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Abstract
To quantify the hazard or risks associated with severe convective wind gusts, it is neces-
sary to have a reliable and spatially complete climatology of these events. The coupling of 
observational and global reanalysis (ERA-Interim) data over the period 2005–2015 is used 
here to facilitate the development of a spatially complete convective wind gust climatol-
ogy for Australia. This is done through the development of Bayesian Hierarchical models 
that use both weather station-based wind gust observations and seasonally averaged severe 
weather indices (SWI), calculated using reanalysis data, to estimate seasonal gust frequen-
cies across the country while correcting for observational biases specifically, the sparse 
observational network to record events. Different SWI combinations were found to explain 
event counts for different seasons. For example, combinations of Lifted Index and low 
level wind shear were found to generate the best results for autumn and winter. While for 
spring and summer, the composite Microburst Index and the combination of most unsta-
ble CAPE and 0–1 km wind shear were found to be most successful. Results from these 
models showed a minimum in event counts during the winter months, with events that do 
occur mainly doing so along the southwest coast of Western Australia or along the coasts 
of Tasmania and Victoria. Summer is shown to have the largest event counts across the 
country, with the largest number of gusts occurring in northern Western Australia extend-
ing east into the Northern Territory with another maximum over northeast New South 
Wales. Similar trends were found with an extended application of the models to the period 
1979–2015 when utilizing only reanalysis data as input. This implementation of the models 
highlights the versatility of the Bayesian hierarchical modelling approach and its ability, 
when trained, to be used in the absence of observations.
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1 Introduction

Weather and climate extremes have a major impact on society and infrastructure. Approxi-
mately 94% of all disaster losses are attributable to some form of severe weather events, 
with convective wind gusts (i.e. thunderstorms, downburst, and tornadoes) accounting for 
41% of these events (Munich 2016). Within Australia, convective wind gusts are responsi-
ble for 50% of all wind-related damage to buildings (Blong 2005). Such impacts highlight 
a need to improve our understanding of this hazard so the risks they pose to the built envi-
ronment and to society can be accurately quantified and mitigated.

A spatially complete climatology, based on robust and reliable data, is essential for 
improving the understanding of convective wind gust risk. Spassiani and Mason (2021) 
attempt to develop such a climatology for Australia based solely on Automatic Weather 
Station (AWS) data. To do this, they used the machine learning technique of Self-Organ-
izing Maps to identify convective gusts from historic wind records. Their climatology 
showed that the frequency of convective gusts exceeding  90kmh−1 peaked at a count of ~ 3 
per year over the northern coast of Western Australia (WA). Smaller maxima over southern 
Northern Territory (NT) (~ 1 per year) and in northeast New South Wales (NSW) (~ 1.5 per 
year) were also observed. In addition, they show that the majority of events occur during 
the summer months.

Brown and Dowdy (2021a) analysed severe wind gusts measured at 35 weather stations 
across Australia and used lightning data to classify which gusts were convective. They also 
analysed severe convective wind gust reported in the Australian Bureau of Meteorology 
(BoM) Severe Thunderstorm Archive (STA) (http:// www. bom. gov. au/ austr alia/ storm archi 
ve/), near these 35 stations. Their measured dataset shows convective wind gust counts 
of 0.6–1 per year to occur at most coastal stations in the southeast of the country, with 
this frequency extending north to the NSW-Queensland (QLD) border. They also show a 
few stations through central Australia with elevated event counts (~ 0.6 per year), generally 
showing similar trends to those found by Spassiani and Mason (2021), albeit with smaller 
absolute event counts. When comparing these observations with STA reports though, 
Brown and Dowdy (2021a) point to clear observational biases that lead to peaks in the 
highly populated cities around the country. This observation is similar to that found for 
convective storm reports in other parts of the world (Etkin and Leduc 1994; King 1997; 
Doswell 2001; Anderson et al. 2007; Allen et al. 2011). Such sampling bias has histori-
cally been accounted for with statistical models that correct observations in areas with low 
population density (Twisdale 1982; Tescon et al. 1983; King 1997; Ray et al. 2003). More 
recently, Bayesian statistical models have been utilized to correct for observational biases 
within meteorological datasets (Anderson et al. 2007; Cheng et al. 2013; Elsner and Widen 
2014; Elsner et al. 2016; Potvin 2019; 2022) due to their ability to incorporate uncertainty 
(Arhonditsis et al. 2007; 2008a,b) and address complex natural systems (Clark 2005;Cheng 
et al. 2020). However, Cheng et al. (2013) show there remains high levels of uncertainty 
when applying such corrections to large areas with unreliable or non-existent observations 
(such as exist over much of Australia).

Considering this, it is often difficult to develop an accurate climatology based on wind 
gust observations alone. Additionally, requirements for high fidelity data collected over 
an extended period (standard practice, as outlined by WMO (2017), is 30 years) and the 
fact that observational networks are generally sparse when compared with the small spa-
tial scale of convective wind events (Brooks et  al. 2003a) also add to this difficulty. To 
overcome these limitations, rather than studying the event observations themselves, other 

http://www.bom.gov.au/australia/stormarchive/
http://www.bom.gov.au/australia/stormarchive/
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studies have sought to analyse the environments that produce severe weather (e.g. Brooks 
et al. 2003b; Grunwald and Brooks 2011). This approach assumes there is a strong rela-
tionship between the occurrence of severe convective winds and the broad scale atmos-
pheric conditions that lead to their development. Such relationships can be determined for 
areas where severe weather observations are reliable and then extended to areas with less 
reliable observations. Reanalysis data (e.g. ECMWF ERA-Interim, ERA5) have typically 
been used as a reliable measure of atmospheric conditions in these studies and given the 
global nature of these data thunderstorm climatology information has been developed for 
much of the world (e.g. Brooks et  al. 2003a; Allen et  al. 2011; Allen and Karoly 2014; 
Taszarek et al. 2019).

For Australia, this type of analysis has been undertaken for environments conducive to 
general severe convective thunderstorm activity (Kuleshov et al. 2002; Dowdy and Kule-
shov 2014; Allen and Karoly 2014; Bedka et al. 2018), or more specifically for individual 
convective thunderstorm hazards, such as hail (Soderholm, et al. 2017; Dowdy et al. 2020) 
or convective wind gusts (Brown and Dowdy 2021a). For their investigation of convec-
tive winds, Brown and Dowdy (2021b) used the logistical regression model developed in 
Brown and Dowdy (2021a) to explain the environments associated with severe convec-
tive wind gust in Australia. They also suggest that this diagnostic is suitable for analysing 
long-term variability of severe convective wind environments and show an annual increase 
in the number of severe convective wind gusts, using the global climate model ensemble 
median, of 17%, 13%, 2%, and 2% in northern Australia, the rangelands, eastern Australia, 
and southern Australia, respectively.

Despite the success of these studies, it remains difficult to find atmospheric indices or 
combinations of these indices that capture all the necessary conditions for development of 
severe thunderstorms or their sub-event hazards, such as convective wind gusts. There are 
two further limitations with this type of climatological analysis; (1) it is only useful for 
analysing the relative storm hazard between areas as it does not fully account for the fact 
that meeting a threshold does not guarantee the development of a storm, and (2) it assumes 
the same covariate threshold is applicable across a range of climatological regions.

