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Abstract
Increased wildfire activity has raised concerns among communities about how to assess 
and prepare for this threat. There is a need for wildfire hazard assessment approaches that 
capture local variability to inform decisions, produce results understood by the public, 
and are updatable in a timely manner. We modified an existing approach to assess decadal 
wildfire hazards based primarily on ember dispersal and wildfire proximity, referencing 
landscape changes from 1984 through 2014. Our modifications created a categorical flam-
mability hazard scheme, rather than dichotomous, and integrated wildfire exposure results 
across spatial scales. We used remote sensed land cover from four historical decadal points 
to create flammability hazard and wildfire exposure maps for three arctic communities 
(Anchorage and Fairbanks, Alaska and Whitehorse, Yukon). Within the Fairbanks study 
area, we compared 2014 flammability hazard, wildfire exposure, and FlamMap burn prob-
abilities among burned (2014–2023) and unburned areas. Unlike burn probabilities, there 
were significantly higher in exposure values among burned and unburned locations (Wil-
coxon; p < 0.001) and exposure rose as flammability hazard classes increased (Kruskal–
Wallis; p < 0.001). Very high flammability hazard class supported 75% of burned areas and 
burns tended to occur in areas with 60% exposure or greater. Areas with high exposure 
values are more prone to burn and thus desirable for mitigation actions. By working with 
wildfire practitioners and communities, we created a tool that rapidly assesses wildfire haz-
ards and is easily modified to help identify and prioritize mitigation activities.
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1 Introduction

Wildfire activity around the world has been increasing, and there appears to be no indica-
tion that feedback mechanisms will limit increases (Abatzoglou et al. 2021; Barlow et al. 
2020; Chisholm et al. 2016; Grabinski and McFarland 2020; Kelly et al. 2020). Reasons for 
this increase include historic fire suppression (Doerr and Santin 2016; Parisien et al. 2020; 
Parks et  al. 2015), climate change (Abatzoglou and Williams 2016; Mueller et  al. 2020; 
Schoennagel et al. 2017; Scholze et al. 2006), land use (Silveira et al. 2020), and vegetation 
shifts (Hagmann et al. 2021; Schoennagel et al. 2017). Coupled with the rapid expansion of 
the transition zone between forested areas and human development often called the wild-
land–urban interface (WUI) (NWCG 2009; Radeloff et al. 2018) places thousands of com-
munities at risk (NASF 2021). The US Forest Service has gone as far as to say the USA 
is dealing with a wildfire crisis (USFS 2022). National efforts have been made to assess 
wildfire hazards and risks, but often they do not incorporate localized datasets (Scott et al 
2020), lack regional factors (USFS 2020), and utilize a spatial resolution that is too coarse 
to be used effectively by communities (Ager et al. 2015). For example, one national effort 
only has two categories for wildfire risk in Anchorage, Alaska, which is not overly help-
ful for making local decisions (USFS 2020). Ager argues for a more localized approach 
that aligns with planning and actions. Our proposed method uses a finer spatial resolution 
(30  m) that captures more subtleties than national efforts that is regionally adjusted for 
Alaska (Napoli et al. 2021; USFS 2020). There is a critical need to provide concrete infor-
mation about the hazards and risks that these high-latitude communities face given they 
are faced with increased wildfire activity (Grabinski & McFarland 2020; York et al. 2020), 
losses of homes and property due to wildfire (Bhatt et al. 2021; Rasker 2015), and a wild-
land–urban interface (WUI) on the precipice of potentially deadly events, given shrink-
ing wildland fire response crews and capacity (Thompson et al. 2023). While it has been 
acknowledged that wildfire activity is increasing in the Arctic (Kelly et al. 2013; Masrur 
et al. 2018), very little work has been done to assess wildfire hazards and risk in northern 
boreal and tundra ecosystems (Wimberly et al. 2004; Zhang et al. 2021).

Currently, wildfire risk assessment processes use fire spread models to determine the 
manifest hazard (Parisien et al. 2019, 2005; Scott 2013), estimating exposure based on the 
modeled fire intensity at each location. These fire models demand detailed descriptions 
of fuelbed characteristics, windspeed and direction, fuel moisture and flammability, and 
terrain characteristics to model fire spread and intensity. They combine a measure of burn 
frequency with the estimated intensity to produce the exposure estimate, subject, of course, 
to the accuracy of the critical assumptions required for all these listed factors. We modi-
fied the wildfire exposure assessment method (Beverly et al. 2010, 2021) to determine the 
likelihood and significance of wildfire flammability hazards to the values at risk in com-
munities of interest. Our paper builds on the original method by using the Alaska model 
fuel guide (AWFCG 2018) to inform changes from dichotomous flammability scores into 
categorical values that provide a deeper understanding of the hazard at its source location.

Promoting wildfire-resilient communities is not only about identifying hazards and 
risks, but also about effectively communicating these. The National Fire Plan strategy 
emphasizes information sharing and gathering feedback (USDA 2001). There is a criti-
cal need for wildfire risk mapping tools that can be easily understood and used by com-
munities and land managers to promote wildfire-resilient communities (Cao et  al. 2016; 
Meyer et  al. 2015; Mozumder et  al. 2009). The modified exposure method is still rapid 
and straightforward, uses fewer subjective inputs, and produces results comparable to more 
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complicated processes (Beverly et al. 2010, 2021). One issue we identified with our public 
engagement was the confusion caused by using various scales to assess wildfire hazards 
which are based on dispersal mechanism and wildfire proximity (i.e., long and short dis-
tance). This can be confusing when attempting to communicate science. Which product 
should be displayed to the public? Which classification should be used for fuel treatment 
planning? We further refined the exposure method to provide a single integrated output that 
can be displayed and used by public and wildfire practitioners; it integrates wildfire expo-
sure derived from differing hazards where appropriate. The integrated approach provides a 
clearer understanding of wildfire hazards without overstating the hazard or minimizing the 
threat from the landscape-level process.

