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Abstract
Flood risk is anticipated to increase, driven by climate change and socioeconomic devel-
opment. Flood impact assessments rely heavily on models, and understanding the effects 
of uncertainties encompassed in the modelling chain is critical to adequately interpret 
flood risk and the development of effective flood adaptation measures. Previous research 
has focused on the effects of processes embedded in models, and flood frequency analy-
sis of flood risk. However, no study has yet evaluated the cascading effects of flood dam-
age assessment methodologies on uncertainty in the estimation of expected annual dam-
age (EAD), optimal flood protection, and residual flood damage (RFD). Here, using an 
updated global river and inundation model forced by the latest climate data and employing 
a standard flood methodology, we found that global EAD will increase by $16.2 (USD 
throughout) and $44.5 billion  yr−1 during 2020–2100 under low- and high-emissions sce-
narios, respectively. During the same period, despite the adoption of optimal levels of flood 
protections, global total RFD remained high under both low- and high-emissions scenarios, 
at $25.8 and $36.2 billion  yr−1, respectively. Our results demonstrate that, under current 
levels of flood protection, EAD will approximately double with a switch in methodology. 
Aggregating data at the regional scale revealed conflicting trends between methodologies 
for developing and high-income countries, driven by existing levels of flood protection as 
well as the intensity, evolution, and distribution of gross domestic product at the adminis-
trative unit scale. Flood damage methodology is the dominant source of uncertainty, fol-
lowed by unit construction cost and discount rate.
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1 Introduction

Long-term observations and model simulations both strongly suggest that global warming 
is already affecting the climate (Paik et  al. 2020; Dong et  al. 2021) and the hydrologi-
cal cycle (Pörtner et al. 2022). Societies are particularly strongly impacted by changes in 
extreme events, as clearly demonstrated by devastating heatwave (D’Ippoliti et  al. 2010; 
Lewis and Karoly 2013; Campbell et al. 2018) and drought (Kelley et al. 2015; Mann and 
Gleick 2015) events over the last decade.

Accounting for approximately 43% of global natural disasters, flood-related disasters are 
highly disruptive, with the potential to affect multiple countries simultaneously and cause 
serious damage worldwide (Jongman et al. 2014; Dottori et al. 2018). At present, approxi-
mately 0.8 billion people and 50 trillion US dollars in assets are exposed to 1-in-100-year 
river flood events annually (Jongman et al. 2012). Changes in climate driven by anthropo-
genic emissions are already affecting floods (Blöschl et al. 2019; Hirabayashi et al. 2021a), 
increasing economic losses associated with flooding in many parts of the world. Multiple 
independent studies that have employed a wide range of models, input data, and methods 
have overwhelmingly found that flood risk will increase in the future, driven by changes 
in climate, land use, and socioeconomic conditions (Dottori et al. 2018; Hirabayashi et al. 
2021b; Taguchi et al. 2022). Population exposure to the historical 1-in-100-year river flood 
level is anticipated to increase in proportion to the degree of warming and could reach 
1.4-fold the historical exposure level to 1-in-100-year river floods, given 3 °C of warming 
(Hirabayashi et al. 2021b).

Several global databases of flood protection measures have emerged in recent years 
(Scussolini et  al. 2016; Wing et  al. 2019). Integrating these databases into flood assess-
ments is essential to obtain realistic estimates of flood exposure and flood damage (Win-
semius et al. 2016). For example, a recent study demonstrated that spending approximately 
$6.8 billion for flood adaptation could reduce annual flood damage by approximately $74 
billion by 2100 and would be particularly effective in China, India, and Latin America 
(Tanoue et al. 2021). The same analysis noted that flood damage exceeding 0.1% of gross 
domestic product (GDP) remains a risk in eastern China, northern India, and central Africa 
despite the consideration of adaptation measures. A study focused on Europe revealed that 
increasing flood protection levels in all basins to a minimum of the 1-in-100-year river 
flood level would decrease total annual losses associated with flood by about €7 billion 
(by 2050) while only costing approximately €1.75 billion (Jongman et  al. 2014). At the 
global scale, spending $78 billion on global adaptation would reduce annual flood dam-
age by $79.9 billion from 2020 to 2100 (Ward et al. 2017). Other studies have endorsed 
the integration of flood protection measures into flood studies (Ward et al. 2013; Boulange 
et al. 2021; Hanazaki et al. 2022; Chaudhari and Pokhrel 2022).