As an alternative to the development of a wind gust climatology reliant solely on either 
direct observation (e.g. Spassiani and Mason 2021) or analysis of severe weather envi-
ronments (e.g. Brown and Dowdy 2021a, b), Bayesian hierarchical modelling offers an 
approach where both sets of information can be used (Cheng et  al. 2015; 2016). Cheng 
et  al. (2015) developed a Bayesian hierarchical modelling framework to develop a tor-
nado climatology utilizing reanalysis-derived severe weather indices and tornado occur-
rence observations. Within this framework, tornado occurrence rates were corrected for 
observational biases in regions of low population using a Bayesian modelling approach to 
link observed tornado counts to severe weather environments and the probability of detec-
tion. Cheng et al. (2016) then used their Bayesian hierarchical model framework to develop 
annual and seasonal climatologies of tornado occurrence across North America. They also 
developed an approach to account for the role of regional variability in the occurrence of 
tornadoes through local model error terms that account for factors unable to be captured by 
the SWI, such as, local processes that can influence the convective initiation.

Given the success Bayesian hierarchical models have had improving tornado climatol-
ogy estimates for North America (which has many similar observation density issues that 
face Australia), it seems reasonable to extend this approach to the estimation of convec-
tive gusts in Australia. As such, the objective of this paper is to develop a spatially com-
plete climatology of severe convective wind gusts for Australia using Bayesian hierarchical 
modelling, reanalysis data, and weather station observations. This is done using a modified 
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version of the Bayesian hierarchal model described in Cheng et al. (2016) with relation-
ships between Severe Weather Indices (SWI) calculated using ERA-Interim reanalysis data 
and AWS wind gust observations used to predict seasonal and annual severe convective 
wind gust occurrence across Australia. Research methods, model formulation and data 
sources are discussed in Sect. 2. Model output results for different model combinations (i.e. 
the use of different SWI combinations) are presented and discussed in Sect. 3 and sugges-
tions for the model combination that provides the most realistic climatology is provided. 
The work is then summarized in Sect. 4.

2  Data and methods

2.1  Observation data

More than 600 Automatic Weather Stations (AWS) are currently operated by the Austral-
ian Bureau of Meteorology (BoM). AWS record data at 1-min intervals, and the wind data 
recorded includes 1-min mean wind speed, peak 3-s gust within each 1-min period and 
mean wind direction. Data record lengths vary at each station, but many are short and 
given the land area of Australia, this network presents a spatially incomplete picture of the 
wind gust climate. Two main types of bias exist. The first is the influence of station density 
on report distribution. For example, rural areas with few or no stations will have an artifi-
cial minimum in reports. The second is an artificial increase in wind gust reports across the 
dataset over time due to a growing number of AWS stations in the observational network.

For this work, only stations with at least 5 years of 1-min data during the period 2005—
2015 are considered. This leaves 306 stations for analysis, with the location of these shown 
in Fig. 1a and the time average density of weather stations within each analysis grid cell 
shown in Fig. 1b. From these stations, wind gusts exceeding  70kmh−1 (19.4   ms−1) were 
identified and the maximum of these observed within any given 6-h time block (00–06Z, 
06-12Z, 12-18Z, and 18-00Z) were marked as gust events. While the choice of 6-h time 
blocks is somewhat arbitrary, this period is chosen to ensure that multiple events occur-
ring on the same day, but resulting from different storm events, can be identified and 
included in the dataset. Gust wind speeds are then corrected to account for topographic 

Fig. 1  a Automatic Weather Station locations, b mean yearly AWS density for each ERA-Interim grid cell 
over Australia from 2005 to 2015
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influences following the approach specified in AS/NZS1170.2 (Standards Australia 2012) 
and described in detail in Spassiani and Mason (2021). After applying the topographic cor-
rection only wind gust exceeding  90kmh−1 (25   ms−1) are kept to be consistent with the 
BoM’s definition of a severe wind gust. Data are then quality controlled to removed fic-
titious events following the de-spiking method of Højstrup (1993), which was shown by 
Suomi et al. (2017) to effectively remove unrealistically high wind speeds from anemom-
eter records. Any extended periods of erroneous or missing data not picked up by the de-
spiking procedure were manually identified and removed before summating available data 
periods.

Following this procedure, 902 gust events were identified. Using the Self Organizing 
Maps (SOM) classification scheme outlined in Spassiani and Mason (2021), each event 
was then classified as either convective or non-convective in origin. In brief, this approach 
uses a 4X4 SOM that considers the wind speed, temperature, and pressure of each event 
to map it to a node in the SOM that closest represents the given event. The event is clas-
sified as convective if the probability of an event being convective for that given node is 
greater than 50%. This model was shown to identify convective wind gust events above 
 90kmh−1 with a mean absolute error of 0.11 events per year for the overall yearly event 
counts. Using these classified gust events, the number of convective gust events recorded 
within each of the analysis grid cells (i.e. ERA-Interim 0.75° grid) over Australia for the 
period 2005–2015 were determined. Where more than one station within a grid cell meas-
ured a given gust event, these “redundant” events were removed and the count of observed 
convective gusts events for the four Southern Hemisphere seasons; summer (December 
– February), spring (March–ay), winter (June–August), autumn (September–November) 
were aggregated, Fig. 2.

Spassiani and Mason (2021) note that there is some sensitivity in the classification of 
events as either convective or non-convective due to the choice of SOM and the convec-
tive event probability threshold. When examining another SOM, with similar performance 
skills, that considered the wind speed, wind direction, temperature, pressure, and precipita-
tion, Spassiani and Mason (2021) note only small differences, specifically in WA where 
there was a decrease of ~ 0.5 convective events per year and a small increase in some sta-
tion in TAS of ~ 0.25 convective events per year. This model was found to have a mean 
absolute error of 0.13 events per year for the overall yearly event counts.

The density bias resulting from larger numbers of AWS around population centres and 
low numbers in rural areas is evident through the station density plot (Fig.  1b) and the 
event density plots (Fig. 2) with the majority of events shown to occur near major cities. 
We find most events occur during the summer across Australia, with spring showing a fair 
number of events as well, especially along the eastern coast from Brisbane down to Mel-
bourne. Less events occur during autumn with a minimum of events occurring in winter, 
with these confined to the southern half of Australia. More detailed analysis of these obser-
vations can be found in Spassiani and Mason (2021).

2.2  Reanalysis data

The European Centre for Medium-Range Weather Forecasts (ECMWF) European Reanal-
ysis-Interim (ERA-Interim) dataset is used here to calculate severe weather indices (SWI) 
(Berrisford et al. 2011; Dee et al. 2011). The reanalysis fields used are the air temperature, 
relative humidity, u and v wind velocity components, geopotential height, relative vorticity, 
and sea level pressure. Fields are extracted at all pressure levels between 1000 and 100 hPa, 
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as well as at the surface (2 m for temperature and 10 m for winds), and interpolated to a 
regular, 0.75°, latitude/longitude grid for the period January 1st, 1979 to December 31st, 
2015.

Fourteen different SWI were calculated with the equations for each summarized in 
Table 1. Each parameter is calculated for each 6-h time step between 1979 and 2015 and 
for all ERA-Interim grid cells over Australia and then averaged over each of the four sea-
sons. Indices are calculated with the SHARPpy open-source sounding and hodograph anal-
ysis routines (Blumberg et. al. 2017). Reanalysis pressure levels that were larger than the 
pressure at the surface were removed from the vertical profiles used for indices calculations 
to make sure that valid atmospheric profiles were used over higher terrain or synoptically 
active regimes.