This study is intended to demonstrate that the exposure assessment method employed 
here is simple and adaptable enough to be used as frequently as needed to update condi-
tions based on changes in hazards after wildfires and specific fuel treatments intended to 
reduce hazards. The ability of this exposure method to effectively represent changes over 
time will be shown using four decadal (1984, 1994, 2004, and 2014) instances in three 
Arctic communities (Anchorage and Fairbanks, Alaska, USA and Whitehorse, Yukon, 
Canada). Each is in the boreal forest but reflects different ecoregions, wildfire histories, 
and social demographics. However, among them, the landscape characteristics are of par-
amount importance. There is a critical need to support easily applied methods that can 
assess wildfire hazards and the threats they pose, provide information that can be used for 
hazard fuel reduction actions like fuel treatments and other actions, and provide tools that 
can be easily used by land managers and wildfire practitioners.

2  Study areas

Our three study areas (Fig.  1) include two areas from Alaska, USA—Anchorage (2704 
 km2) and Fairbanks (15,077  km2)—and one from the Yukon Territory, Canada—White-
horse (12,305  km2). They were selected because they contain a large WUI within the 
Arctic boreal forest region and communities expressed interest in assessing hazards. The 
Municipality of Anchorage (n = 291,247 population) boundary defines this study area and 
encompasses the largest community in the North America Far North: Anchorage proper 
(n = 288,970) and several other smaller communities (US Census Bureau 2020). This area 
is greatly influenced by a maritime environment with mild summers (July mean = 14.3 °C) 
and a moderate amount of annual precipitation (mean = 839 mm). To the north, the com-
munity of Fairbanks (n = 31,410) has hotter summers (July mean = 17.6 °C) and minimal 
precipitation (mean = 375 mm) (Climate data 2022) and is the largest community within 
the Fairbanks North Star Borough (FNSB, n = 95,655). Our boundary for this region was 
chosen based the boarders of the FNSB, where residents live within those boundaries, pre-
viously collected aerial imagery, and a sufficient buffer to allow wildfire to move into the 
region. Whitehorse is the capital of Yukon and its largest community (n = 28,201; Statistics 
Canada 2021). The study area boundaries were drawn with community wildfire experts to 
capture surrounding communities and likely directions that would capture encroachment of 
a wildfire, especially from the south. The climate in Whitehorse comprises cooler summers 
(July mean = 13.1 °C) and moderate precipitation (463 mm) (Climate data 2022).

Burnable areas within our study areas differ (Table 1) due to maritime influence on cli-
mate and vegetation, topography, and population density. Burnable areas are defined as 
places not covered by ice, glacier, water, or barren. Historically and recently, Fairbanks 
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Fig. 1  Three study areas in Anchorage and Fairbanks, Alaska and Whitehorse, Yukon used for our wildfire 
exposure analysis. Boundaries reflect either local government jurisdictions with refinements based on where 
residents live or suggestions from local authorities

Table 1  Wildfire history within the landscape in the three AURA community study areas. Burnable areas 
are places not covered by ice, glacier, water, or barren

Time Period

1974–1983 1984–1993 1994–2003 2004–2013 Initial 
burnable 
area  (km2)

Anchorage Number of fires 171 88 81 138 1,898
Area burned  (km2) 6.3 1.2 3.3.0 7.9
% Change in burnable area − 0.3% − 0.1% 0.4% − 0.2%

Fairbanks Number of fires 686 1083 835 723 14,591
Area burned  (km2) 339.2 213.8 183.0 3032.8
% Change in burnable area − 2.3% − 1.5% − 1.3% − 20.8%

Whitehorse Number of fires 237 371 283 122 10,986
Area burned  (km2) 0.42  km2 9.4 82.6 0.24
% Change in burnable area 0.0% − 0.1% − 0.8% 0.0%
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has had the most area burned, with 20% of the landscape burning in the last decade com-
pared to less than 1% in the other two areas. The higher portion of the landscape burned 
in Fairbanks reflects the lack of a maritime influence, resulting in warmers summers with 
more lightning activity and the greater extent of woodland and boreal black spruce forests 
encouraged by widespread permafrost.

3  Methods and data

3.1  Land cover classification resource and area modifications

We used the Arctic Boreal Vulnerability Experiment (ABoVE) Landsat-derived annual 
dominant land cover classification, which provides a critical depiction of land cover that 
encompasses all three community areas (Wang et al. 2019). It provides 31 annual depic-
tions (1984–2014) that capture changes due to disturbances and development that can 
inform projections of change in the future. No other dataset was found that could provide 
a combination of classification accuracy and precision, resolution of spatial distribution, 
or history of landscape changes that were critical to evaluating changes to hazard and risk 
across the three areas (NALCMS 2015; NRC 2015; Landfire 2016; NLCD 2016).

We used four years to represent historic decadal instances (1984, 1994, 2004, and 2014) 
for this wildfire hazard assessment. Of these, 2014 represents the baseline landscape char-
acterization to which other instances are compared because it is the most current and most 
recognizable by residents. The land cover classification includes 16 categories (Table 2) 
while providing important distinctions in non-forest and disturbed categories. It includes 
the unnamed NA class, which generally represents persistent ice and snow at high eleva-
tions. The ABoVE data have a single evergreen category, although those forests are domi-
nated by different evergreen species combinations. Evergreen tree species can vary in their 
flammability and wildfire behavior so we found it necessary to refine this category to con-
tain black and white spruce, hemlock, lodgepole pine, and subalpine fir depending on the 
study area (Online Appendix 1). For each decade, we distinguished four additional ever-
green categories that were reclassified from the evergreen forest class based on the ecore-
gion and vegetation native to each study area (Online Appendix 1) (Wiken et  al. 2011). 
This breakdown allows us to highlight important variations found in each of the three areas.