Given the limited spatiotemporal coverage of flood observations, flood impact assess-
ments rely heavily on global flood hazard model (GFHM) simulations. Consequently, 
understanding the effects of cascading uncertainties, which are linked to the modelling 
chain employed (e.g., climate models, future scenarios, and flood models), is critical to the 
adequate interpretation of flood risk and the development of effective adaptation actions 
(Zhou et al. 2021; Meresa et al. 2021). Despite the importance of quantifying uncertainty 
in flood risk analysis and a call to make uncertainty analysis mandatory in flood damage 
assessments (Merz et al. 2010), only about one sixth of existing flood studies have incorpo-
rated an uncertainty framework (Díez-Herrero and Garrote 2020).
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Future flood assessments typically account for multiple climate forcings using an 
ensemble of climate models (Kundzewicz et al. 2014). Such studies focus on a limited 
subset of variables that are key to determining flood characteristics, such as precipita-
tion (Rözer et al. 2019; Mei et al. 2020), runoff, river streamflow conditions (Zhao et al. 
2017; Zhou et  al. 2021), sea level rise, storm properties (Vousdoukas et  al. 2018a, b; 
Marsooli et al. 2019; Rasmussen et al. 2020), and the rainfall–runoff–storm relationship 
(Bevacqua et al. 2019; Xu et al. 2023) in the contexts of urban, river, coastal, and com-
pound flooding. In addition, the importance of assumptions regarding socioeconomic 
development and flood protection standards in assessments of future flood risk is widely 
recognized (Winsemius et al. 2016; Ward et al. 2017; Sauer et al. 2021; Kirezci et al. 
2023). Molinari et  al. (2019) suggested that common practices for validation of flood 
risk models should be developed, as estimates of flood inundation area, economic losses 
and exposed population vary strongly and significantly among models (Trigg et  al. 
2016). This variability has prompted researchers to suggest the use of an ensemble of 
flood risk models for large-scale flood assessment whenever possible (Winsemius et al. 
2013; Devitt et  al. 2021). Yamazaki et  al. (2014) noted that differences in simulated 
river streamflow and inundation area among GFHMs are magnified in deltaic regions 
where branch flow processes strongly influence flood simulation results. These uncer-
tainties propagate to the estimates of population exposed to flood risk, which can differ 
by up to 14% depending on the physical processes considered in the GFHMs and the 
input data employed (Yamada et al. 2021). Likewise, elevation data have been reported 
to be a critical source of uncertainty in urban, river, and coastal flood studies, with the 
potential to triple estimates of global vulnerability to sea level rise and coastal flooding 
(Yamazaki et al. 2019; Kulp and Strauss 2019; Arrighi and Campo 2019). Flood analy-
ses rely on extreme value theory to derive flood return periods, which is a critical source 
of uncertainty that directly influences flooded water depth and inundation area (Chavez-
Demoulin and Davison 2012; Hirabayashi et  al. 2013, 2021b; Zhou et  al. 2021). The 
damage component of flood risk analyses relies on depth–damage curves, which define 
the percentage of the value of assets damaged as a function of flood depth. However, the 
large discrepancy in building materials and construction quality among communities 
severely limits their applicability in spatial and temporal terms (McGrath et  al. 2019; 
Lüdtke et  al. 2019; Wing et  al. 2020; Kirezci et  al. 2023), limiting the application of 
flood risk assessment.

Numerous studies have derived historical and future flood damage at global (Merz et al. 
2010; Winsemius et al. 2016; Dottori et al. 2018; Tanoue et al. 2021), continental (John-
son et al. 2020; Davenport et al. 2021), and local scales (Shrestha et al. 2019; Romali and 
Yusop 2020). Over the past 5 years, Web of Science has indexed a total of 1,218 articles 
related to flood damage that directly incorporated one or more methods, approaches, or 
techniques related to hazard (e.g., hydrology, geosciences, and paleo-hydrology), exposure 
(e.g., population and land use), vulnerability (e.g., social vulnerability, economic vulner-
ability, and damage functions), and other (e.g., cost–benefit analysis and susceptibility 
analysis). All of these components and associated keywords are defined in Díez-Herrero 
and Garrote (2020). Approximately 64% of these articles focused on only one component 
of flooding (Fig. 1a). The remaining articles generally incorporated two components, usu-
ally a combination of exposure, vulnerability, and other categories (Fig. 1b). Among 194 
articles that utilized a cost–benefit methodology for flood damage assessment, less than 
half considered multiple flood components in their analysis. Moreover, the few studies that 
computed residual flooding relied on outdated climate projections and did not report the 
effect of cascading uncertainty embedded in flood damage assessment methodology on 
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estimated annual damage, optimal flood protection, and residual flood damage, leaving a 
gap in our understanding.