2.3  Bayesian hierarchical model

Bayesian hierarchal modelling is used to determine a relationship between SWI and the 
rate of convective wind gust occurrence while correcting for biases that result from AWS 
density influence on the reporting of these events. Hierarchical models allow complex envi-
ronmental processes to be broken down into a series of conditional models linked together 
by simple probability rules (Wilke 2003). Such models can be considered from a classical 
or Bayesian perspective, but Bayesian methods, coupled with Markov Chain Monte Carlo 
(MCMC) simulation approaches, become necessary when systems are complex (Wilke 

Fig. 2  Number of days with at least one convective event observed within a grid cell between 2005 and 
2015 for southern hemisphere a autumn, b winter, c spring, d summer
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2003; Anderson et al. 2007). The freely available Bayesian analysis software WinBUGS 
(Lunn et al. 2000) is used to develop the hierarchical Bayesian model in this research as 
previous studies have shown it to be successful when correcting biases in severe weather 
datasets (Anderson et al. 2007; Cheng et al. 2013, 2016).

The Bayesian hierarchical model developed here is a Binomial-Poisson model that 
extends what was developed by Cheng et  al. (2016) when estimating tornado frequency 
across North America. The model itself is composed of three sub-models; (1) the obser-
vation error model that accounts for non-meteorological factors affecting the fidelity of 
severe thunderstorm counts in the dataset, (2) the explanatory model that considers the 
meteorological components causally linked to thunderstorm formation and evolution, and 
(3) the parameter model that quantifies uncertainty in the parameter values.

2.3.1  Observation model

The observation model implemented here follows that of Anderson et al. (2007) and Cheng 
et al. (2016). The model first specifies a binomial distribution for the reported number of 
events,  Eobsi, for a given area or grid cell, i, and time period, conditional on the actual (but 
unobserved) event occurrences,  Elatenti, for the same area and time period. The binomial 
distribution is a discrete distribution (Bain and Engelhardt 1992) that is commonly used 
where  Eobsi can be thought of as the number of “successes” in  Elatenti independent Ber-
noulli trails, with  pi(αStationD, βStationD ), the probability of detecting an event for the given 
density effect parameters, αStationD, βStationD , whereStationD   represents the time averaged 
AWS density, as defined in Sect. 2.1. This relationship is formally written:

where λi , is the expected event frequency. The probability of detecting a convective wind 
gust in a given cell, should it occur,  pi, is a function of StationDi . Cheng et  al. (2016) 
defined this relationship using an exponent model but for population density. However, pre-
liminary tests found the use of their formulation with station density in place of population 
density led to unrealistic values. Using the sparse network of AWS in Australia, which can 
only observe at a given point, instead of population density make it more likely for small-
scale convective wind events to pass between stations and not be recorded in the observa-
tional record. This could impact the accuracy of the probability of detection relationship 
used. As such a modified version of their exponent model was developed:

where stationDi is the station density of the ith area, βStationD is a parameter that controls 
the shape of the pi curve, and αStationD determines the slope of pi. The value of αStationD is 
constrained between 0.0027 and 0.000356 to help ensure the model finds a physically real-
istic  pi curve. While constraining  αStationD in this manner does, to some degree, limit the 
ability of the model to freely develop a probability of detection relationship, adding some 
constraint to the probability of detection has been shown necessary in previous work using 
Bayesian Hierarchical Modelling (Potvin et al. 2019; 2022). Equation 2 results in a pi of 1 
for large Station Di and approaches zero for a small or zero StationDi.

(1)

(
Eobsi

||Elatenti, λi, pi
(
αStationD, βStationD

))
∼ Binomial

[
Elatentipi

(
αStationD, βStationD

)]
,

(2)pi
(
αStationD, βStationD

)
= 1 − exp

(
−1∗

(
StationDi

αStationD

)βStationD
)
,
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The final component to the observational sub-model is to account for the chance of 
irregular spatial variation within each ith area due to irregular station distribution as well 
as to account for the randomness at which convective wind gusts occur. A Poisson process 
counts the occurrence of events at a certain rate with random occurrence. Therefore, the 
true climatological event count,  Elatenti, is modelled as a Poisson process (Bain and Engel-
hardt 1992) conditioned on a climatological event frequency per cell, �i , since the true cli-
matological event count can often depart for the climatological event frequency due to the 
randomness of these events:

Elatenti is bounded by zero and will, by definition, be greater or equal to  Eobsi. While 
the Binomial-Poisson model was chosen for the Bayesian hierarchical model in this work 
other models could prove beneficial as well, such as the Zero-Inflated Poisson model (e.g. 
Cheng et al. 2015; 2016) or the Negative-Binomial model (e.g. Elsner and Widen 2014; 
Elsner et al. 2016), all three types of models account for overdispersion.

2.3.2  Explanatory model

The explanatory model is the logarithm of the expected event frequency, λi, as a linear 
function of several explanatory variables, x:

where xik is the value of the kth explanatory variable (e.g. muCAPE, muCIN, etc.) for the 
ith grid cell and αk are regression coefficients corresponding to the kth explanatory varia-
ble with α0 the intercept. In addition to the explanatory variables an additional, conditional 
autoregressive term, CARi , is added to Eq. 4. The CARi term is a grid cell specific, ran-
dom effect term that is designed to capture variability of severe convective gust occurrence 
that is not explicitly considered by the explanatory variables (Cheng et al. 2016). Exam-
ples of this may include orographic influence on the formation of thunderstorms (Taylor 
et  al. 2011) or possible lake or sea-breeze convergence-influenced convective processes 
(King et al. 2003). Given this, Cheng et al. (2016) assume the CARi term to have regional 
characteristics and therefore to be spatially correlated. This term is based on the Bayesian 
conditional autoregressive model (Besag et al. 1991) where each grid cell term is jointly 
distributed as a multi-variate normal distribution with zero mean and an unknown covari-
ance matrix (Besag and Kooperberg 1995). As implemented here, the model assumes each 
CARi depends only on the neighbouring cells and that all neighbours have equal influence 
(weight of 1). The term is therefore defined as:

where

with ni being the number of adjacent grid cells, j refers to the adjacent cells, and Ni is the 
 nth adjacent cell.

(3)
(
Elatenti

||�i
)
∼ Poisson

(
�i
)
.

(4)ln(�i) = �0 + �1xi1 + �2xi2 +…+ �kxik + CARi,

(5)CARi ∼ Normal

(
μi,

σ2

ni

)
,

(6)�i =
1

ni

∑
j∈Ni

CARj



2047Natural Hazards (2023) 118:2037–2067 

1 3

In this research, models that use 1, 2, or 3 explanatory variables within Eq. 4 to deter-
mine which combination of explanatory variables best explain the expected event fre-
quency, λi, across all cells will be tested (Table 2). The explanatory models with 1 variable 
mostly utilize composite indices, i.e. those that include multiple measures of the state of 
the atmosphere into a single index. The 2 indices models incorporate an instability index 
with a shear index. Finally, the 3 variable models will look at an instability index in combi-
nation with a shear index and one additional explanatory variable.

Given each index has their own measurement scales, all indices are standardized prior to 
their use in Eq. 4 (i.e.  xik). Similar to Cheng et al. (2015), this standardization is done using 
the z-score function in MATLAB and therefore is a representation of how many standard 
deviations a given index is above or below the mean seasonal index calculated across Aus-
tralia over the 2005–2015 period.

2.3.3  Parameter model

The parameter model treats each parameter as a random variable rather than a fixed quan-
tity (Anderson et al. 2007). The parameters βStationD and αk are estimated using the Bayesian 
approach of assigning prior distributions, which are assumed here to be non-informative 
by making them “flat”. The parameter, αStationD , is also assigned a “flat” prior distribution 
but is constrained between 0.0027 and 0.000356. The model will then determine the shape 
of the posterior distributions. The regression coefficients, αk , are assigned a normal dis-
tribution (Bain and Engelhardt 1992) with a mean of 0 and variance of 10,000 (imply-
ing that the prior distribution is non-informative). Similarly, the density effect parameters, 
αStationD, βStationD , are assigned a normal distribution with a mean of 1 and variance of 
10,000. These are formally shown in Eqs. 7 – 10.