In boreal Alaska, there are two dominant evergreen forests: black spruce (Picea mari-
ana) and white spruce (Picea glauca). Black spruce prefers acidic, poorly drained soils; 
white spruce is more often found on well-drained, south-facing slopes (VanCleve and Vier-
eck 1981; Viereck and Little 1972). In the Whitehorse area, the evergreen forest is pri-
marily dominated by white spruce and/or lodgepole pine (Pinus contorta). We trained a 
gradient boosted decision tree machine learning model using the XGBoost package (ver-
sion 1.0.1) in R (version 3.6.3, https:// xgboo st. ai/) using aspect, slope, elevation, climate 
factors, pH, and time since last fire to differentiate evergreen forests dominated by black 
spruce and other spruce in Anchorage and Fairbanks, and in Whitehorse lodgepole pine 
was differentiated from other spruce (Calef et al. 2023). The boost approach uses multiple 
random decision trees to correct prediction errors (Chen and Guestrin 2016). In Fairbanks, 
the other evergreen category represents white spruce. However, in Anchorage and White-
horse there was a need to further reclassify the other evergreen category because of the 
diversity in the evergreen present.

https://xgboost.ai/
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In Anchorage, the other spruce was further distinguished with hemlock (Tsuga 
mertensiana). The flammability of hemlock was differentiated from spruce in an ear-
lier land cover classification used for wildfire hazard assessment (Goodrich et al. 2008). 
In each decadal land cover classification, other evergreen forests were reclassified, and 
hemlock forests were identified in an earlier assessment. The remaining evergreen for-
ests represent white spruce. In Whitehorse, we added subalpine fir (Abies lasiocarpa) 
forests as distinct and important evergreen forests. To identify them, we used a 5  K 
vegetation inventory dataset that covered 63% of our study area (Government of Yukon 
2012). In areas overlapping the other evergreen category in ABoVE and the subalpine 
fir in the 5  K dataset, the other evergreen forest was reclassified as subalpine fir. For 
areas not covered by the 5  K dataset, we first determined a lower elevation threshold 
for subalpine fir since it is known to grow at higher elevations (610–1524 m) (Alexan-
der et al. 1984; Government of Yukon 2022). Areas on the 5 K map were reclassified 
as subalpine fir if they were other evergreens and above 1200  m. Like Fairbanks and 
Anchorage, the remaining other evergreen represents white spruce. Decadal vegetation 
datasets are archived with the NSF Arctic data Center (https:// arcti cdata. io/).

Table 2  Hazard rating assignments for cover types used in classifying the landscape in the three AURA 
study areas. The areas are Anchorage (A), Fairbanks (F), Whitehorse (WH), and all three (All). Published 
methods are based on previous work (Beverly et al. 2010, 2021) and modified as described in the methods 
section

Dom Veg Type Published Method Hazard 
Ratings

Modified Hazard Ratings Hazard Class

500 m 100 m 30 m 500 m-adj 100 m-adj

All Evergreen Forest 1 1 1 100 100 Very High
All Woodland 1 1 1 100 100 Very High
F, Wh Mixed Forest 1 1 1 75 75 High
A Mixed Forest 1 1 1 50 75 Mod/ High
All Open Shrub 0 1 1 20 50 Low/Mod
All Tussock Tundra 0 1 1 20 50 Low/Mod
All Fen 0 1 1 20 50 Low/Mod
All Low Shrub 0 0 1 6 30 Low
All Tall Shrub 0 0 1 6 30 Low
All Herbaceous 0 0 1 6 30 Low
All Sparsely Vegetated 0 0 0 0 0 Very Low
All Bog 0 0 0 0 0 Very Low
All Shallows/Littoral 0 0 0 0 0 Very Low
All Barren 0 0 0 0 0 Very Low
All Water 0 0 0 0 0 Very Low
All NA (Ice/Snow) 0 0 0 0 0 Very Low
Vegetation Classification Modifications
A, F Black Spruce 1 1 1 100 100 Very High
Wh Lodgepole Pine 1 1 1 100 100 Very High
Wh Sub-Alpine Fir 1 1 1 75 75 High
A Hemlock 1 1 1 20 50 Low/Mod

https://arcticdata.io/
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3.2  Boreal wildfire exposure assessment methods

The only assumptions imposed on exposure assessment are the flammability hazard rating 
based on land cover type and the distance from which the hazard (embers transmission and 
surface intensity) can effectively be projected. With its use of circular neighborhood focal 
statistics of hazard ratings (ArcGIS Pro 2.9.1), exposure ranking makes no assertion about 
wind speed and direction, fuel moisture and drought, or the topography of the landscape 
(Beverly et al. 2010). Instead, our basic assertions of hazard potential are employed to esti-
mate the relative likelihood of impact without an attempt to produce simulated probabili-
ties. This approach shifts attention to distribution and relative flammability of vegetative 
cover in our study areas.

The original wildfire exposure assessment method identifies 500, 100, and 30 m expo-
sure neighborhoods. The 30 m neighborhood was not practical with the available 30 m 
land cover data. Figure 2 outlines the exposure assessment method adapted from the pub-
lished method (Beverly et al. 2010, 2021). The initial two steps are the same: vegetation 
classification into a flammability hazard rating and the creation of exposure within defined 

Fig. 2  Exposure assessment method process flowchart adapted from Beverly et al. (2010, 2021). Boxes rep-
resent maps produced
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surrounding spatial neighborhoods. The three differences are (1) changing from a dichoto-
mous classification of the flammability hazard rating (see next section), (2) the use of the 
30 m (m) hazard classification to inform the flammability hazard rating at the 100 and 500 
m scales, and (3) the integration of 500 and 100 m to create an integrated exposure map.

3.3  Flammability hazard rating

Hazard is any condition that can cause damage, loss, or harm to people, infrastructure, 
equipment, natural resources, or property (Scott 2013). In the case of a wildfire, anything 
that can burn during a fire (i.e., fuel) is a hazard (USDOI 2015). The first step is to reclas-
sify land cover into a flammability hazard, which is based on the potential for each land 
cover class to burn with sufficient intensity to threaten nearby values. Land cover clas-
sifications do not explicitly characterize fuel and flammability distinctions; however, we 
found flammability distinctions, and the resulting hazard ratings, to be closely related. The 
original exposure approach treated hazard potential at the most basic level, assigning ones 
or zeros (true or false). We have modified the approach to provide a more nuanced, scaled 
hazard rating from 0 to 00 (Table 2). The intermediate ratings give the hazard classification 
finer spatial resolution because they identify more of the variation in vegetation and flam-
mability. Table 2 shows how the vegetation types produced for the three areas are reclassi-
fied into flammability hazard ratings and class. The three intermediate hazard classes were 
identified to reflect vegetation (moderate hazard) that becomes a hazard at the 100 m analy-
sis radius and then separately vegetation (low hazard) that becomes a hazard at the 30 m 
analysis radius in the published method, representing progressively less hazardous vegeta-
tion. Mixed forest is a combination of evergreen and deciduous, so that value was reduced, 
but still kept higher because of the presence of highly flammable evergreen. Online Appen-
dixes 2 and 3 provide descriptions of each land cover class and how they relate to flamma-
bility and wildfire activity.