In this study, we assessed annual flood damage, optimum flood protection levels, and 
associated residual flood damage using two established flood damage methodologies under 
a portfolio of adaptation scenarios. Forcing an updated global river and inundation model 
with the latest climate simulations, we attribute the overall uncertainty to four sources 
including flood assessment methodology and three key economic assumptions.

2  Materials and methods

2.1  Forcing data

2.1.1  Retrospective simulation

The bias-corrected reanalysis dataset S14FD (Iizumi et al. 2017) was used in conjunction 
with the land surface process model MATSIRO (Takata et al. 2003) to generate daily run-
off values (Fig.  2). The S14FD product, spanning 1958–2013, is derived from the JRA-
55 reanalysis data (Harada et  al. 2016). Despite neglecting the effect of anthropological 
activities on the water cycle, correction for monthly biases in precipitation, vapor pres-
sure, and absolute humidity, among other variables, allows the S14FD product to skill-
fully reproduce observed extremes of temperature and precipitation (Iizumi et  al. 2017). 
The daily runoff data (0.5-degree spatial resolution) are used as forcing input data for the 
CaMa-Flood model. Our goal was to establish a trustworthy relationship or lookup table, 
between the return period associated with floodwater volume and, inundated area at a fine 

Fig. 1  Articles indexed by Web of Science dedicated to flood damage and incorporating one or more meth-
ods, approaches, and techniques related to hazard, exposure, vulnerability, and other components, as defined 
by Díez-Herrero and Garrote et al., (2020). a Articles from the past 5 years focusing on “flood damage” are 
classified based on methods, approaches and techniques. b A meticulous examination and classification of 
articles integrating multiple components of hazard (H), exposure (E), vulnerability (V), other (O). Search 
performed on March 27th, 2023
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spatial resolution of 3 arcsec (Fig. 2). This framework was previously successfully used to 
reproduce observed historical streamflow and inundation area in Thailand (Tanoue et al. 
2020; Taguchi et al. 2022).

2.1.2  Acquisition of daily historical and future runoff data

Daily runoff products from atmosphere–ocean general circulation models (AOGCM) 
were acquired directly from the Coupled Model Intercomparison Project Phase 6 (CMIP6; 
Eyring et al. 2016). Applying the same rationale and methods as Hirabayashi et al. (2021b), 
we selected nine AOGCMs from independent institutions and harmonized the provided 
gridded runoff data to a common 0.5-degree grid using bilinear interpolation. Runoff 
products from CMIP6 can be divided into two periods, historical and future, which span 
1960–2014 and 2015–2100, respectively. Future runoff estimates were further subdivided 
into Shared Socioeconomic Pathway–Representative Concentration Pathway (SSP–RCP) 
scenarios, interweaving plausible climate and societal future scenarios. Here, we limit our 
analysis to two scenarios, ssp126 and ssp585, representing a rapid transition to a sustain-
able society paired with low greenhouse gas concentrations and a resource-hungry soci-
ety that relies on fossil fuels paired with high greenhouse gas concentrations, respectively. 
Note that at the time we archived the data, one of the AOGCMs was not available for the 
ssp126 scenario and the ensemble was composed of the remaining eight AOGCMs (Sup-
plementary Table 1). Although the high-emissions scenario has faced criticism, due to its 
implausible assumptions regarding coal use (Ritchie and Dowlatabadi 2017), it has the 
advantage of clearly showing the trend of flood impacts and was therefore adopted in this 
study.

2.2  Global hydrodynamic model

The global river routing model used in conjunction with the forcing data presented above is 
the latest version of the catchment-based macroscale floodplain model (CaMa-Flood v4.0; 
Yamazaki et al. 2011, 2014). The CaMa-Flood model employs a vector-based representa-
tion of the river network that optimally represents sub-basin connectivity and is computa-
tionally efficient. Efficiency is critical in global flood studies, as the large ensemble simula-
tions that are necessary to account for climate uncertainties rapidly increase computation 
time.