Table 2  List of SWI combinations considered

1st Variable (One of  
listed indices)

2nd Variable (One of  
listed indices)

3rd Variable (One of 
listed indices)

1 Index models Most Unstable CAPE
Downdraft CAPE
Microburst Index
Wind Damage Parameter
Significant Severe
300 hPa Lifted Index
500 hPa Lifted Index
Maximum Lifted Index

– –

2 Indices models Most Unstable CAPE
300 hPa Lifted Index
500 hPa Lifted Index
Maximum Lifted Index

0 to 1 km Shear
0 to 3 km Shear
0 to 6 km Shear
Bulk Richardson Shear

–

3 Indices models Most Unstable CAPE
300 hPa Lifted Index
500 hPa Lifted Index
Maximum Lifted Index

0 to 1 km Shear
0 to 3 km Shear
0 to 6 km Shear
Bulk Richardson Shear

Downdraft CAPE
Microburst Index
Wind Damage Param-

eter
CIN
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2.3.4  Model implementation

The Bayesian model is run using 73 different combinations of the 14 variables listed in 
Table  1, spread across the 1, 2, and 3 parameter implementations. The distribution and 
mean of all parameters, regression coefficients, and resulting expected event frequency dis-
cussed in Sects. 2.3.1–2.3.3 are calculated for each of the 4 seasons using the period from 
2005 to 2015. Each model starts with two different initialization points and results in out-
put of two Markov chain Monte-Carlo (MCMC) “chains”, which are used to test for con-
vergence of the model as well as the model performance (Cheng et al. 2013, 2015, 2016). 
For each model run, the first 5,000 iteration are discarded (burn in) to remove any initial 
model start-up instabilities prior to running a further 50,000 iterations to allow the models 
to converge. The final 7,500 iterations are kept for analysis with the model convergence for 
each season assessed. The methods used for testing convergence are discussed in Sect. 2.4.

2.4  Model performance

The first step in selecting the optimal combinations of indices for use in Eq. 4 is to ensure 
they result in convergence of the Bayesian model. Convergence is checked using the Gel-
man-Rubin convergence diagnostic (Gelman and Rubin 1992; Brooks and Gelman 1998), 
which is based on analysis of the “chain” (i.e. the time series) of each parameter when 
started from two different initialization points. This convergence diagnostic works by com-
paring the estimated variance between chains, how similar the chains are to each other, and 
the variance within chains (mean variance of each chain) for each model parameter. Brooks 
and Gelman (1998) suggest a Gelman-Rubin score of less than 1.2 is required for all model 
parameters and regression coefficients (i.e. α0 , α1 , α2, α3 , αStationD , βStationD , σ) to be confi-
dent that convergence has occurred. The models found not to meet this criterion were dis-
carded and further analysis conducted only on the remaining set of models.

The second step uses the model parameters and regression coefficients outputs, from 
the remaining set of models, to estimate the number of days with at least one convective 
gust event observed per cell  (Eobsi) for each year from 2005 to 2015, where  Eobsiy will 
represent the actual number of event days observed in a given cell, i, for a given year, y, 
and  EobsMiy will represent the model estimated of this value. For each of the “converged” 
models,  EobsMiy is calculated in three steps. (1) the expected event frequency for a given 
year, λiy, is calculated from Eq. 4 using a Monte-Carlo simulation with a sample size of 
20,000. Since the Bayesian models output the parameters and regression coefficients as 
a distribution, running the Monte-Carlo simulation is necessary. In contrast to the meth-
ods discussed in Sect.  2.3, the explanatory variables now use the mean seasonal values 
for the given year, not the period 2005–2015. The regression coefficients ( α0 , α1 , α2, α3 ) 

(7)αStationD ∼ Normal(1, 10000))I(0.0027, 0.000356),

(8)βStationD ∼ Normal(1, 10000),

(9)αk ∼ Normal(0, 10000),

(10)σ2 ∼ Inverse Gamma(0.01, 0.01),
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use the distributions determined by the trained models. (2)  Elatentiy for the given year is 
then solved by sampling from the Poisson distribution of λiy . Similarly, the distributions 
for αStationD and βStationD are randomly sampled to solve for the probability of detecting an 
event,  piy, of each grid-cell for the given year. (3)  EobsMiy is then determine by taking the 
inverse binomial of  piy and  Elatentiy.

Two metrics were used to test the performance of all models that “converged”. They 
are, the Mean Absolute Error (MAE) and the total conditional autoregressive (Total CAR) 
term. The MAE is calculated by taking the absolute error between the  EobsMiy value for 
each cell and the corresponding  Eobsiy for the same cell and year. The absolute error is 
then averaged over the 11-year period for all ERA-Interim cells that have AWS. The sum of 
the absolute value of the CAR terms over all cells is the Total CAR value. Since the CAR 
term accounts for things not accounted for by the explanatory variables within the Bayes-
ian model the Total CAR provides an indication of how well the explanatory variables can 
explain �i . A small Total CAR suggests they explain �i well while a large Total CAR sug-
gest they do so poorly.

Identifying suitable model parameter combinations using multiple performance metrics 
is not straightforward. A ranking scheme for doing this is used here. First, the models are 
ranked based on MAE. To help compare the performance between models the difference 
between each model and the model with the minimum MAE are calculated. This so-called 
percent difference, Δ� , when calculated for MAE or Total CAR, is defined as:

where �E is the error term for one of the two metrics, E, (i.e. εtCAR, εMAE), k is the kth 
combination being assessed, and �E,1 indicates the first ranked (i.e. lowest error) model 
error value. All these models were then individually assessed to ensure that the coefficient 
distributions and �StationD , �StationD terms converged for both chains as assessed using the 
Gelman-Ruben score. In addition, the values assigned to the coefficient of each of the indi-
ces for each model were checked to ensure they were consistent with the physical under-
standing of the index and how it related to the occurrence of severe convection.

3  Results and discussion

3.1  Model comparisons

In this section, the models shown to converge are listed and sorted from smallest MAE to 
largest. The top 5 models are retained for the discussion. This is done for each season. The 
model performance metrics as well as the mean and standard deviation values of the model 
coefficient are discussed in Sections, 3.1.1–3.1.4. The outputs from the models chosen in 
Sects. 3.1.1–3.1.4 for each season are then analysed in Sect. 3.3.

3.1.1  Autumn

For Autumn (March to May), only 13 of the 73 models converged when considering 
their Gelman-Ruben score. Results for the top 5 models are shown in Table  3, with 
their corresponding Total CAR, MAE, and percent differences values listed. There is a 
mix of 1, 2, and 3 indices models that met the convergence criteria set out in Sect. 2.3. 

(11)Δ�E = 100∗

(
�E,k

�E,1
− 1

)
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However, there are only 4 models where ΔεMAE is less than 20%. These are the 
500 hPa Lifted Index and 1 km Shear model (Li5-Shr1), the 300 hPa Lifted Index model 
(Li3), 500  hPa Lifted Index and Bulk Richardson Shear model (Li5-brnShr), and the 
Most Unstable CAPE and 6 km Shear model (muCAPE-Shr6). The Li5-Shr1 model has 
both the smallest Total CAR and MAE.