The two neighborhood sizes considered, 500 and 100 m circles, reflect two primary 
wildfire threats, long- and short-range spotting potential (Fig. 2) that includes some con-
sideration of direct fire impact. The larger search radius emphasizes the long-range spotting 
potential associated with evergreen and mixed forests; the smaller radius incorporates addi-
tional intermediate hazard emphasis for other land cover types that can produce short-range 
spotting and sufficient surface intensity as threats (Online Appendixes 2 and 3). Crown fire 
and the associated torching/spotting fire behavior potential provide the maximum hazard 
in the assessment process. A score of 1 (published method) or 100 (modified method) was 
reserved for the spruce, lodgepole pine, and woodland types, which are most likely to pro-
duce significant crown fire behavior or torching frequency and spotting distance (Table 2). 
Ratings are higher for the 100 m than 500 m scale because it reflects more intense fire 
activity closer to threatened values. Based on local observations in Anchorage, the mixed 
forest category within the ABoVE data is largely dominated by less flammable deciduous 
canopies after several recent spruce beetle infestations, so it was given a lower hazard rat-
ing (50) than Fairbanks and Whitehorse (75) (Table 2).

3.4  Wildfire exposure ranking

The second step integrates individual flammability hazard ratings into a composite ranking 
for the 500 m (0.7  km2) and 100 m (0.03  km2) circular neighborhoods surrounding individ-
ual locations (Fig. 2). Assumptions about the hazard (spotting distances, spotting potential, 



4909Natural Hazards (2024) 120:4901–4924 

1 3

and surface fire intensity) are inferred in the neighborhood radius to represent compara-
tive wildfire exposure rankings. The focal statistic tool is used to sum the hazard rating 
within the 500 and 100 m circles surrounding each raster location. To produce a more eas-
ily understood exposure ranking, the result is divided by the number of cells within each 
circle (797 or 29) and rounded to an integer value for a result between 0 and 100. There 
is an edge effect for our study areas as the distance to the area boundary falls below 500 
or 100 m, depending on the radius used. But given the size of our study areas, the edge 
effects are minimal. With these rankings, the threat to values distributed across the study 
areas can be compared by referencing the wildfire exposure at each location. Exposure is 
the potential contact of an entity, asset, resource, system, or geographic area with a hazard 
(Thompson et al. 2016). Exposure classes were created based on exposure values: very low 
(0–19), low (20–39), moderate (40–59), high (60–79), and extreme (80–100). To explore 
changes in exposure over time, we calculated the percentage of areas within each exposure 
class and the mean exposure value across decades and among the three study areas.

3.5  Integrating exposure rankings

The 100 and 500 m exposure assessments need to be applied across analysis areas where 
each is most appropriate and integrated into a single product that distributes exposure based 
on both assessments. These exposures are not fully independent because long-range spot-
ting reflected in the 500 m radius can bring the threat within the 100 m radius, nor are they 
contingent because fires can threaten independently from distant and nearby sources. This 
integration needs to reflect the higher ignition frequency found concentrated in areas of 
human habitation and activity. And it needs to address the more local threat of fires within 
those same areas due to increased frequency of barriers to fire spread and the more effec-
tive suppression response to protect values there. The 100 m analysis radius emphasizes 
the hazards close by and reflects the increased frequency of wildfires, especially human 
caused, by evaluating hazard ratings within the much smaller analysis area (0.03  km2 for 
100 m radius versus 0.72  km2 for 500 m radius).

To emphasize these nearby ignitions and smaller fire sizes, structures have been iden-
tified as the locations where key values exist and where human ignitions are common 
and problematic. Represented with a 500 m buffer around all structures in each study 
area, the area can be considered our delineation of the WUI extent. Structure informa-
tion was obtained for each decade to the extent possible for each community. We started 
with the current buildings layer (i.e., near 2014) for each community and then worked 
backwards through the decades deleting buildings that were not observed with aerial 
imagery. Supplementary information from Microsoft buildings was used for 2014 as 
needed (Microsoft 2018). As we went back to the 1980s coverage for the entire study 
areas was not available, so we used the 1994 and if there was no historic imagery for 
1984 the buildings remained in place. The Municipality of Anchorage (MOA) in-house 
GIS department provided aerial imagery from 1990 (1 m), 2004/2006 (1 m), and 2015 
(1 m) that covered the entire area with limited details (MOA 2019). For 1984, we used 
Landsat (30 m) (USGS 2023), but it only covered the immediate Anchorage area (out-
lying communities were excluded) and it was primarily used to identify larger areas 
that were not disturbed in 1984 compared with 1994. In Fairbanks, the FNSB provided 
pictometry data for 2014 and 2009 with a meter or less resolution (FNSB 2019). Spot 5 
data from 2003 and 2004 (2.5 m) and a combination of Quickbird (2.8 m, 2002–2003) 
and Digital Ortho Quad (1 m, 2007) were used for 2004. Orth mosaiced images from 
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2006 created by the City of Whitehorse were used, but again we were limited to the 
Whitehorse city limits with our data (City of Whitehorse 2006). Alaska High Altitude 
Aerial Photography from 1985 was used (NASA 1986) provided excellent detail for 
buildings, but the extent was limited to the city of Fairbanks (outlying communities 
were excluded). Government of Yukon provided aerial imagery for 2014 (Yukon 2019) 
and we used background imagery in ArcGIS Pro. Orthomosaiced imagery from 2006 
was obtained from the City of Whitehorse (City of Whitehorse 2006). The National Air 
Photography Library of Canada from 1985 and 1995 was used which provided excellent 
detail for buildings, but the extent was limited to the city of Whitehorse (outlying com-
munities were excluded) (NRC 2022a, b).