The fundamental hydrographic dataset, MERIT-Hydro (Yamazaki et al. 2019) is primar-
ily based on the combination of Multi-Error-Removed Improved-Terrain digital elevation 
model (DEM; Yamazaki et al. 2017), which was improved through the removal of various 
observation errors, with the Flexible Location of Waterways (FLOW) method (Yamazaki 
et al. 2009). At present, MERIT-Hydro provides the most accurate representation of river 
networks as demonstrated in multiple independent analyses (Getirana et al. 2021; Eilander 
et al. 2021).

In CaMa-Flood, water dynamics in the floodplain are realistically simulated by explic-
itly solving the local inertia equation (Bates et  al. 2010), thereby representing backwa-
ter effects. Water storage is the only prognostic variable and is acquired by solving the 
water balance equation. Other variables, such as inundation area and inundation depth, are 
determined by dividing river networks into unit catchments and combining water storage 
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with other relevant topographic parameters (Yamazaki et  al. 2011). The CaMa-Flood 
model faithfully reproduces historical flood patterns (Yamazaki et  al. 2011, 2012, 2014) 
and largely outperforms global hydrological models for reproducing historical streamflow 
(Zhao et al. 2017).

A new addition in CaMa-Flood v4.0 is the introduction of satellite-based estimation of 
river geometry (Yamazaki et al. 2019). The empirical method previously employed to esti-
mate river geometry (Yamazaki et al. 2011) has been updated (Yamazaki et al. 2019) but 
is relegated to deriving river geometry where satellite observations are not available. The 
CaMa-Flood model is modular, allowing users to activate or deactivate specific features. In 
our simulations, we activated both discharge from floodplains and the channel bifurcation 
scheme. All simulations were performed globally, and the output consisted of daily total 
water storage at 15-arcmin spatial resolution (approximately 25 km at the equator). The 
simulation periods were 1953–2013 for the runoff products produced with MATSIRO and 
1960–2100 for the runoff input obtained from CMIP6, respectively. A spin-up period of 
5 years was completed prior to the historical simulations. For future simulations, no spin-
up was necessary, as the simulations were initialized using the water storage conditions 
obtained from historical simulations.

2.3  Flood impact analysis

2.3.1  Global river flood simulation

As the simulations are directly forced by runoff from AOGCMs without correction of bias, 
inundation areas and inundation depths are not determined directly in CaMa-Flood simu-
lations. Instead, we associated the recurrence frequency (return period) of the predicted 
annual maximum water storage in each grid (15 arcmin) with inundation area and inunda-
tion depth at a fine spatial resolution (30 arcsec, approximately 1 km at the equator) using 
retrospective simulations (see Sect. 2.1.1).

The annual maximum water volumes obtained from the retrospective simulation dur-
ing 1971–2000 were fitted to a Gumbel distribution (Gumbel 1941) using the L-moments 
method (also called probability weighted moments) due to its reliability for relatively small 
size samples (Greenwood et  al. 1979; Hosking and Wallis 1997). The established Gum-
bel distributions were subsequently used to estimate the annual maximum water volume 
associated with 2- to 1000-year return periods in all grid cells (15 arcmin), which form the 
basis of the lookup tables (Fig. 2). Note that all equations and intermediate steps used to 
estimate the two parameters of the Gumbel distribution are provided in the supplementary 
documents of Hirabayashi et al. (2013, 2021b).

The procedure employed in the flood simulations based on CMIP6 runoff begins identi-
cally to that described above for the retrospective simulation (Fig. 2). After forcing of the 
CaMa-Flood model with CMIP6 runoff data, we extracted annual maximum water volumes 
for the period of 1971–2000 and fit a Gumbel distribution using the methodology noted 
above. The fitted distribution was subsequently applied to the future period (2015–2100) 
to assess the return period associated with annual maximum water volumes in each grid 
cell and year. Finally, we adjusted for bias in climatic hydrological variables obtained from 
the AOGCMs using the lookup tables established based on the retrospective simulation, 
converting return periods associated with flooding to inundation depths or flood damage, 
depending on the flood methodology adopted (see Supplementary Figs. 1 to 3).
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2.3.2  Flood damage

We compared two established but distinct methods for deriving historical and future 
flood damage. While the procedural steps for deriving flood damage differ between the 
two methods, flood damage is nevertheless consistently defined as the product of hazard, 
exposure, and vulnerability (Winsemius et  al. 2013). Exposure consists of gridded GDP 
maps representing present and future socioeconomic conditions derived using the meth-
odology proposed by Tanoue et al. (2021). Vulnerability is expressed as the combination 
of flood protection levels (FLOPROS) and damage functions, with the latter describing the 
relationship between inundation depth and damage severity across continents (Huizinga 
et al. 2017). Furthermore, all subsequent analyses involving the estimation of flood dam-
age, such as residual flood damage and adaptation costs and benefits, are identical in the 
two methods (Fig. 2).