Examining the coefficient values output by the Bayesian models allows an assess-
ment of whether the model is generating coefficients that could be considered physically 
reasonable, given the atmospheric processes they are representing. Since the Bayesian 
models output a distribution for the coefficients the mean and standard deviation of the 
coefficients for the models listed in Table  3 are shown in Table  4. For the Li5-Shr1 
model, the instability index, Li5, has a small negative coefficient ( �1 ) value of − 0.29. 
This intuitively makes sense as larger negative values of the lifted index represents a 
more unstable atmosphere and therefore would suggest more likely occurrence of con-
vective events. The shear index, Shr1, also has a small negative mean coefficient ( �2 ) of 
− 0.48, which is somewhat counterintuitive as this suggests environments with shr1 val-
ues less than the mean (as measured across all Australia for that season) are more con-
ducive to gust occurrence than those with higher shear, as would typically be expected 
(Klemp 1987; Markowski and Richarson 2009, 2013). However, Westermayer et  al. 
(2017) show that convection can occur in both strong and weak shear environments, 
with results here suggesting that during the Autumn months there is a preference for the 
weaker shear environments. The Li5-Shr1 model is used to develop the Autumn clima-
tology shown in Sect. 3.3 since it is shown to converge and has small values for both 
CAR Total and MAE.

Table 3  List of the top 5 models 
for Autumn and their associated 
Total CAR and mean absolute 
error (MAE)

Model MAE 
(event 
days)

Total CAR ΔεtCAR (%) ΔεMAE (%)

Li5-Shr1 0.15 125.82 – –
Li3 0.18 298.24 137.03 17.90
Li5-brnShr 0.18 275.49 118.96 18.20
muCAPE-Shr6 0.18 282.10 124.21 19.55
Li5-Shr6 0.21 369.28 193.50 41.38

Table 4  Mean and standard deviation of coefficient values for the five best performing autumn models

Model α
0
 Mean α

0
 StdDev α

1
 Mean α

1
 StdDev α

2
 Mean α

2
 StdDev α

3
 Mean α

3
 StdDev

Li5-Shr1 1.15 0.48 − 0.29 0.19 − 0.48 0.18 – –
Li3 1.08 0.67 − 0.13 0.29 – – – –
Li5-brnShr 1.04 0.59 − 0.23 0.29 0.14 0.20 – –
muCAPE-Shr6 1.02 0.59 − 0.01 0.32 − 0.13 0.27 – –
Li5-Shr6 0.97 0.57 − 0.10 0.48 − 0.10 0.37 – –
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3.1.2  Winter

Only 6 models converged during the winter months (June–August) when considering 
their Gelman-Ruben score. This small number is primarily a result of the low observed 
event counts during these months, which makes it challenging to converge to a solu-
tion. Another possible cause may be that the typical indices used to explain or predict 
the occurrence of severe weather may not be entirely appropriate in the winter months. 
More tailored indices for the kind of convective events that occur in the winter months, 
such as cool-season tornadoes (Kounkou et al. 2009; Hanstrum et al. 2002), may need to 
be developed. Irrespective, of the 6 models that converged, the LiMax-Shr3 stood out as 
the best performing when examining the Total CAR, and MAE. All other models gen-
erated MAE values greater than double that of the LiMax-Shr3 model and Total CAR 
values greater than ten times its value. Interestingly, no three-index models were found 
to converge for winter. Table 5 shows the value of the error metrics for the top 5 winter 
models.

The coefficient values for the LiMax-Shr3 model are shown in Table  6. This model 
has a negative value for the mean �0 coefficient which, recalling that the natural logarithm 
of the expected event frequency λi is used in Eq. 4, is an indication of a low number of 
expected events during the winter months. Mean �1 and �2 coefficients, − 0.52 and 0.90, 
respectively, also make physical sense. That is α1 is negative and again means larger nega-
tive values of the index (LiMax) signifies a more unstable atmosphere will increase the 
number of event occurrences. The mean coefficient ( �2 ) for the shear index (Shr3) being 
positive also accords with physical reasoning (and the discussion of shr1 in Sect. 3.1.1), 
with regions with higher shear values typically exhibiting greater numbers of events. Since 
the LiMax-Shr3 model is shown to have converged, performed significantly better than all 
other models considered for this work, and has coefficients that accord with physical rea-
soning, it is used for the final climatology, shown in Sect. 3.3, during winter months.

Table 5  As for Table 3 but for 
winter

Model MAE 
(event 
days)

Total CAR ΔεtCAR (%) ΔεMAE (%)

LiMax-Shr3 0.56 50.07 – –
muCAPE-Shr1 1.13 672.40 1242.83 101.29
muCAPE-Shr6 1.37 738.51 1374.87 143.89
Mburst 1.95 795.14 1487.96 247.19
Li5-brnShr 3.50 836.96 1571.48 524.12

Table 6  As for Table 4 but for winter

Model α
0
 Mean α

0
 StdDev α

1
 Mean α

1
 StdDev α

2
 Mean α

2
 StdDev α

3
 Mean α

3
 StdDev

LiMax-Shr3 − 1.08 0.71 − 0.52 0.02 0.90 0.37 – –
muCAPE-Shr6 − 0.64 0.96 − 0.12 0.42 0.30 0.31 – –
muCAPE-Shr6 − 1.53 1.05 − 1.03 0.65 1.53 0.95 – –
Mburst − 1.87 1.23 − 1.42 0.77 – – – –
Li5-brnShr − 1.04 0.98 0.67 0.46 − 0.05 0.22 – –
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3.1.3  Spring

For Spring (September to November) 29 of the 73 models were found to convergence 
based on the Gelman-Ruben criteria with the top 5 shown in Table 7. Out of these mod-
els, 11 models have MAE values within 20% of the smallest MAE, suggesting a similar 
performance for a wide range of index combinations. However, while the LiMax model 
has the smallest MAE it also has the largest Total CAR out of the 5 models shown in 
Table 7, which is 50% higher than the model producing the smallest Total CAR (LiMax-
Shr6-dCAPE – not shown in table). The model that generates the smallest Total CAR is 
the single index Mburst model which has the second smallest MAE.

The coefficients for each of the 5 models with lowest MAE are given in Table  8. 
The �0 value are all shown to approach 2, which signifies larger base levels of event 
frequency during spring than observed for autumn or winter. The mean coefficient ( �1 ) 
for Mburst, of 0.06, is shown to be positive, which is reasonable given larger magni-
tudes of the composite index (Table 1) are indicative of higher potential for microburst 
occurrence (Blumberg et. al. 2017). Another model of interest is the Li5-Shr1 model, 
which was also discussed in Sect. 3.1.1, for the autumn months. For the spring months, 
this model has coefficients of -0.06 for Li5 and -0.05 for Shr1, the same signs as seen 
for the autumn version of this model. Finding similar coefficients for the low level shear 
indices, during different seasons, shows consistency in how the Bayesian model tries 
to related environments to severe convective wind gust occurrences and may highlight 
that the relationship between low level shear and these events may not be a simple lin-
ear relationship. Given the smaller Total CAR and MAE, the Mburst model is used to 
develop the Spring climatology shown in Sect. 3.3.

Table 7  As for Table 3 but for 
spring

Model MAE 
(event 
days)

Total CAR ΔεtCAR (%) ΔεMAE (%)

LiMax 0.30 452.10 50.03 –
Mburst 0.31 393.55 30.60 4.20
Li5-Shr1 0.31 411.92 36.70 5.20
Li5 0.32 400.70 32.97 6.70
muCAPE-Shr1 0.32 424.83 40.98 7.28

Table 8  As for Table 4 but for spring

Model α
0
 Mean α

0
 StdDev α

1
 Mean α

1
 StdDev α

2
 Mean α

2
 StdDev α

3
 Mean α

3
 StdDev

LiMax 1.77 0.51 0.08 0.20 – – – –
Mburst 1.88 0.45 0.06 0.25 – – – –
Li5-Shr1 1.89 0.45 − 0.06 0.23 − 0.05 0.15 – –
Li5 1.92 0.46 − 0.10 0.25 – – – –
muCAPE-Shr1 1.90 0.43 − 0.01 0.26 − 0.06 0.16 – –
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3.1.4  Summer

Lastly, summer (December to February) is examined. Six models were found to con-
verge for summer according to the Gelman-Ruben criteria with the top 5 models shown in 
Table 9. Of these, 3 models have an MAE within 20% of the lowest value, including the 
300 hPa Lifted Index (Li3) and 500 hPa Lifted Index (Li5) single variate models, and a two 
index model using the most unstable CAPE and 1 km Shear model (muCAPE-Shr1). While 
these models have similar MAE, it is the muCAPE-Shr1 model that exhibits the smallest 
Total CAR of the three. The three index Li3-Shr6-WNDG model was also shown to gener-
ate a small total CAR but had marginally higher MAE than the three previous models.