Integration of the two assessments could simply assign the 100 m exposure ranking 
for areas within the 500 m structure buffer and the 500 m exposure ranking elsewhere. 
However, while the 100 m exposure distributions generally produce higher exposure, 
there are situations where the exposure is directly from long-range spotting, especially 
when structures are themselves highly flammable and where the nearby cover produces 
low exposure estimates. Integration of these exposures should assume the maximum 
exposure from the two assessments within a neighboring area around the identified val-
ues and utilize the 500 m exposure elsewhere. Within this 500 m structure buffer area 
used the higher of the two raster values, comparing the 100 or 500 m exposure rank-
ings at each location. This 500 m structure buffer changed each decade based on the 
spatial distribution of structures. Not having an urban category in the ABoVE database 
surprisingly was a strength because it allowed us to capture vegetation nestled between 
structures in the WUI extent. Outside this area, we used the 500 m exposure value. The 
integration of the modified 100 and 500 m scales within a 500 m buffer has the potential 
to affect the distribution of exposure values within the WUI. To assess the influence of 
the two scales on exposure, we calculated the total area where the exposure value was 
greater within the 100, 500 m, or equal to the 500 m buffer of structures in our study 
areas. The decadal vegetation datasets are archived with the NSF Arctic data Center 
(https:// arcti cdata. io/).

3.6  FlamMap wildfire modeling

We used FlamMap (Finney 2006) to calculate burn probabilities for the Fairbanks study 
area since this was the only area with significant wildfire activity. The goal was to com-
pare how well wildfire exposure versus burn probabilities aligned with subsequent wild-
fire activity (2014–2023, total 959.1  km2). We classified the exposure into the five cat-
egories listed above and used Jenks natural breaks (Jenks 1967) on the entire study area 
to identify five classes of burn probabilities. We calculated the percent of each class 
for the entire study area and within burned areas. Based on a wind rose from the Fair-
banks International Airport for the fire season (June–August, 2000–2020, 1200–2200 h) 
(IEM 2022), we ran two FlamMap simulations with 20 mph wind directions from the 
west–southwest and northeast. The crosswalk table to create the landscape file was cre-
ated using the Alaska fuel model guide (AWFCG 2018; Online Appendix 4). The fuel 
moisture settings were determined using crosswalks from calculated fuel moisture codes 
in 2014 using the same weather station (AFF 2022; Online Appendix 4). The simulation 
was run with human ignitions (1974–2000; AICC 2023) and then 76,817 random igni-
tions each for a 600-min simulation with a 0.15 spotting probability.

https://arcticdata.io/
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3.7  Validation of products

Flammability hazard ratings represent the source of the wildfire threat. To be effective, 
the hazard rating for each land cover type needs to demonstrate its differential flamma-
bility in burned area frequency. Therefore, land cover and flammability classes in the 
high to very high categories should occur more often than other classes within areas 
that have burned because their properties are more likely to produce threatening fire 
behavior. In turn, burned area should occur in areas with higher exposure values if 
exposure represents likelihood effectively. Based on these assumptions, exposure values 
should be greater in burned than unburned areas and this should hold true among each 
flammability hazard class. The Fairbanks study area experienced the greatest extent of 
fire disturbance among the three areas (Table 1) so we used the wildfire history in this 
are to assess whether there were significant differences in the area burned among the 
hazard classes and the vegetative types included. To account for spatial autocorrelation, 
we created a 500-by-500 m grid and, at the centroid of each cell, recorded the integrated 
exposure values, flammability hazard class, and land cover. An Anderson–Darling nor-
mality test (Thode 2002) on the exposure values indicated that they were non-normally 
distributed (Online Appendix 5), we used nonparametric statistics (R package nortest; 
n = 55,292, A = 1165, p value < 0.001). We used wildfire scars for Alaska to identify 
whether each centroid was burned or unburned between 2014 and 2023 (AICC 2023). 
To determine whether there was a significant difference in the distribution of the expo-
sure values between burned and unburned areas we used the post hoc Wilcoxon rank-
sum test (Wilcoxon 1945). To visualize the difference, we created cumulative distribu-
tion curves of exposure values for burned and unburned centroids. The nonparametric 
Kruskal–Wallis test was used to test if the exposure distribution differed significantly 
among any flammability hazard classes (Kruskal and Wallis 1952). This was followed 
up with a Dunn’s test to post hoc test for differences among each flammability hazard 
class comparison (Dunn 1964). Meanwhile to test for differences between the classes, 
we used the Wilcoxon rank-sum test with a Bonferroni correction since multiple tests 
were performed (Benjamini and Yekutieli 2001). An exact binomial test was used to 
assess whether the distributions of land cover differed between burned and unburned 
areas (Clopper and Pearson 1934). This test was only done on land cover types that were 
present more than 10 times within a category. All statistical tests were performed with R 
(version 4.3.1) at the 5% significance level.

4  Results

4.1  Overview

The land composition of the three areas differed, with Anchorage containing the least 
amount of burnable land, due in part to the large urban footprint and mountainous 
regions (Table 3; Fig. 3). Nearly half of the land cover in Fairbanks (46%) and White-
horse (48%) has a very high flammability hazard rating, while only 10% of this class 
occurs in Anchorage. Even though Fairbanks and Whitehorse have comparable amounts 
of flammable land cover types, wildfire activity in Fairbanks is much greater than in 
Whitehorse (Table  1). This translated into a greater percentage of the 2014 exposure 
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values occurring within the very high category in Fairbanks (32%) and Whitehorse 
(32%), with only 1% in this class for in Anchorage.

4.2  Flammability hazard ratings

Figure 4 illustrates the use of the land cover layer to create the original and our modified 
flammability hazard ratings. The use of a range (0–100) allows for more insight into the 
distribution of hazardous fuels than the original binary classification system.

Figure 5 shows that while there is a significant plurality with 46% of the land area in 
the very high flammability hazard class (rating of 100) while the very high hazardous area 
supported 75% burned areas. The distribution of flammability hazard classes between 
burned and unburned areas among land cover types was significantly different (χ2 = 33,518, 
df = 16, p < 0.001). When the burned area in each hazard class is divided by the total land 
area in that hazard class, the percentages are distinctly highest (11%) in the very high class 
and decline (as intended), as shown in the inset table in Fig. 5.

