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Abstract
Flash floods are a rapid hydrological response that occurs within a short time with rap-
idly rising water levels and could lead to massive structural, social and economic dam-
ages. Therefore, generating flood inundation maps becomes necessary to distinguish areas 
exposed to floods. Hydrodynamic models are commonly used to generate inundation maps; 
however, they require high computational power and time, depending on the complexity of 
the model. For that, researchers developed effective, fast and simplified models. Among the 
simplified models, the Geomorphic Flood Index (GFI) is one of the most useful classifiers 
to generate inundation maps. Three main objectives are addressed in this study: (1) extend 
the GFI classifier to predict flood extent maps for uncalibrated rainfall depths, which will 
enhance early warning models for better risk assessments of extreme events; (2) enhance 
the accuracy of the simulated inundation maps using different calibration methods; and (3) 
investigate the performance of the GFI in various terrains with different resolutions. Three 
case studies in arid regions in Saudi Arabia were examined with different topographies, 
using terrains of high resolutions of 1 m and resampled low resolutions, as well as various 
rainfall depths corresponding to 5–100-yr return periods. The HEC-RAS 2D model was 
used to generate reference flood inundation maps. The obtained flood extent maps show 
high similarity compared to the reference maps with accuracy above 80%. Strong relation-
ships between rainfall depths and the threshold GFI parameter were developed which allow 
producing inundation maps for any rainfall event.
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1 Introduction

The threat posed by natural disasters related to weather and climate to society is growing 
and leads to massive loss of life and property (Glade and Nadim 2014). From 1970 to 2019, 
climate disasters accounted for 50% of all recorded disasters, 74% of all reported economic 
damages and 45% of all reported deaths, where over ninety-one percent of these deaths and 
injuries occurred in developing countries as reported by the United Nations Country Clas-
sification (Mandyam et al. 2022).

Flash floods are common in arid and semiarid regions during rain events because of the 
scarcity of plants and the low rate of infiltration in mountainous regions. Flash floods are 
a complex phenomenon that is influenced mainly by regional geology and morphometric 
characteristics of the watershed (Subyani and Al-Dakheel 2009). Other important factors 
that influence flash floods are rainfall intensity and duration, surface runoff, evaporation 
and infiltration rates (Nouh 2006). Flash floods have become a significant concern in urban 
areas worldwide. This is primarily due to the increase in the population pressure around 
the floodplains, leading to an increase in urbanization, which reduces the space available 
for infiltration and exacerbates surface runoff, often exceeding the water-bearing capac-
ity of the catchment (Zaidi 2012). Even in very dry regions like the Arabian Peninsula, 
flash floods have caused huge number of fatalities (Youssef et al. 2016), billions of dollars 
of business losses, facilities damages (Al Saud 2010) and unnominated impacts (Kumar 
2013). As a result, many countries have implemented early warning systems aiming to 
minimize the impact of natural hazards on human life and assets (Billa et al. 2004, 2011; 
Villagrán de León et al. 2006; Pengel et al. 2013).

Due to its multifaceted nature, the problem of warning communities of impending dis-
asters quickly becomes complex. The main difficulty related to warning is to have enough 
time to predict the impact of floods in addition to estimating the area affected through 
accurate maps before floods occurrence. This is followed by reporting the prediction to the 
appropriate authorities, warning affected communities and evacuating those communities 
(Basha and Rus 2007). Thus, understanding flood risk is essential for controlling its socio-
economic and environmental effects.

The purpose of flood inundation maps is to show, at a certain area, the impact of a cer-
tain rainfall storm event. These maps support the decision-makers to minimize damages to 
flooded areas and assess the risks. Models of developing flood hazard maps could be clas-
sified into three types: empirical methods, hydrodynamic models and simplified concep-
tual models (McGrath et al. 2018). Empirical methods can only provide guidance for real-
time monitoring and post-event evaluation (Liu et al. 2018). Hydrodynamic models, such 
as HEC-RAS, deduce inundation maps by solving one-dimensional or two-dimensional 
equations. These hydrodynamic models take a long running time for specific flood events 
to deduce high-resolution flood extent maps based on a mesh cell size and a simulation 
time step (Alipour et al. 2022). On the contrary, simplified conceptual models can generate 
flood inundation maps in a relatively shorter time (Coulthard et al. 2013).

Developing simplified methods to generate flood maps has been tackled by many 
researchers. Leopold and Maddock (1953) represented the quantitative equations to deter-
mine the natural stream properties such as depth, width, velocity and suspended load based 
on the discharge using some power functions. In this approach, the discharge at a certain 
location is considered as a function of its upstream catchment area.