The coefficients for the top 5 summer models are shown in Table  10. All have an 
�0 value great than 2, indicating an even higher base level of event occurrence than 
in Spring. For the muCAPE-Shr1 model, the coefficient (�1 ) for the instability index, 
muCAPE, is shown to be positive, 0.67. Given that larger values of muCAPE generally 
suggest higher levels of instability and higher probability of severe convection, this is 
reasonably expected. As with the autumn and spring models that incorporate Shr1, the 
coefficient ( �2 ) for Shr1 is negative, -0.19. Again, this was not intuitively expected but 
the prevalence of convective wind gusts in relatively low shear environments during the 
warmer months is supported by similar observations in Europe by Pacey et al. (2021). 
Houston and Wilhelmson (2011) also suggest that deep cold pools may help produce 
long lived thunderstorms even with small values of vertical shear, which they found 
to occur when multiple deep convective cells are initialized in close proximity to each 
other. This follows the observation of long-lived quasi-linear systems in environments 
with little to no shear (e.g. Fovell and Ogura 1989; Coniglio and Stensrud 2001; Evans 
and Doswell 2001; Weisman and Rotunno 2004). For the three index Li3-Shr6-WNDG 
model the coefficients �1 , �2 , and �3 are 0.11, − 0.64, and 0.01. While we see a similar 

Table 9  As for Table 3 but for summer

Model MAE
(event days)

Total CAR ΔεtCAR (%) ΔεMAE (%)

Li3 0.59 760.73 16.07 –
Li5 0.65 722.85 10.29 10.58
MuCAPE-Shr1 0.67 689.71 5.24 14.28
Li3-Shr6-WNDG 0.75 668.92 2.06 26.59
Li3-Shr3 0.81 655.40 0.00 37.40

Table 10  As for Table 4 but for summer

Model α
0
 Mean α

0
 StdDev α

1
 Mean α

1
 StdDev α

2
 Mean α

2
 StdDev α

3
 Mean α

3
 StdDev

Li3 2.61 0.40 − 0.43 0.25 – – – –
Li5 2.68 0.41 − 0.52 0.28 – – – –
MuCAPE-Shr1 2.65 0.40 0.47 0.26 − 0.19 0.16 – –
Li3-Shr6-

WNDG
2.57 0.46 0.11 0.34 − 0.64 0.30 0.01 0.24

Li3-Shr3 2.92 0.42 − 0.31 0.25 − 0.51 0.17 – –



2054 Natural Hazards (2023) 118:2037–2067

1 3

negative coefficient for its shear parameter, this time using Shr6 instead of Shr1, its 
instability coefficient for Li3 is positive, suggesting a more stable environment is con-
ducive to severe convective wind gusts occurrence. However, there does appear to be 
coupling between Li3 and SHR6 that is contributing to this observation. As such, the 
muCAPE-Shr1 model is used for the summer climatology shown in Sect. 3.3.

3.2  Probability of detection

Using the models identified in Sect. 3.1 for each of the four seasons, the mean calcu-
lated Probability of Detection ( pi ) relationship (Eq. 2) is plotted in Fig. 3 as a function 
of the number of AWS per grid cell,  StationDi. Each curve generally follows the same 
shape exhibiting a relatively sharp increase in pi until the  StationDi increases to around 
ten stations per cell, after which pi level off as it asymptotes to one. The point at which 
pi reaches 0.99 varies for each model/season, with AWS counts per cell of 18, 23, 32, 
and 27 found for the autumn, winter, spring, and summer months, respectively. It is 
not immediately clear why the pi curves would vary for the different seasons, and for 
the most part the pi curves fall within the 50% credible intervals for all other seasons. 
However, it is hypothesized here that differences in convective outflow characteristics 
(e.g. size and duration) during different periods of the year might impact the AWS den-
sity required to observe them. One could reason that larger convective system (e.g. lin-
ear convective systems) would be more likely observed by the AWS than more isolated 
convective system (e.g. multicellular, supercells) and thus require a less dense network 
of AWS to detect them. There may be a seasonal link driving this, for example, during 
the autumn and winter months Australia experiences more extratropical cyclones and 
their associated fronts which may initiate more large-scale convective events. Overall, 
we find that while each model determines a slightly different relationship between pi 

Fig. 3  Probability of detection ( pi ) curves for each of the seasons along with their corresponding 25th and 
75th percentile curves
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and  StationsDi, they all follow the same general shape and trend, particularly during the 
Spring and Summer months when event numbers are most significant.

3.3  Australian convective wind gust climatology

Using the chosen seasonal models, a spatially complete seasonal convective wind gust cli-
matology is developed for autumn (Li5-Shr1), winter (LiMax-Shr3), spring (Mburst), and 
summer (MuCAPE-Shr1). Seasonal climatologies based on the period 2005–2015 (i.e. the 
period where observational data is available) are shown and discussed in Sect. 3.3.1. How-
ever, given it is possible to apply these models, once trained, over periods where obser-
vational data does not exist, Sect. 3.3.2 discusses their application to an extended ERA-
Interim reanalysis period ranging from 1979 to 2015. This allows for a characterization of 
the convective gust climate over a 37-year period, which is deemed more appropriate for 
assessing the true climate.

3.3.1  2005–2015 climatology

The expected number of convective gust events (Elatent) per season for each grid cell 
across Australia are shown in Figs. 4, 5, 6 and 7. Annualized mean and standard deviations, 

Fig. 4  Output from the Li5-Shr1 autumn model for the period 2005–2015; a annualized mean gust event 
count (Elatent), b standard deviation of Elatent, c mean conditional autoregressive (CAR) term, per grid 
cell (0.75 X 0.75°)



2056 Natural Hazards (2023) 118:2037–2067

1 3

as given by the Bayesian models, of the possible number of events over the entire period 
are shown, as well as the mean conditional autoregressive term (CAR) term. Results for 
autumn, winter, spring, and summer are shown in Figs. 4, 5, 6 and 7, respectively.

Figure 4a shows that the Li5-Shr1 model estimates there to be, on average, no more than 
2 days that experience a convective gust event within any given grid cell during autumn 
each year. A peak in events is shown to occur in the northern half of Western Australia 
(WA), with a particular “hot spot” along the northern coast. The model suggests less than 
0.5 event days (i.e. one day where a severe wind storm occurs would be expected every 
2  years) for most of the rest of the country with the exception in northeast New South 
Wales (NSW) where it is closer to 1 event day per year. The standard deviation (per year) 
values for Elatent at each cell (Fig. 4b) suggest that the model has the greatest uncertainty 
around the northeast part of WA with standard deviations up to 3 event days per year.