4.3  Exposure ranking assessment

Exposure values from 2014 in burned versus unburned areas were significantly different 
(Wilcoxon rank-sum test, W = 143,926,461, p < 0.001). Mean exposure values of burned 
centroids were nearly 50% higher (n = 3,792; mean = 79.11; Std = 24.0) than unburned 
(n = 51,490; mean = 54.6; Std = 30.9). A cumulative distribution showed 80% of the burned 
distribution is composed of exposure values 63 or higher, while unburned areas the 80% 

Table 3  Comparison of 2014 
land cover distributions among 
three AURA areas in this 
assessment. Land cover based 
on ABoVE NASA data (see 
methods). Data are sorted from 
highest hazard class to lowest. 
Non-burnable areas are ice, 
snow, water, and barren

Land cover class Anchorage (%) Fairbanks (%) Whitehorse (%)

Black spruce 0 19 NA
Lodgepole pine NA NA 13
White spruce 5 8 26
Woodland 4 20 8
Mixed forest 13 9 2
Subalpine fir NA NA 8
Fen 1 6 3
Hemlock 2 NA NA
Open shrubs 3 0 2
Tussock tundra 0 0 0
Deciduous forest 8 9 1
Herbaceous 17 5 8
Low shrub 0 4 3
Tall shrub 9 10 8
Barren 22 2 5
Bog 0 0 0
Ice/snow 6 0 0
Shallows/littoral 0 0 0
Sparsely vegetated 8 7 8
Water 2 1 5
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Anchorage

Fairbanks

(With 2004-
2013 

wildfire 
perimeters)

Whitehorse

Legend

Study area 2014 ABoVE land cover 2014 Flammability hazard 2014 Wildfire exposure

Fig. 3  Results from the land cover, hazard flammability rating (500 m), and integrated wildfire exposure 
ranking among Anchorage (row 1), Fairbanks (row 2), and Whitehorse (row 3) study areas in 2014

Fig. 4  Land cover; legend in Fig. 3 (a) and flammability hazard for an area near a high school in Anchor-
age. Published method 500 m hazard (b) and modified hazard ratings (c), as described in Sect. 2.3.1



4914 Natural Hazards (2024) 120:4901–4924

1 3

distribution includes values down to 22 (Online Appendix 5). The box plot in Fig. 6 shows 
the utility of exposure rankings for distinguishing burned and unburned locations in each 
hazard class, with median values for burned areas distinctively higher. In fact, important 
thresholds in exposure rankings can be recognized, with levels of around 30 (lowest 25th 
percentile levels of burned exposure distributions) providing an important minimum for 
identifying any plausible threat and around 70 (low whisker bound for burned high and 
very high hazard classes) for elevated likelihood. Figure 6 illustrates the difference between 
hazardous fuels and exposure with the outliers observed among the lowest and highest 
hazard classes. Kruskal–Wallis test indicated a significant difference in exposure distribu-
tions (χ2 = 31,043, df = 4, p < 0.001) among flammability hazard classes (Fig. 6), while a 
Dunn’s test showed a significant difference in exposure distributions among the flammabil-
ity hazard classes (Online Appendix 5). Since exposure is smoothed you can have inter-
spersed highly flammable vegetation and unburned within each flammability hazard class 
(Kruskal–Wallis χ2 = 31,095, df = 4, p < 0.001).

Areas that burned tended to occur in areas with wildfire exposure scores in the higher 
categories, unlike burn probabilities (Table  4). Instead the majority of burned areas fell 

Fig. 5  Hazard rating distribution by vegetation type for all lands and for burned areas in Fairbanks. The 
burned area is divided by all land areas in each flammability hazard class to portray the relative likeli-
hood (burned/all) of burning across the Fairbanks landscape. Numbers indicate the hazard rating at the 
500 m/100 m scale. aIndicates a sample size < 10, so no binomial is test performed. All other vegetations 
had a significantly different distribution between burn than null (binomial exact test, p < 0.001)
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within the second lowest burn probability category. The difference between burn probabili-
ties in burned areas (mean = 0.005; Std. = 0.003) and unburned (mean = 0.004; Std. = 0.006) 
was negatable.

4.4  Integrated exposure

Figure 7 shows the results from the modified (a) 500 m (b) and 100 m scales along with (c) 
their integration. The modified 500 m exposure ranking result shows broad gradients that 
range from extreme exposure outside developed areas to very low exposure in the heart of 
structure concentrations. In Fig. 7b, the 100 m exposure result exhibits both more extreme 

Fig. 6  Box plot of 2014 integrated exposure values by burned (2014–2023) and unburned areas among 
flammability hazard classes with the median, 25th, and 75th percentile. Whiskers indicate a value 1.5 
times the percentile, and dots indicate values more than 1.5 times the percentile. Values are the number of 
points within each box plot. Significant differences in exposure distributions occurred between burned and 
unburned (Wilcoxon), among flammability hazard classes (Kruskal–Wallis), and within each flammability 
hazard class (Wilcoxon; Online Appendix 5)

Table 4  Distribution of wildfire exposure (2014) and burn probability from Flammap within burned and 
unburned (2014–2023) areas with the Fairbanks study area. Wildfire exposure categories are 0–20%, 
20–40%, 40–60%, 60–80%, and 80–100%. Categories for burn probability are based on Jenks (1967) natu-
ral breaks (0–0.002, 0.002–0.007, 0.007–0.015, 0.015–0.029, 0.029–0.066)

Categories Wildfire exposure Burn probability

Unburned (%) Burned (%) Unburned (%) Burned (%)

1 (lower) 18 4 43 12
2 17 7 37 68
3 17 9 16 19
4 18 16 3 1
5 (higher) 31 65 2 0
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and very low exposure areas bounded by tight gradients between them. In multiple exam-
ples, extreme fire events, such as boreal crown fires, have proven the ability to penetrate 
deep into developed areas, suggesting that exposure is higher than estimated by the very 
low 100 m levels shown in this example. Capturing wildfire exposure rankings is important 
for communities that have interwoven vegetation and development such as our three com-
munities: Anchorage (max: 28%, 100 m: 28%; 500 m 3%), Fairbanks (max: 53%, 100 m: 
49%, 500 m: 36%), and Whitehorse (max: 62%, 100 m: 54%; 500 m 51%).