One of the main concerns of simplified models is to determine the starting point of a 
stream. There are two widely used approaches to tackle this issue: Tarboton et al. (1991) 
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recommended to consider the channel from the location where the flow accumulation is 
higher than a specific threshold; while Giannoni et al. (2005) developed a newer method 
to specify the first point of the channel where the quantity ASk (A = contributing area, 
S = local slope, k = drainage basin-related exponent) is higher than a specific threshold.

Various methods were developed based on simplified concepts to generate flood plain 
maps for areas with lack of high-resolution digital elevation model (DEM) or rain data. 
One of these methods is generating flood-prone maps using classifiers by developing 
low-cost geomorphic flood plain algorithms. Many researchers worked to develop meth-
ods to define hydrogeomorphic stream networks to simplify the algorithm for generating 
flood plain maps based on catchment characteristics for a specific flood event (Nardi 
et  al. 2006). Later, Nardi et  al. (2008) extended the outcomes and checked the influ-
ence of generating floodplain maps in flat areas and tested various treatment methods 
including DEM treatment methods. Manfreda et  al. (2011) developed a simple proce-
dure for detecting areas at risk using only data of catchment topography (DEM) which 
are globally available. The data contained in a DEM could be summarized by a topo-
graphic index which is a good descriptor of the inundation maps, noting that the used 
DEMs describe the ground surface without taking into account the presence of man-
made structures.

Subsequently, Degiorgis et al. (2012) developed a classifier which depends on two main 
variables chosen among five available ones which could be deduced from the utilized 
DEM. The first selected variable is the length of the stream that hydrologically links the 
study element to the nearest element of the drainage network, and the second selected vari-
able is the difference in elevation between the cell under investigation and the end point of 
the same drainage network.

Different flood descriptors and classifiers were developed and evaluated in terms of 
their suitability to generate flood plain maps based on DEM and catchments characteristics 
(Manfreda et al. 2015). After testing many areas, Samela et al. (2016) found that the Geo-
morphic Flood Index (GFI) is the best classifier that could be used to define flood extent 
across the utilized DEM. The output inundation maps generated by GFI were compared 
with FEMA flood plain maps and found that, for getting the optimum value of threshold of 
the generated inundation maps, it should be first calibrated against a reference flood map 
obtained from the outcomes of a hydrodynamic model or any other regulatory authority, 
for an area exceeding 2% of the study area (Samela et al. 2017). A QGIS tool called Geo-
morphic Flood Area tool (GFA tool) was successfully developed based on the classifier of 
GFI concept to detect flood-prone areas at the continental scale while reducing computa-
tional time and costs, opening up new possibilities for flood risk assessment and manage-
ment at large scales Samela et al. (2018). The method was improved to predict the depth of 
the flooding as well, which helps measure how much damage the flood caused (Manfreda 
and Samela 2019). According to Tavares da Costa et  al. (2020), optimal GFI thresholds 
were also positively correlated with flood extents associated with specific return periods. 
The developed tool preliminary provides hydrologic and hydraulic models in those regions 
where there is obvious shortage in rainfall data.

In this paper, we investigate the use of the GFA tool in arid regions where flooding is 
rare and thus not carving the terrain. Further, we investigate the use of high- and low-reso-
lution terrains, and test the tool in different locations with different topographic character-
istics. Thus, the main objectives of this study can be summarized in the following:

• Evaluate the generated flood inundation maps using GFA tool in arid regions compar-
ing with the ones generated using hydrodynamic model results.
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• Evaluate the effect of changing GFI parameters and the impact of various rain depths 
at different return periods and DEM resolutions on the output inundation maps in arid 
regions.

• Enhance flood inundation maps generated using GFA tool by evaluating different cali-
bration criteria / methods.

• Develop relationships between the output threshold and the rainfall depth to help rap-
idly obtaining a flood plain map, for an uncalibrated rain event, which could be used in 
early warning systems.

The paper is organized as follows. The current introduction and literature review are fol-
lowed by a detailed methodology (Sect. 2) as well as the performance and evaluation crite-
ria. Section 3 presents the study areas. The paper results and their discussion are provided 
in Sect. 4 and followed by the main conclusions and recommendations for future research 
(Sect. 5).

