the obtained lines are checked for fuel 
connectivity in order to stop the paths when crossing open areas or vegetation covers other 
than shrubs, open forest stands, and forests (see Supplementary Material 2 and Fig. SM2.1 
for a detail explanation of the tool, including the precise parameters chosen for our study 
case).

The final output of the steepest path algorithm is a set of polyline features represent-
ing the computed steepest paths. In our case, we will use the following two sets of three-
dimensional polylines:

– The “forest steepest paths,” i.e., the steepest path lines within the forested area (i.e., 
forest, open forest stands, and shrublands) and truncated at the first point at which the 

Fig. 2  Flowchart describing the steepest path algorithm
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fire leaves the forested area for at least 40 m. Note that these lines can also start out-
side the forested area as long as the horizontal distance between the starting point and 
the woodland is less than this preset threshold value (Supplementary Materials 2, Fig. 
SM2.1a).

– The “full steepest paths,” i.e., all computed steepest path lines truncated at 2500 m asl, 
i.e., assuming that the entire territory has transitioned to forested area (hypothetical 
totally forested landscape, Supplementary materials 2, Fig. SM2.1b).

A first release of the R script implementing the steepest path algorithm, accompanied 
by detailed instructions and further explanations concerning the multiple calculation pro-
cedures and usage options is available in a repository on GitHub (https:// github. com/ Insub 
ric/ steep est_ paths_ tool).

2.4  Statistical analysis

In order to provide a descriptive statistical overview of the steepest paths obtained, we visu-
alized the three-dimensional length of these line features for each pyroregion in the form of 
a box plot. Regional differences were then assessed in terms of statistical significance using 
the unpaired Wilcoxon rank-sum test. On the other hand, the fire regime characteristics 
of each pyroregion were expressed by means of different metrics related to the total burnt 
area and to large fires in particular. Explicitly, the selected variables are the total burnt 
area summed across all fires, the mean burnt area of the largest 5% of fires, the mean burnt 
area of the 5 largest fires, and the maximal area of any fire within the pyroregion. In order 
to assess the relationship of the key parameters defining the current fire regime with the 
calculated steepest paths, the logarithm of each fire regime metric was linearly regressed 
on the median path length within each of the pyroregions, using the geom_smooth function 
from the ggplot2 package (Wickham 2016).

3  Results

Figure 3 shows the dispersion of the obtained three-dimensional path lengths grouped by 
pyroregion and main biogeographic region. Clear and significant differences exist among 
the main biogeographic regions but also among most pyroregions. As expected, the south-
ern regions display the largest three-dimensional path lengths, followed by the Central 
Alps, the mountainous regions of Jura and the Northern Alps. The lack of steep mountains 
in the Plateau region is reflected in the low median values reported in Fig. 3.

When considering the linear regressions obtained by regressing the logarithm of the 
selected fire metrics against the calculated medians of the steepest path lengths of each 
pyroregion, we always obtain highly significant relationships (p < 0.001) and rather high 
R2 values ranging from 0.558 for the total burnt area between 1990 and 2022 at the pyrore-
gion level (see Supplementary Materials 3, Fig. SM3.1) to 0.644 for the average area of 
the largest 5% of forest fires (Fig. 4), and to 0.651 for the area of the largest fire which 
occurred during the considered period (see Supplementary Materials 3, Fig. SM3.2). 
Based on these results, we define four likelihood classes for pyroregions with a similar pro-
pensity for large fires to occur, by applying a regular thresholding to the computed median 
three-dimensional length L of the forest steepest paths. Namely, we define a pyroregion to 
have a low propensity if L < 150 m, medium propensity if L is between 150 and 200 m, 

https://github.com/Insubric/steepest_paths_tool
https://github.com/Insubric/steepest_paths_tool
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high propensity if L is between 200 and 250 m, and very high propensity if L ≥ 250 m. 
When analyzing the so-defined classes with respect to the proposed regression, we obtain 
threshold maximum fire size values of 1.2 ha between the low and moderate classes, 4.0 ha 
between the moderate and high classes, and 13.5 ha between the high and very high classes 
(Fig. 4).

Figure 5 shows the geographic distribution of the considered pyroregions in terms of 
the propensity classes for large fires. As expected, low propensity classes are concentrated 
on the Swiss Plateau, whereas the Central Alps and Southern Alps mostly display a high 
propensity for large fires. The Northern Alps (mostly medium propensity) and Jura (mostly 
high propensity) take an intermediate position.