The maximum exposure assessment within 500 m of structures (Fig. 7c) derived from 
the 100 and 500 m exposure results exhibits important similarities when compared to the 
100 m assessment. Many of the extreme exposure features displayed in the 100 m assess-
ment are retained. However, much of the very low hazard in the immediate vicinity of 
structures has been increased to reflect the slightly higher hazard from the 500 m assess-
ment, which reinforces the wildfire hazard potential surrounding structure locations in the 
Whitehorse study area.

Exposure values were lowest among the Anchorage study area and the WUI (Table 5). 
Most of the study area in Anchorage was in very low exposure, but among where resi-
dents live, the most common classification was low. In the Fairbanks and Whitehorse study 
areas, both residents and the entire area were more often in very high exposure. Whitehorse 
has nearly a quarter of the study area within very low exposure, but this has declined over 
the decades as the presence of very high exposure has increased (Table 5).

5  Discussion

5.1  Overview

In the case of the boreal communities studied here, the significant and growing threat 
comes primarily from large fire growth arising from crown fire potential of evergreen trees 
and flammable shrubs that can advance fires past barriers and less flammable vegetation 
(Westhaver 2017). Only once fires reach the immediate vicinity of values in these com-
munities is the potential influence by surface fuels and intermediate fire intensities sig-
nificantly represented. The exposure assessment method described here provides a rapid 
tool that communities can use for assessment and to make informed mitigation and plan-
ning decisions. The increase in wildfire activity (Abatzoglou et al. 2021; Bhatt et al. 2021; 
Kelly et al. 2020), highly altered landscape, and increase in the WUI (Radeloff et al. 2018) 
over the last decade (Bento-Gonçalves and Vieira 2020; Calkin et al. 2014) has made clear 

Fig. 7  Wildfire exposure ranking in the Whitehorse area. a Modified 500 m exposure; b modified 100 m 
exposure; c integrated maximum exposure within 500 m of structures. Structures in black; roads in brown
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that science-based methods to assess wildfire hazards are needed (Ager et al. 2015; Cao 
et al. 2016; Meyer et al. 2015; Mozumder et al. 2009). The methods and tools developed 
here help address the need to create science-based and understandable results on how to 
perceive hazards and risks. While Quantitative Wildfire Risk Assessment is a common 
approach (Allaire et al. 2018), many people struggle with how to interpret this informa-
tion (Visschers et al. 2009). Additionally, feedback from communities and agencies is more 
easily applied and hazard changes are generated much more quickly and easily than can 
be accommodated by typical wildfire spread and growth models, such as FlamMap burn 
probability, FSIM, and Burn-P3 (Finney 2006; Finney et  al. 2011; Parisien et  al. 2005), 
improving the opportunity to co-produce a product, which is needed between research-
ers and practitioners (Adams et al. 2017). Co-production helps increase the acceptance of 
science, trust in results, and use among decision makers and wildfire practitioners (Glenn 
et al. 2022). We have modified previous efforts to provide an integrated wildfire exposure 
map that captures multiple spatial scales with an understandable five-category classifica-
tion approach.

5.2  Flammability hazard ratings

The results indicate that flammability hazard classes relate closely to burned area fre-
quency (Fig.  5). This approach adequately identifies areas with increased potential for 
wildfire activity; 80% of the areas that subsequently burned were within the very high 
flammability class from the assessment of the 2014 landscape. This speaks to the utility 

Table 5  Percentage of each integrated exposure score and mean value for the decades examined among our 
study areas. The magenta color breaks are < 10%, 10–25%, 26–50%, and > 50%

Area Exposure class Wildland–urban interface Study area

1984 1994 2004 2014 1984 1994 2004 2014

Anchorage Very low 18% 17% 18% 16% 57% 56% 57% 57%
Low 31% 31% 31% 31% 21% 21% 22% 22%
Moderate 23% 23% 23% 25% 14% 14% 14% 14%
High 22% 23% 21% 21% 7% 7% 7% 6%
Extreme 7% 7% 6% 6% 1% 1% 1% 1%

Fairbanks Very low 7% 6% 6% 6% 11% 10% 10% 18%
Low 27% 25% 24% 21% 14% 13% 13% 17%
Moderate 19% 20% 19% 20% 16% 16% 16% 16%
High 19% 20% 21% 22% 20% 21% 20% 18%
Extreme 28% 29% 30% 31% 39% 40% 40% 31%

Whitehorse Very low 14% 12% 11% 9% 28% 26% 25% 24%
Low 18% 16% 15% 15% 10% 10% 10% 10%
Moderate 13% 14% 14% 15% 11% 11% 11% 11%
High 16% 18% 18% 19% 16% 16% 16% 16%
Extreme 38% 41% 42% 43% 35% 38% 39% 39%

Anchorage Mean exp 44 45 43 44 22 23 22 22
Fairbanks Mean exp 58 60 60 56 64 65 65 56
Whitehorse Mean exp 61 64 66 58 55 57 58 58
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of both the coarse yet high resolution ABoVE vegetation classification effort (Wang et al. 
2019) and the flammability hazard ratings assigned to each vegetation class. Hazard rat-
ings were based primarily on the torching and spotting potential in the boreal biome. Even 
though flammability hazard rating maps are intermediate products, they have the potential 
to be very useful to identify areas for vegetation removal or thinning. These maps can be 
used to identify small concentrations of high and very high flammability hazards in areas 
of otherwise moderate and lower hazard that can ignite, but are less likely to spread.