2  Methodology

The current section describes the methodology used to generate accurate inundation maps 
based on the flood descriptor GFI. The parameters of the GFI are calibrated based on gen-
erated flood maps using the two-dimensional hydrodynamic HEC-RAS model. The main 
investigated parameter is the threshold value of the GFI that determines whether a certain 
location is prone to flooding for that specific rain event. In this paper, we extend the capa-
bility of the GFA tool to map uncalibrated rainfall events through establishing relationships 
to predict the threshold values based on DEM characteristics of the catchment. Moreover, 
the GFA tool was tested on different digital elevation models to check the impact of DEM 
resolution on the output flood plain maps. Figure 1 describes how the hydrogeomorphic 
models and the linear binary classifiers GFI can be used to generate floodplain maps. Here-
after, we present the main components of each models/loop and how we checked the output 
for uncalibrated rainfall events.

2.1  Development of a hydrodynamic model using HEC‑RAS

The River Analysis System (RAS) freely available software, developed by the Hydrologic 
Engineering Center (HEC-RAS), is a commonly used software that allows to model from 
1D steady flow to 2D unsteady flow, dam break analysis, sediment transport, as well as 
generating floodplain maps.

In this study, two flow regime options were utilized (1) inflows as upstream boundary 
condition for hydraulic simulation for part of the watercourse and (2) precipitation on the 
entire catchment area in the model area. In our models, shallow water equations (SWE) 
were used based on Saint Venant equations (Horváth et  al. 2015). This method utilizes 
finite volumes solution algorithm for more stability and accuracy than the traditional algo-
rithms of finite differences or finite elements. The 2D simulation algorithm starts with ini-
tial depth, continuing to the movement of water between cells calculated based on start-
ing depth and cell face rating curve. After that, the new cell volume is calculated based 
on flux over computational time step. Finally, depth in each cell extracted from volume 
depth rating curves. This computational algorithm is robust and allows 2D cells to wet and 
dry. Two-dimensional flow areas can start completely dry and can handle a sudden rush 
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of water into them. The spread of water over a surface is dependent on the roughness of 
the surface. Manning’s n value is used to define roughness of the main watercourse and 
its floodplain or on the entire catchment. HEC-RAS outputs are used as the flood maps 
benchmark.

2.2  Simplified model: the GFA tool

The GFA is a tool that utilizes the GFI to generate inundation maps based on geomorphic 
indices extracted from terrains and existing inundation maps obtained for a portion of the 
area of interest. This is accomplished by subdividing the study area to small cells utiliz-
ing the DEM and then categorizing each cell inside the area of interest domain into two 
groups: flooded areas and non-flooded areas (Samela et al. 2017).

Fig. 1  Process of the geomorphic model
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The GFA tool requires geomorphic data to calculate the GFI to derive floodplain maps. 
The geomorphic data could be extracted from terrain. The required input files are:

• DEM with voids and/or local low points (sinks): the original digital elevation model 
from any source, either SRTM, ALOS, LIDAR or contour map information.

• DEM fill: the raster of DEM is filled using a suitable tool (ArcGIS, QGIS, etc.) by 
removing local sinks and peaks in the data, which are spurious cells with elevations 
greater or lower than what would be expected.

• Flow direction: the raster of flow directions from each pixel to its steepest downslope 
neighbor. Using the D8 direction method by comparing the elevation relative to 8 
(eight) surrounding cells, flow directions are determined based on the direction of the 
steepest slope.

• Flow accumulation: the raster of accumulated flow into each pixel, as determined by 
accumulating the number of all pixels that flow into each downslope cell.

• Part of the existing floodplain map: to calibrate the GFI classifier and produce maps for 
the sub-scheme, a reference flood map for a minimum of 2% of the domain is used to 
estimate floodplain maps for the remaining areas (Samela et al. 2017). The reference 
floodplain could be obtained from FEMA, NOAA, USGS in the USA or authorities 
already developed floodplain maps or could be generated from any hydrodynamic mod-
els (HEC-RAS, InfoWorks ICM, Urban flow) as it is the case in this research.

2.3  Preprocessing steps

After preparing the input data, the next step in the GFA Tool is to select one of the follow-
ing methods to identify the starting point of each stream inside the study area.

• ASk method: The start of the channel is determined where the flow accumulation 
exceeds a specific threshold (Tarboton et al. 1991).

• The channel starts from the location where the flow accumulation exceeds a specific 
threshold (Tarboton et al. 1991).

This is needed as the main GFA process (described in the next subsections) realize on 
the calculations of the catchment area upstream of a certain cell.