When analyzing the high-propensity class in detail, some regions such as the canton of 
Valais (WCA1) appear to display slightly higher maximum burnt area than the regression 
predicts (Fig. SM3.2), although they remain within the confidence interval range when 
considering the mean area of the largest 5% of fires (Fig. 4). Others, such as Bregaglia and 
Poschiavo (SOA4) or Engadina (ECA2), on the other hand, burn significantly less (Fig. 4).

Figure 6a highlights the increase in the path lengths when simulating a Swiss landscape 
which is completely forested up until 2500 m asl, e.g., due to a hypothetical suspension 
of all land use. Interestingly, when comparing the metrics of the current fire regimes to 

Fig. 3  Variability of each pyroregion in terms of the three-dimensional length of the forest steepest paths. 
Box plots span from the 25th (lower limit) to the 75th percentile (upper limit) of the data. Blue dashes and 
notches display the median values and the confidence intervals, respectively. Light blue lines represent the 
median values of the correspondent bioregion. Whisker extents have been set to one time the interquartile 
range. Only non-significant differences between pyroregions according to the unpaired Wilcoxon rank-sum 
test are indicated as “ns” (p > 0.01), while all others are highly significant (p < 0.001)
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the resulting steepest path lengths, the observed relationships become markedly weaker, 
both in terms of statistical significance (p < 0.01) and R2 (0.301) (Fig. 6b). The very high-
propensity class would however extend over 16 out of the 21 pyroregions (Fig. 6c).

4  Discussion

In this paper we applied a simplified and spatially explicit method for analyzing the pos-
sible influences of topography (slope length and steepness) and fuel connectivity (contin-
nuity and extent of the forested area) on the probability of large fires occurring in differ-
ent subregions of Switzerland in the case of a future scenario with a higher frequency of 
extreme fire weather conditions.

The computed potential fire path lengths varied significantly among pyroregions within 
and among most of the main biogeographic regions. Interestingly, median values of the 
calculated path lengths highly correlate with the large fires’ statistics over the last 30 years. 
The highest correlations are obtained when comparing with the recent largest fire events 
within each pyroregion (e.g., largest observed fire event; the largest 5% of forest fires), 

Fig. 4  Scatter plot showing the relationship between the mean area of the largest 5% of the fires which 
occurred between 1990 and 2022 within a given pyroregion and the median three-dimensional length of the 
forest steepest path lines. The gray area around the blue regression line represents the 95% confidence inter-
val. Please note that the Y-axis has a logarithmic scale. Red vertical lines correspond to the threshold values 
for the path lengths L separating the four large fire propensity classes: L = 150 m for discriminating between 
low and medium (corresponding to a burnt area of 1.2 ha), L = 200 m for discriminating between medium 
and high (corresponding to a burnt area of 4.0 ha), and L = 250 m for discriminating between high and very 
high (corresponding to a burnt area of 13.5 ha)
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confirming the prominent role of topography and fuel connectivity in shaping the fire 
behavior, determining the difficulty of controlling a given fire event, and crucially influenc-
ing the final burnt area (Moreira et al. 2010; Fernandes et al. 2016; Beverly et al. 2021; 
Francis et al. 2023). According to our results, Switzerland can be subdivided into four dis-
tinct classes in terms of present and future likelihood of experiencing large fires. Here, the 
very high-propensity pyroregion corresponding to the canton of Valais (WCA1) already 
displays a maximal burnt area slightly surpassing the expected maximal burnt area as com-
puted using a linear regression (although still within the confidence interval when consid-
ering the largest 5% of fires), whereas others such as Engadina (ECA2) and some south-
ern valleys of Grisons (Bregaglia and Poschiavo, SOA4) are presently underrepresented in 
terms of burnt area. In fact, this behavior in the canton of Valais (WCA1) is to be expected, 
as even today, this is one of the driest regions of Switzerland (MeteoSwiss 2023). During 
extreme drought periods combined with days of strong wind, possible fires are very likely 
to spread into the crowns of the broadly diffused and dense coniferous forests, which often 
results in large final burnt areas (Supplementary Materials 1, Fig. SM1.2). Conversely, the 
mountain regions of the Engadina (ECA2) are currently characterized by a pronounced 
continental climate, and this combined with the area’s high median elevation results in long 
periods of snow cover, which most likely prevents large fires from occurring so far, espe-
cially during the spring season. A similar effect of the generally high elevation of the terri-
tory, despite a marked influence of foehn winds, may be the reason for the current absence 
of large fires in the SOA4 pyroregion, especially in the case of the Poschiavo valley.