The mean CAR term (Fig. 4c) is shown to be around zero for much of the country, with 
a slight tendency to small positive values in some regions. This suggests that the Li5-Shr1 
index requires only minor adjustments to explain the observed event occurrence rate and, 
in some places, slightly underestimates the rate at which events occur. While not shown, 
there also appears to be higher standard deviation of CAR around the coasts compared 
to inland locations, which seems to be related to the mean shear values, which tend to be 
higher along the coast compared to neighbouring inland cells. 

The spatial distribution of events changes during winter (Fig.  5a). The output from 
the LiMax-Shr3 model suggests there are little to no convective gust events occurring 

Fig. 5  As for Fig. 4 but showing LiMax-Shr3 winter model
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throughout most of Australia in the winter months. Similar counts are shown in the south-
ern half of Australia with the exception of southwest WA and Tasmania (TAS), where there 
is closer to 1–2 event days per year occurring. The contrast in event counts between north 
and south Australia can be explained by the movement of the two predominate high-pres-
sure systems in the Indian and Pacific Oceans equatorward. This results in strong subsid-
ence in the north and a resultant lack of orographic lifting as the trade winds move the 
moist tropical maritime Pacific air mass parallel to the coast (Tapper and Hurry 1993). 
While in the south, the shifting of these high-pressure systems allows extratropical low-
pressure systems and their associated cold fronts to move further north and interact more 
readily with the southern coastline. The peak in winter gust activity observed here follows 
closely those observed by Kuleshov et al. (2002) for general thunderstorm activity (based 
on lightning occurrence), with maxima in both Perth (southwest WA) and western TAS 
also observed in their analysis.

There is however high standard deviation in Elatent shown in Fig. 5b, with values up to 
3 event days per year evident for several cells along the south coast of Australia. While not 
shown here, the mean values of Shr3 within these cells during winter show notably larger 
values than their surrounding cells. The CAR term (Fig. 5c) appears to be near zero for 
most of the country. The low CAR term is expected because event counts are so small, but 
marginally higher values are present in the southern part of the country albeit still small 
compared to other seasons. 

Fig. 6  As for Fig. 4 but showing Mburst spring model
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In spring, the increase in gust event days noted in Sect. 2.1 across the county is clearly 
evident (Fig.  6a). This increase is caused by a shift in synoptic weather patterns as the 
high-pressure systems over the Indian and Pacific Oceans start to move south (Tapper and 
Hurry 1993) and begins to allow moist equatorial maritime air mass inland. The maxi-
mum number of convective gust events appear to occur in the interior of the continent, 
with numbers dropping off around the coast, particularly towards the south. Up to 4 event 
days per year can be seen in northeast NSW, with this local peak linked to the return of 
south-easterly trade winds bringing warm, moist Pacific and Tasman maritime air to this 
region during this time of year (Tapper and Hurry 1993). Moreover, orographic lifting of 
the Great Dividing Range along the east coast of Australia has the potential to aid in the 
maxima in event days seen in this region. There are also localized maxima in central West-
ern Australia and the Northern Territory. These appear to occur around cells where AWS 
coverage is low compared to city centres but where multiple days with convective wind 
events have been recorded by those stations (Fig. 2c). Given the short duration of AWS 
records used, and the random but infrequent occurrence of strong convective gusts, such 
localized peaks are to be expected at some sites but are anticipated to be smoothed out as 
longer records become available. The standard deviation of Elatent (Fig. 6b) suggest that 
there is uncertainty with a large part of central Australia and the maximum in northeast 
NSW with standard deviation values approaching 3 event days per year.

The CAR term (Fig. 6c) seems to show mostly an underestimate of events across Aus-
tralia (i.e. positive CAR), especially in the areas where event (Elatent) maxima are shown 

Fig. 7  As for Fig. 4 but showing muCAPE-Shr1 summer model
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in Fig. 6a. There are however areas of overestimating along the coast in Queensland (QLD) 
and WA as well as over TAS. 

The largest gust event counts are shown to occur in the summer months (Fig. 7a). 
Across most of the country there appears to be, on average, approximately 4  days 
per year with at least one convective wind event occurring in each cell. Event counts 
reaching up to 12 per year over northern WA are shown. This maximum extends east 
towards the Northern Territory (NT) border. Smaller maxima, around 8 days per year 
with at least one convective wind events appears in the NT and in the northeast corner 
of NSW, although these maxima don’t extend much beyond an individual grid cell. 

The increase in events across the country during summer is largely attributed to 
the positioning of the intertropical convergence zone over the northern part of Aus-
tralia and the associated convergence and uplift of very moist air, during this period. 
Frequency of these thunderstorms tends to decrease towards the south but exceptions 
have been noted over inland Western Australia where ‘dry’ thunderstorms are common 
(Kuleshov et  al. 2002). In WA the general wind pattern is easterly bringing hot, dry 
continental air into the region. However, there is also the recurring of trade winds that 
bring warm, moist tropical maritime air from the Indian ocean into northern WA (Tap-
per and Hurry 1993). The interaction of these two different air masses has the poten-
tial to trigger severe convective weather, specifically the ‘dry’ thunderstorms, noted to 
occur in this region. As in spring, during summer the east coast of Australia experi-
ences south-easterly trade winds that bring warm, moist Pacific and Tasman maritime 
air to this region and with it the potential for convection when aided by orographic lift-
ing of the Great Dividing Range. This can be seen in the maxima of event days in the 
north east part of NSW in Figs. 6a and 7a.

Examining additional outputs from the model, the standard deviation of Elatent 
(Fig.  7b) is largest over northern WA, southern NT and even parts of western QLD. 
This is not surprising giving the magnitude of the mean Elatent values as well as the 
sparsity of observations in these regions (Fig. 1d). In contrast, the small maximum of 
Elatent over northeast NSW has a much smaller standard deviation for Elatent signify-
ing less uncertainty in quantifying the process not explained by the explanatory vari-
ables. The mean CAR term in summer (Fig. 7c) shows the model underestimates the 
event day counts over the northeast part of WA and the southern part of the NT. There 
are however areas where the model overestimates event counts, those being the north-
ern part of the NT and QLD, as well as over TAS and part of the southern coast of 
Australia. There is less deviation in the CAR term in cells that have AWS. While this 
may be expected, it is interesting how distinct the contrast is in summer.

An aggregated count of the mean number of gust event days per year (i.e. summed 
across all seasons) is shown in Fig. 8. This figure shows that the majority of days with 
a severe convective wind gust appear to occur over the north half of WA, with about 
15–20 event days per year, and extends to a lesser degree into the south half of the NT 
where around 10 event days are shown. The rest of the country sees between 1 and 5 
event days per year, with the exception of a few cells over northeast NSW that have 
about 10–15 event days per year. Looking at the contribution of each season to the 
entire year (not shown) it is clear that the majority of events occur during the summer. 
With cells over northern WA, southern NT, and parts of QLD having up to 80% of 
their event days occurring in the summer. Much of the east coast of Australia, as well 
as southeast WA, SA, VIC, northern NT, and northern QLD, have about 40% of their 
event days occurring in the spring, whereas most of the country sees about 10–20% of 
their event days in autumn. Most cells have less than 10% of their event days occurring 
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during winter with the exception of cells over the southern Australian coast and TAS 
where the percentage can reach up to 60%.

3.3.2  1979–2015 reanalysis‑based climatology

To accurately determine the hazard associated with any type of severe weather event, a 
long period of observations is generally necessary (Mason and Klotzbach 2013). While 
the results from the models discussed above provide a spatially complete climatology, it 
is only done so based on a short 11-year period. In this section, relationships developed in 
Sect. 2.3 and discussed in Sect. 3.1 are applied to 37-years (1979–2015) of ERA-Interim 
data, to investigate whether any biases or errors in the climatology may have been intro-
duced due to the short period used up to this point.