2.4  The GFA process

The value of GFI at each cell is estimated as Eq. (1):

where h
r
 is the difference between the water level and the stream bed level [m], A

r
 is the 

contributing area of water runoff to the point of interest  [km2], a is a scale factor, n is the 
exponent (dimensionless) and H [m] is the difference between the elevation of each cell 
and the elevation of the nearest stream point of the identified path, as shown in Fig.  2. 
The water depth ( WD ) could be calculated for every cell of the floodplain areas as follows 
(Manfreda and Samela 2019):

(1)GFI = ln
h
r

H
= ln

aAn

r

H
= ln (a) + n ln

(

A
r

)

− ln (H)
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If the hydraulic model under study is not covering the entire catchment area and an 
inflow hydrograph is imposed at the upstream of the hydrodynamic model, the total con-
tributing area—input in Eq.  (1)—is in fact subdivided into two sub-areas. Sub-area 1 
(shown hatched in Fig. 2) comprises the area upstream of the hydrodynamic model. It is 
determined via catchment delineation software, using the common, flow direction, flow 
accumulation, etc. procedure. Moreover, the remaining Sub-area 2 (part not hatched in 
Fig. 2 accounts for the part within the hydrodynamic model boundary. As we move fur-
ther toward the downstream, the contributing area (within the model boundary) increases, 
added to Sub-area 1 (at the upstream of the model as previously mentioned). It should also 
be highlighted that the catchment area at the most downstream of the model is equal to 
Sub-area 1 + the model area, and as such, the part that is modeled via the hydrodynamic 
model (as well as the GFI tool) constitutes a complete sub-catchment area.

The GFA tool then normalizes the GFI values using as much as needed of iterations 
to calibrate the optimal threshold (t) that produces the flood potential at a required loca-
tion (i.e., WD ≥ t, the cell is considered flooded). Moreover, it expands the classification 
between flood-prone and non-flood-prone locations to cover the entire study area.

The GFA uses a confusion matrix as shown in Table 1A, where each column represents 
the reference classification and each row represents the predicted classification. Table 1B 
illustrates four different performance measures which are used to calibrate the optimal 
threshold (t). The optimal threshold (t) value for a specific inundation map corresponding 
to a certain period is calculated by testing the threshold of the classifier in the range from 
− 1 to 1 and then comparing the resulting GFI classifier with the floodplain maps used for 
calibration.

2.5  Performance criteria

Four various performance criteria were investigated to compare between each cell in the 
reference maps and the corresponding one in the predicted maps of each GFI value using 
the confusion matrix (Fathi et al. 2021) to obtain the optimum GFA threshold:

• The receiver operating characteristic (ROC) graph is a method to quantify a binary 
classifier as its limit (Fawcett 2006). The ROC values in Fig. 3 are calculated by the 

(2)WD = h
r
−H

Fig. 2  Main components of the GFI classifier [after Manfreda et al. (2015)]
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scatter plot of the true positive ( R
TP

 ) against false positive ( R
FP

 ) rates as illustrated 
in Table 1B. Equation (3) presents the calculation of the area under the curve (Brad-
ley 1997).

• Matthew’s correlation coefficient (MCC) is a method to assess binary (two-class) 
classifications (Matthews et  al. 1979). This measure is similar to the Pearson cor-
relation coefficient in its interpretation. The coefficient takes into account true and 
false positives and negatives. It is generally regarded as a balanced measure which 
can be used, even if the classes are of very different sizes. The MCC can be calcu-
lated directly from the confusion matrix using the formula:

(3)ROC =
1 + R

TP
− R

FP

2

Table 1  Confusion matrix with the performance measures to assess the calibration

Fig. 3  Receiver operating char-
acteristic (ROC) graph, drawn by 
CMG Lee based on http:// commo 
ns. wikim edia. org/ wiki/ File: roc- 
draft- xkcd- style. svg

http://commons.wikimedia.org/wiki/File:roc-draft-xkcd-style.svg
http://commons.wikimedia.org/wiki/File:roc-draft-xkcd-style.svg
http://commons.wikimedia.org/wiki/File:roc-draft-xkcd-style.svg
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• Fowlkes–Mallow’s index is a third performance criteria. A higher value for this index 
indicates a greater similarity between the clusters and the benchmark classifications, 
when results of two clustering algorithms are used to evaluate the results. The Fowlkes–
Mallow’s index is written as (Halkidi et al. 2001):

• F-score index is calculated using the precision and recall, where the precision is the 
number of true positive results divided by the number of all positive results, includ-
ing those not identified correctly, while the recall is the number of true positive results 
divided by the number of all samples that should have been identified as positive. It is 
formulated as follows (Sasaki 2007):

2.6  Assessment methods

After obtaining the optimum threshold (t), three independent measures were calculated to 
further assess the correspondence between the inundation maps generated by the hydro-
dynamic models and those by the GFA tool using the following equations as shown in 
Table 2.