5.3  Exposure ranking assessment

Given the utility of hazard classification in identifying the wildfire threat spatially, risk 
assessments have historically used it for that purpose. However, wildfire exposure assess-
ment captures the importance of hazard juxtaposition for increasing fire spread potential 
and the resulting potential likelihood of wildfire impact by averaging the hazard level of 
all area within the analysis circle around the location. Due to the use of focal statistics, 
wildfire exposure represents the potential for a flammability hazard to reach and impact 
specific locations, even if the hazard at the destination may be lower. In the boreal land-
scapes considered here, exposure is enhanced dramatically by crown fire that commonly 
casts embers from the source location up to 500 m from the source location onto the vicin-
ity of structures, igniting them and threatening the habitations they represent (Beverly et al. 
2010; Bierwagen 2005; Page et al. 2019). By examining and averaging flammability haz-
ards from the area surrounding individual locations, exposure highlights how likely it is 
that hazard may reach that location and, once there, impact it as smoke, heat, and fire. 
Recent lessons from wildfires have shown us that embers are what ignite most structures 
(Cohen 2000; Westhaver 2017).

5.4  Integrated exposure

As stated in published evaluations of the exposure assessment method (Beverly et al. 2010, 
2021; Beverly and McLoughlin 2019), the initial greatest hazard from boreal wildfire 
potential is long-range spotting from extreme events that can breach significant barriers 
and vegetation types with lower flammability hazards. Once a wildfire enters a community, 
smaller-scale factors become important, such as the flammability of the buildings them-
selves (Knapp et al. 2021; Syphard et al. 2017). One advantage of using the maximum of 
the 100 and 500 m scales is that 100 m alone fails to adequately recognize the potential for 
long-range spotting and buildings as fuel; with remote sensed vegetation data, these pixels 
are often classified as barren. By incorporating the 500  m when it is greater, the result 
maintains at least some exposure value when there is sufficient long-range threat. This min-
imizes the risk of underestimating wildfire hazards and risks to communities, which can 
provide a false sense of confidence (Beverly et al. 2021). Natural causes, such as lightning, 
produce fewer fires overall (Brey et al. 2018; Grabinski and McFarland 2020) and are more 
randomly distributed across a landscape. The threat from these fires is associated with the 
distribution of hazards over the larger area, as reflected in the 500 m assessment. Thus, the 
500 m scale is most appropriate outside of our 500 m structure buffer. The 100 m maps 
depict the different local information about exposure to nearby ignitions (Fig.  7b), they 
underestimate exposure from large tracts of forested lands, such as wildlands outside the 
WUI, as well as parks and refuges within. The 500 m captures this danger, so the use of 
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the maximum of either scale (i.e., 100 or 500 m) around structures better captures wildfire 
potential and exposure.

5.5  Applications

One tool used to address wildfire hazards and risks is community wildfire protection plans 
(CWPPs) (Jakes et al. 2011). Some of the goals of CWPPs are to communicate risks to the 
public and to identify areas that may benefit from hazard-reduction activities. Our inte-
grated exposure approach provides a rapid tool where there is no need to run specialized 
wildfire simulation models; rather, it can be utilized by Geographic Information Systems 
(GIS) and fire departments within communities. The model can be re-run quickly to refine 
results and incorporate feedback from residents or peers such as incorporating potential 
fuel treatments, different vegetation categories, vegetation changes due to infestation mor-
tality and development. Reaching out to the public, incorporating feedback, and treating the 
creation of hazard and exposure maps as a process align with the best practices for risk and 
crisis communication and the acceptance of risk reduction actions (Steelman and McCaf-
frey 2013). Our hazard maps were presented to local government structures with repeated 
feedback and subsequent improvements, which is possible due to the less data-demanding 
and time-consuming approach than found in other stochastic wildfire models. We have also 
developed an ArcGIS Pro tool that allows users to choose their input vegetation, create a 
reclassification table, and a buildings layer to create their own flammability hazard and 
exposure layers. Providing categories that are clear and understandable is key to hazard 
and risk communication; previous research on flood risk mapping found five categories to 
be optimal (Fuchs et al. 2009). Providing effective communication about hazards improves 
resilience and, in the case of wildfires, increases social acceptance of more flexible wildfire 
management options (McCaffrey and Olsen 2012; Steelman and McCaffrey 2013).

Using the concept that exposure projects the flammability hazard beyond its source to 
locations where values exist, our exposure maps can be combined with value measures to 
produce relative risk ratings that identify where values need protection. Exposure, as a 
likelihood measure is often based on either historic frequencies. More recently, stochas-
tic simulation fire occurrence and spread has been used to represent likelihood as prob-
abilities. But risk is not able to predict the future. It is a measure of uncertainty in evaluat-
ing potential losses. Wildfire Exposure Ranking provides a scaled likelihood estimate for 
the risk assessment process by cumulating surrounding hazards and reflecting changes in 
landscape hazard over time. Risk rating is the logical next step, but to ensure that results 
are accurate and useful, communication and partnership with communities are needed to 
assess the values distribution.

Based on our four-decades analysis, the Whitehorse study area is of the most concern, 
with increases both within and outside the WUI (Table 5). This is largely due to the lack of 
wildfire activity. Table 1 supports the claim that Whitehorse is “at the edge of a blowtorch” 
(McKay 2018; Parisien et  al. 2020). The Fairbanks study area has overall seen declines 
in wildfire exposure, largely due to increased wildfire activity outside the WUI (Table 1). 
However, within the WUI, high and very high wildfire exposures have increased (Table 5). 
In our results, it is certain that climate change is one of the driving factors of wildfire activ-
ity and exposure (Abatzoglou and Williams 2016; Littell et al. 2009; Wang et al. 2015). 
There is a need to incorporate climate change scenarios into wildfire risk models. However, 
incorporating and isolating the effects of climate can be challenging because vegetation 
changes from development. In WUIs, development and associated changes to land use and 
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vegetation are often drivers of wildfire risk (Bryant and Westerling 2014) (Table 5). Previ-
ous modeling efforts have incorporated climate change by altering the fire weather based 
on climate predictions, but use static vegetation and fuels layers to compare model outputs 
ignoring development (Riley and Loehman 2016). Future efforts will focus on incorpo-
rating climate and development of scenarios to assess future wildfire hazards and risks. 
Again, by minimizing other data requirements, others can use this approach to focus on the 
identification of development strategies that are more wildfire resilient.
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