To extend the models to the longer ERA-Interim period (and without the AWS observa-
tions), Eq. 4 is solved for each season through a direct Monte-Carlo simulation using the 
distribution of each parameter ( �0 , �1 , �2 , �3 , CARi ) calculated by the hierarchical Bayesian 
models chosen in Sects. 3.1.1–3.1.4, and the mean seasonal index values calculated for the 
ERA-Interim reanalysis between 1979 and 2015. A random sampling of 50,000 years is 
used to give a distribution for the event occurrence rate, λi, at each ERA-Interim grid cell 
i. Elatent is then solved in the Monte-Carlo simulation by taking the Poisson distribution 

Fig. 8  Average expected annual number of days with at least one convective gust per cell for the period 
2005–2015
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of λi. Results of this analysis are shown in Fig. 9 where average seasonal event occurrence 
rates (Elatent) are shown for autumn, winter, spring, and summer.

Comparing the climatology over the extended period of 1979–2015 (Fig. 9) with the 
period the Bayesian models were developed on (2005–2015) (Fig.  4–7), similar event 
counts and distributions of these counts seasonally, and across the country are evident. 
Over the entire year, there are slight variations to the event counts between the two 
periods, with an average absolute difference of ~ 0.03 events days per year, to a maxi-
mum difference of ~ 0.4 event days per year. Moreover, there is little visible difference to 
the spatial distribution of event occurrence. One of the more noticeable differences are, 
however, in winter, where the 1 event day per year line is shifted northward and a few 
cells approaching 2 event days per year can now be seen. The 1 event day per year line 
during spring is also found to extend more into SA for the 1979–2015 period compared 
to 2005–2015 and the 5 event per day line during summer expands more into NT for the 
1979–2015 period.

When comparing these results with the climatologies based solely on weather sta-
tion observations reported by Spassiani and Mason (2021), notably higher event counts 
are observed here; e.g. Spassiani and Mason (2021) observe 3 convective gust days per 
year in northwest WA, compared to up to 20 days found in this work. This difference 
is expected given their study provides a measure of event frequency at point locations 

Fig. 9  Average seasonal number of convective wind gust events for the period 1979–2015: a autumn (Li5-
Shr1-Autumn model), b winter (LiMax-Shr3 -Winter model), c spring (Mburst-Spring model), and d sum-
mer (muCAPE-Shr1 -Summer model)
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(i.e. at an AWS station) while the current model provides a regional count measured 
over a 75  km × 75  km area, where many events will occur that won’t be recorded by 
all points within that region. The relative distribution of events across the country is 
similar though, but the incorporation of SWI through the Bayesian hierarchical model 
has provided more detail between the sparse network of weather stations thus providing 
greater information in those areas where stations don’t currently exist.

Comparisons with Brown and Dowdy (2021a) also show they find elevated gust event 
occurrence in the interior of Australia and a maxima along the east coast, similar to that 
shown in Fig. 8. However, Brown and Dowdy (2021a) do not show many events occurring 
over northern WA. Despite this, Kuleshov et al. (2002) and Dowdy and Kuleshov (2014) 
show peaks in lighting activity in this area, and Bedka et al. (2018) show a maximum in 
overshooting cloud-tops to occur in this area, all highlighting the potential for severe con-
vective gusts to occur through the area despite the current lack of observations.

4  Conclusion

This paper details the development of a spatially complete climatology of severe convec-
tive wind gusts across Australia. This is done while correcting for the biases found in typi-
cal report-based climatologies, where the density of observers (or observation sites in this 
research), or the period over which these observations are made can lead to an artificial 
maximum (often near population centers) or an artificial minimum in event counts (often 
in rural regions). Bayesian hierarchal modelling was utilized to correct for these biases 
while also using global reanalysis data (ERA-Interim) to interpolate between observations 
at weather station sites. Such a modelling approach builds upon similar successful climate 
studies in other parts of the world (e.g. tornadoes across North America in Cheng et al. 
2016) but has been adapted here to study severe convective wind gusts in Australia.

Using weather station observations and 14 reanalysis-derived severe weather indices 
over the period 2005–2015, individual models were developed to explain the rate of severe 
convective wind gust occurrence for each of the four seasons (southern hemisphere autumn, 
winter, spring, summer) with results aggregated to estimate annual event occurrence rates. 
Results suggest that there are many more severe convective gust events occurring across 
Australia than are being observed. This is especially true in the interior of the continent, 
and in northern Western Australia. Broadly, a seasonal bias in the event day occurrence 
rate was observed, with a minimum number of events occurring during the autumn or win-
ter months, a larger number of events occurring during the spring months and a maximum 
for all regions except the southern tip of Western Australia and Tasmania occurring in the 
summer. In addition, there is a shift in where convective gusts occur throughout the year 
with event days largely confined to the southern parts of Australia in the winter, and a shift 
to the north in the spring. There is also a small shift in the event maximum to the east dur-
ing the summer, followed by a retreat south in autumn.

To overcome limitations that may exist in these derived climatologies due to the short 
observational record, each of the seasonal models were then run with severe weather indi-
ces calculated for the period 1979–2015 but in the absence of any AWS observations. This 
extended climatology showed similar event occurrence rate and spatial distributions to 
those shown directly from the Bayesian Hierarchical Modelling calculated for 2005–2015. 
Variability between models across the majority of Australia is within 2%, with no discern-
ible spatial pattern visible.
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While the use of a hierarchical Bayesian model with monthly mean SWI inputs was 
found to be useful, this approach – and the climatology developed here—does have scope 
for improvement. For example, use of an observational period greater than 11 years (with 
similar data quality), that captured more of the natural variability in event occurrence rate 
at a given location, is expected to lead to more reliable model convergence and may iden-
tify SWI with more explanatory power than those identified here. A longer observational 
period could also help limit the magnitude of the uncertainty in Elatent values, as evi-
denced through the large estimated standard deviation values, which could improve the 
model’s fits to the data and thus provide more certainty when interpreting the results from 
the Bayesian hierarchal models. In addition, only a limited number of seasonally-averaged 
severe weather indices were considered here. Use of SWI averaged over shorter periods 
(e.g. weekly or monthly), drawn from more resolute reanalysis, e.g. ERA5 (Hersbach 
et al. 2019) or the use of different indices, such as the logistical regression index recently 
develop by Brown and Dowdy (2021a, b), may also improve model performance as well as 
resulting climate estimates.

Appendix 1 Variable descriptions

Table 11 Present a list of the variables used in the equations of the severe weather indices 
shown in Table 1 (Sect. 2.2) along with a short description to define each symbol.

Table 11  Short description for 
the variables used in the severe 
weather indices equations shown 
in Table 1

Variable Description

u u-component of the wind (east–west)
v v-component of the wind (north–south)
T Temperature in Kelvins
Tsfc→i Temperature of the parcel lifted from the surface to 

the i pressure level
g Gravitational constant
zEL Height of the Equilibrium Level (EL)
zLFC Height of the Level of Free Convection (LFC)
θEp Equivalent potential temperature of the parcel
θEe Equivalent potential temperature of the Environment
DLS Deep Layer Shear (0–6 km)
pLFS Pressure of the Level aloft of Free Sink
psfc Surface pressure
�p Specific volumes of the parcel
�e Specific volumes of the environment
�e Equivalent potential temperature
sbCAPE Surface-based CAPE
LIsfc Surface-based Lifted Index
�2m−3km 2 m-3 km lapse rate
VT Vertical Totals (850–500 mb temperature difference)
PWV Precipitable Water Vapour
TeD Theta-e Difference between the max and min values

V1−3.5��
1–3.5 km mean wind
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