As the objective is to predict a flood extent envelope, overpredicting the flood‐prone 
areas might benefit the TP and inflate the R

TP
 and accuracy. This inflation would be of 

concern if there was no other reported measure that would give an alternative account of 
the performance. By reporting the R

FP
 , an account of the percentage of cells that are over-

predicted is given. At the same time, the critical success index extends the R
TP

 by includ-
ing the FP, accounting for both underprediction and overprediction. The error bias gives 
the ratio between the FP and the FN, indicating whether there is a tendency for underpre-
diction or overprediction. The reporting of these three measures should give a reasonable 
overall account of the performance.

2.7  Regression analysis

Regression analysis is a technique used to develop relations between two or more variables. 
In the context of assessing flood hazard using the GFI, regression analysis was employed in 
this research to establish a quantitative relationship between GFI values and rainfall depth, 
DEM cell size or other variables, with the purpose of understanding the influence of rain-
fall on flood extend maps produced by the GFA tool.

The regression analysis allows deriving the mathematical relationship between GFI 
values and rainfall depth. This equation can then be used to predict the flood potential 
based on an uncalibrated rainfall of 24-h depth. By establishing such a relationship, 
decision-makers and urban planners can make informed decisions regarding flood man-
agement strategies, land-use planning and disaster preparedness. Additionally, it can aid 

(4)MCC =
TP ∗ TN − FP ∗ FN

√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

(5)FM =

√

TP

TP + FP
∗

TP

TP + FN

(6)F1 =
2 TP

2 TP + FP + FN
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in the development of early warning systems that utilize 24-h rainfall depth to anticipate 
potential flood events and take appropriate preventive measures.

3  Study areas

In recent years, Saudi Arabia has suffered from flash floods which caused major losses 
in lives and damages. This study encompasses 3 areas as shown in Fig. 4 and Table 3. 
The first study area for catchment (A) is located in Al-Baha province with high-steep 
terrain at its upstream and flatten terrain at the downstream, which could be a good set-
ting to evaluate GFA tool. Another study area (B) covers sections (not an entire catch-
ment) of Wadi Hanifa in Riyadh to test the ability of the tool to generate flood maps for 
part of a stream. The third study area (C) is for a portion of Wadi Bayer (Al-Jouf, Saudi 
Arabia) in a flat area at the downstream of the wadi. In latest studies, the GFA tool was 
tested on DEMs with low resolutions 30m for big streams. In the current study, the 
high-resolution DEMs were resampled for different resolutions from 1.0 to 90.0 m and 
then utilized in generating flood plain maps using the GFA tool. The tool was also tested 
for various rainfall depths corresponding to return periods (5, 10, 25, 50 and 100 yr). It 
is worth mentioning that the area denoted as model area in Table 3 is the one where the 
HEC-RAS and the GFI tool are applied, while the catchment area upstream is the one at 
the upstream of the model boundary used in the calculation of Ar in Eq. (1).

Fig. 4  Study areas and the utilized DEM
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4  Results and discussion

The methodology described in Sect. 2 was followed to allow assessing the performance of 
the GFA tool and to deduce flood extents for uncalibrated rainfall events. First, the bench-
mark flood maps for the study areas were generated using HEC-RAS 2D models, with vari-
ous DEM resolutions (cell sizes) and for different terrain types. The 2D models are using 
two types of boundary conditions: flow hydrographs upstream of the 2D flow area and 
rain-on-grid using excess rainfall for the entire 2D catchment area. The input hydrographs 
and excess rainfall depths were used for rainfall events corresponding to various return 
periods (5, 10, 25, 50 and 100 yr).