The very low correlation coefficients obtained when comparing the current fire regimes 
to the theoretical three-dimensional steep paths when supposing a transition to a total forest 
cover of the Swiss landscape indirectly highlight the paramount role of fuel-consuming and 
fuel-removing land uses in preventing large fires. Without such traditional agricultural or 

Fig. 5  Map representing the classification of the 21 Swiss pyroregions into four classes according to the 
current large fire propensity



4668 Natural Hazards (2024) 120:4657–4673

1 3

pastoral activities on the mountain slopes, significant additional parts of Switzerland would 
transition to the very high-propensity class regarding the likelihood for large fires to occur.

From a methodological point of view, we propose a very simplified approach with 
respect to existing spatially explicit fire simulations models and techniques (see Miller and 
Ager 2013 for a short review). On the one hand, this prevents us from accurately simulating 
the fire growth dynamics through different fuel types as well as loads and the related local 
fire intensities, including possible effects of landscape and fuel management (e.g., Ager 
et al. 2012). On the other hand, our approach allows the estimation of fire spread potential 
using readily available GIS data and is particularly suitable for application even over vast 
areas. Furthermore, our main focus is on simulating the effect of extreme fire weather con-
ditions which induce fast-spreading and intense fire fronts on slopes with continuous fuel 
cover. Details regarding the local fire intensity are not relevant in this context and omitting 
these makes the approach highly flexible. Depending to the characteristics of the landscape 
which is to be analyzed, one can add additional vegetation cover types that potentially sup-
port fast fires of high intensities (i.e., fallow lands of any type if a cartography is available), 
which were not considered in this study. Similarly, the parametrization of the tool (e.g., 
distance from the forested area before a fire can be stopped) can be adapted to future fire 
regime scenarios (e.g., high frequency and long-distance spotting during a fire). Finally, 
possible effects of fuel breaks or fuel management activities can easily be simulated by 
simply removing the target vegetation cover load where the interventions are planned.

Fig. 6  Large fire propensity in a hypothetical Swiss landscape which is completely forested up until 2500 m 
asl. a Variability for each pyroregion in terms of the three-dimensional length of the full steepest paths. 
Box plots span from the 25th (lower limit) to the 75th percentile (upper limit) of the data. Blue dashes and 
notches display the median values and the confidence intervals, respectively. Light blue lines represent the 
median values of the correspondent bioregion. Whisker extents have been set to one time the interquartile 
range. Only non-significant differences between pyroregions according to the unpaired Wilcoxon rank-sum 
test are indicated as “ns” (p > 0.01), while all others are highly significant (p < 0.001). The red dots repre-
sent the median path lengths when considering the present forested region (see Fig. 3). b Scatter plot show-
ing the relationship between the mean area of the largest 5% of the fires which occurred between 1990 and 
2022 within a given pyroregion and the median three-dimensional length of the full steepest paths. The gray 
area around the blue regression line represents the 95% confidence interval. Please note that the Y-axis has a 
logarithmic scale. Red vertical lines correspond to the threshold values for the path length L separating the 
four large fire propensity classes (see Fig. 4 for further details). c Map representing the classification of the 
21 Swiss pyroregions into four classes of large fire propensity, resulting from our analysis of a hypothetical 
completely forested Swiss landscape

▸
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5  Conclusions

In mountainous regions, future fire management efforts should focus on preventing large 
fires and related post-fire gravitative natural hazards. Here we presented a simplified 
approach for identifying and mapping the areas with an elevated likelihood for large fires to 
occur within a defined region of interest. Despite obvious oversimplifications, the proposed 
spatially explicit approach yields results which are highly correlated with the current fire 
regime and allow for an easy identification and geo-localization of potential hotspots in 
terms of the likelihood for large fires to occur. This is a prerequisite for a targeted planning 
of fire management measures and costly fire pre-suppression infrastructures such as water 
points for aerial firefighting in particular.

The suggested approach can be implemented using readily available GIS data (namely 
a DEM and a vector map of the forested region) and is also relatively economical in terms 
of computational resources meaning that it is suitable for application even over vast areas. 
In addition, it can be integrated and combined with other approaches, considering further 
characteristics of the landscape (ignition probability, aspect, dominant forest vegetation 
and related fuel, post-fire susceptibility of the landscape, etc.) relevant for fire behavior, as 
such allowing any region (e.g., whole country, province, and district) to be analyzed.
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