The assessment of the performance of the GFA tool was analyzed using the following 
process:

4.1  Benchmarks flood extent maps

The obtained benchmark maps, in the 1.0-m-resolution DEM, illustrate the maximum 
flood extents using the input hyetographs or upstream hydrographs. For study areas (B) 
and (C), an inflow hydrograph is added as upstream boundary condition to account for the 
flow from the contributing upstream catchment of the modeled area. As shown in Fig. 5 
for study area (A), the flood extent for 100-yr return period is narrow at the upstream and 
gets wider at the downstream, where the small streams are joining to form a large wadi. 
For area (B), the wadi flood extent for the 100-yr return period is well defined as the cross 
section of the wadi is V-shaped defined and the water depth is high. For area (C), the flood 

Fig. 5  Maximum flood extent of the 100-yr return period for the three study areas
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extent for 100-yr return period is wide as the area is almost flat, and similar results were 
obtained for the resampled resolutions of the DEM.

4.2  Sensitivity of the results to the used evaluation criteria in the calibration

The GFA tool uses a minimum of 2% of the area of the input flood maps generated using 
HEC-RAS 2D models as a reference for the calibration process. The tool converts the ref-
erence floodplain map into a binary map, where “1” represents flooded areas and “0” repre-
sents unflooded areas. To correctly simulate the flood extent, the threshold parameter must 
be calibrated. The threshold ranges from − 1 to 1 where (− 1) means maximum width of 
streams and (1) means minimum width of streams. For study areas (B) and (C), the total 
contributing area is considered in the calculation of GFI values and output thresholds.

Four evaluation criteria were tested: ROC, MCC, F1 and FM to obtain the optimum 
value of threshold and detect the flooded areas at different return periods. Figure 6 indi-
cates that the GFA tool correctly classifies the raster cells as flood-prone areas and non-
flood-prone areas with a probability of success that depends on the terrain types. Figure 6 
as an example shows that, for the study area (A), the GFA tool has also a high success rate. 
It accurately interpolates and estimates missing flood extent. However, in few locations, 
the GFA tool was not able to accurately simulate it. For defined wadi’s topography such as 
study area (B), the GFA tool could generate flood maps with high accuracy very similar to 
the reference maps. For the study area (C), the generated flood extent maps using the GFA 
tool are wider than the reference maps become of the flat topography.

The obtained values of the thresholds for study area (A), shown in Table  4A, range 
between − 0.259 and − 0.747. In general, the absolute value of threshold increases with 

Fig. 6  Flood inundation maps for 100-yr return period for the study areas
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the increase in the rainfall and flood extent. For low-rainfall events, the four evaluation 
methods resulted in similar threshold values and same extents. The values obtained from 
the MCC and ROC methods are very similar across return periods. However, the values of 
thresholds obtained using F1 and FM methods are almost equal for return periods less than 
25 yr. Comparing the four methods for the 100-yr return period, as shown in Table 4B, the 
results show that MCC and ROC methods give better results with accuracy higher than 
85%, and critical success index associated with using MCC is about 0.89, which indicates a 
high similarity between the obtained flood extent maps and the reference maps. Moreover, 
the error bias is about 0.80 which also indicates that the obtained flood extent maps show a 
number of underestimated cells higher than the number of overestimated cells as compared 
to the reference maps.

The obtained threshold values for study area (B) are shown in Table 5A. As the wadi is 
well defined, the absolute values of thresholds are convergent and range from 0.5 to 0.75. 
The output thresholds using F1 and FM methods are almost equal. Table 5B shows that 
the investigated four methods are good for calibration for study area (B) with an accuracy 
higher than ninety percent. Similar to study area (A), the MCC is the best method among 
the four methods to obtain the optimum threshold with a high accuracy of 97% and flood 
extent maps similar to flood maps generated using hydraulic models (HEC-RAS). Further-
more, critical success index associated with using MCC is about 0.97 and the error bias is 
about 1.04 which also indicates that the obtained flood extent maps are neither underesti-
mating nor overestimating the reference flood extents.

Table 6A presents the obtained values of threshold using the four calibration meth-
ods for study area (C). The study area has flat slopes with a wide flood extent. Thus, 
the absolute values of thresholds are high and range between 0.68 and 0.75. Moreo-
ver, the difference between the values of thresholds is small for various return periods. 
Table  6B shows that the four methods are nearly acceptable to obtain the optimum 
thresholds with accuracy higher than 75%. However, the MCC gives the highest accu-
racy of 85% and the critical success index associated with using MCC is about 0.81 

Table 4  Obtained threshold values and comparison between calibration methods for study area (A)

A—Threshold value for each calibration method

Return period t—ROC t—MCC t—F1 t—FM

2 − 0.292 − 0.259 − 0.259 − 0.259
5 − 0.363 − 0.363 − 0.385 − 0.385
10 − 0.384 − 0.384 − 0.427 − 0.427
25 − 0.418 − 0.402 − 0.607 − 0.688
50 − 0.432 − 0.418 − 0.688 − 0.703
100 − 0.450 − 0.426 − 0.703 − 0.747

B—Comparison between calibration methods for event of 100-yr return period

ROC MCC F1 FM

Threshold − 0.450 − 0.426 − 0.703 − 0.747
Accuracy 86% 88% 81% 80%
CSI 0.71 0.89 0.59 0.59
EB 0.73 0.84 2.48 4.01
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while the error bias is about 1.24 which indicates that the obtained flood extent maps 
are overestimated compared to the reference maps.

From the above investigation and the obtained evaluation criteria values, both ROC 
and MCC are best as calibration criteria with an advantage of MCC in all 3 terrain 
types (study areas) as the MCC produces better accuracy and critical success index 
with an error bias close to unity.

Table 5  Output threshold values and comparison each calibration method for study area (B)

A—Threshold value for each calibration method

Return period t—ROC t—MCC t—F1 t—FM

5 − 0.554 − 0.582 − 0.589 − 0.589
10 − 0.615 − 0.631 − 0.631 − 0.631
25 − 0.649 − 0.667 − 0.671 − 0.671
50 − 0.666 − 0.690 − 0.693 − 0.693
100 − 0.679 − 0.708 − 0.750 − 0.750

B—Comparison between calibration methods for event of 100-yr return period

ROC MCC F1 FM

Threshold − 0.68 − 0.71 − 0.75 − 0.75
Accuracy 91% 97% 91% 91%
CSI 0.91 0.97 0.90 0.90
EB 0.84 0.87 0.86 0.86

Table 6  Output threshold values and comparison each calibration method for study area (C)

A—Threshold value for each calibration method

Return period t—ROC t—MCC t—F1 t—FM

5 − 0.728 − 0.728 − 0.731 − 0.736
10 − 0.736 − 0.736 − 0.732 − 0.732
25 − 0.783 − 0.789 − 0.831 − 0.831
50 − 0.789 − 0.848 − 0.873 − 0.874
100 − 0.791 − 0.858 − 0.906 − 0.906

B—Comparison between calibration methods for event of 100-yr return period

ROC MCC F1 FM

Threshold − 0.791 − 0.858 − 0.906 − 0.906
Accuracy 82% 85% 75% 75%
CSI 0.81 0.81 0.74 0.74
EB 0.84 1.24 1.41 1.41
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4.3  Sensitivity analysis of GFI parameters

Various values of parameters a and n were examined to check the sensitivity of changing 
each parameter on the obtained threshold. For the same study areas, results show that dif-
ferent values of parameter (a) with a fixed value of (n) have no impact on the obtained val-
ues of threshold (t). On the contrary, changing the value of parameter (n) has a significant 
effect on the threshold. The optimum values of n range from 0.1 to 0.5 to get the optimum 
values of threshold with high accuracy as shown in Table 7. For defined wadis with suit-
able slopes, such as study area (B), the value of parameter n has no impact on the obtained 
optimum value of threshold.

4.4  Relationships between rainfall depths and threshold values

Figure  7 presents an overall visualization of this sensitivity analysis results. In general, 
there is an increase in the absolute value of threshold with the increase in the rainfall depth. 
The regression analysis shows that square root transformation of the rainfall depth provides 
the highest R2 between rainfall depth and threshold (generated for the thresholds related to 
the 5-yr to 100-yr return periods, obtained using MCC as calibration criterion).

Table 8 shows that there are strong relationships between rainfall depths and thresholds 
with low standard error, significant p-values for all parameters and high adjusted R2. A 
rainfall depth value between rainfall depths of 50- and 100-yr return period is utilized to 
test the predicted thresholds using developed relations.

As shown in Table 9, the predicted threshold shows a high skill in obtaining flood extent 
maps similar to the generated flood extent maps using hydrodynamic models. The accuracy 

Table 7  Obtained threshold 
values for each n value for three 
study areas

n MCC

Threshold Accuracy (%) CSI EB

A—study area (A)
0.1 − 0.426 88 0.89 0.84
0.3 − 0.363 79 0.80 0.75
0.5 − 0.363 79 0.80 0.74
0.7 − 0.222 68 0.78 0.68
1 − 0.097 28 0.48 0.47
B—study area (B)
0.1 − 0.709 97 0.97 0.87
0.3 − 0.709 97 0.97 0.87
0.5 − 0.709 97 0.97 0.87
0.7 − 0.707 97 0.97 0.85
1 − 0.708 97 0.97 0.86
C—study area (C)
0.1 − 0.858 85 0.81 1.24
0.3 − 0.887 84 0.76 1.33
0.5 − 0.890 84 0.75 1.35
0.7 − 0.892 84 0.75 1.39
1 − 0.890 83 0.73 1.39
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of flood extent maps obtained from predicted threshold is from 87 to 98%. Furthermore, 
the critical success index is very high which indicates high rate of true positive values. 
Moreover, the error bias is close to unity which means that number of underestimated cells 
is almost equal to the number of overestimated cells. Figure 8 shows flood extent maps 
generated using HEC-RAS and flood extent maps generated based on the value of thresh-
old calculated from the developed regression equations.

4.4.1  Sensitivity to the DEM resolution

Finally, to investigate the sensitivity of the GFA tool results to the DEM resolution, the 
digital elevation model of study area (A) (originally of 1.0m resolution) was resampled at 
different DEM cell sizes (3.0, 5.0, 10.0, 30.0 and 90.0 m). Figure 9 shows that the relation-
ships between DEM cell size and the obtained threshold values have an asymptotic pattern.

As above shown in Fig. 9, the value of the threshold is constant for various return peri-
ods in DEM resolution of 90 m. As a general trend, the threshold tends to be lower (more 
negative) with coarser resolutions. In fact, the relationship between DEM resolutions and 
the obtained threshold values shows similar patterns for DEM of 1m to 10m resolution. 
The threshold values converge starting from 30-m-resolution DEM.

5  Conclusions

The GFA is a valuable tool for assessing flood risk and understanding the potential impacts 
of flooding in a given area. The tool utilizes advanced geomorphic analysis techniques to 
evaluate the likelihood and severity of flooding. One of the key strengths of the GFI tool is 
its ability to integrate multiple data sources and generate comprehensive flood risk maps, 
as demonstrated by the current study. It is also important to acknowledge that the accuracy 
and reliability of the GFI tool depend on the quality and availability of input digital eleva-
tion model data.

We have investigated the capabilities of the GFA tool to generate inundation maps and 
detect flood-prone areas in various locations in arid regions using digital elevation models 

Fig. 7  Relations between rainfall depths and thresholds for the study areas
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Table 9  Predicted threshold 
values for uncalibrated rainfall 
depth

Study area Rainfall 
depth 
(mm)

Predicted 
threshold (t)

Accuracy (%) CSI EB

(A) 120 − 0.3901 88 0.87 0.852
(B) 50 − 0.6745 98 0.82 0.85
(C) 50 − 0.8324 87 0.87 1.13

Fig. 8  Flood plain maps for tested rainfall events for the study areas

Fig. 9  Threshold values with various DEM resolutions for different return periods
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with high resolutions and applied various rainfall depths corresponding to different return 
periods. The main conclusions drawn from this research could be summarized as follows:

• In the GFA method, the resulting value of threshold is not affected by changing the 
value of parameter (a) while fixing the value of parameter (n) (i.e., no impact on flood 
extent). On the other hand, the obtained value of threshold (t) changes noticeably when 
the value of parameter (n) is changed. The best values of parameter (n) range from 0.1 
to 0.5 in order to obtain the optimum threshold and increase the accuracy of the flood 
extent maps.

• To get more accurate inundation maps in arid regions, the MCC evaluation criterion is 
compared to ROC, F1 and FM evaluation criteria. The outputs show that MCC method 
is the best calibration criterion to get optimum threshold values for different types of 
topographic. Moreover, for large defined wadis MCC and ROC methods could be simi-
lar in obtaining the optimum value of threshold.

• The GFA tool is best suited to predict flood extent maps for areas with high slopes and 
defined streams. Conversely, generating flood extent maps in flat areas with low slopes 
requires more enhancement and research.

• We found that the threshold value has strong relationship with the square root of the 
rainfall depth, which extends the applications of the GFA tool to generate inundation 
maps for uncalibrated rainfall events. Nevertheless, the application of the derived equa-
tion is limited to return periods from 10 yr to 100 yr (or even above).

• For areas with small streams widths, especially in mountains areas, to generate accurate 
flood extent maps, it is recommended to use digital elevation models with high resolu-
tion (cell size equal or less than 10 m). For coarser resolutions, the threshold values are 
similar for various rainfall depths (i.e., the same flood extent is predicted regardless of 
the input rainfall depths).
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