Method 1 employs the magnitude of flooding, the value of assets, and the level of flood 
protection to represent the hazard, exposure, and vulnerability, respectively (Tanoue et al. 
2021). The eventual presence of flood protection is considered immediately, assuming that 
a flood with a return period shorter the design period of the local flood protection is fully 
mitigated. Hence, in such locations, the inundation depth and flooded fraction are zero. In 
contrast, in locations where the return period of a flood is longer than the local flood pro-
tection (i.e., where the flood magnitude exceeds the local protection level), we calculated 
the volume of overflowing floodwater and then downscaled this volume to high-resolution 
inundation depth and flooded fraction (Fig. 2). Method 1 is not widely applied to riverine 
flood assessments, possibly due to the additional computational cost involved in calculat-
ing overflow volume. Nevertheless, an analogous technique has been employed in multiple 
coastal flood assessments (Vousdoukas et al. 2018a, c).

Method 2 has been used in multiple urban and riverine flood risk assessments (Win-
semius et al. 2013; Hallegatte et al. 2013; Dottori et al. 2018, 2023). In method 2, flood 
volume is not adjusted for the eventual presence of flood protection; hence, this method is 
less resource-intensive than method 1. The first step of method 2 involves the derivation of 
accurate lookup tables linking flood damage to the magnitude of floods (2- to 1000-year 
return periods; Fig. 2). These tables are constructed by downscaling the annual maximum 
water storage associated with 2- to 1000-year return periods from the retrospective simula-
tion (Fig. 2) onto a high-resolution DEM (See Supplementary Figs. 1 and 2). Then, flood 
damage tables are obtained by upscaling the available maps to a resolution of 30 arcsec 
for overlaying exposure (GDP in year 2010; see supplementary Fig. 3) and vulnerability 
(damage function) information. Finally, annual flood damage is computed by converting 
flood return periods into flood damage using the tables described above with adjustment 
for future changes in GDP. In this step, biases originating from climatic variables are effec-
tively removed.

As demonstrated above, the definition of flood damage is consistent in both methods. 
To simplify the interpretation of this analysis, we highlight some key differences between 
the two methods. First, method 1 is based on the overflow volume of floodwater, whereas 
method 2 is based on the total volume of floodwater. Consequently, flood damage is antic-
ipated to be greater with method 2 compared to method 1. Second, the downscaling of 
floodwater relies on DEM with different spatial resolutions, which can be expected to 
result in lower damage with method 2 due to the more accurate redistribution of floodwa-
ter. Third, the lookup tables used in method 2 rely on GDP distribution data from 2010, 
meaning that only the intensity of GDP is scaled annually, rather than both its intensity and 
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distribution, as in method 1. For countries experiencing high GDP growth (Supplementary 
Fig. 7), the future spatial distribution of GDP could be very different from that in 2000, 
directly affecting EAD calculation. Nevertheless, because we report our results globally, 
for the World Bank regions, and for administrative levels, this future GDP distribution can-
not be responsible for any differences in flood damage between the two methods.

2.4  Estimation of current and future flood protections

Existing flood protection data were acquired from the FLOPROS database (Scussolini 
et al. 2016), which provides, globally and at the administrative level, the flood return peri-
ods associated with protection measures. FLOPROS was created by merging three distinct 
layers of information. The design layer provides empirical data about the actual standard of 
existing flood protection measures. The policy layer includes information on flood protec-
tion standards as mandated by regulations and policies. Finally, the model layer estimates 
flood protection levels using a combination of flood hazard modelling and the relationship 
between wealth and flood protection. When these layers are combined, the design layer, 
which contains the most reliable and accurate information on actual flood protection meas-
ures, is prioritized. If no data are available from the design layer, the policy layer, which 
provides information about the minimum standards of flood protection required by regula-
tions and policies, is used. Finally, the model layer is used only when no other information 
is available. Current levels of flood protection provided by FLOPROS are particularly reli-
able for European countries and China. In contrast, the model layer provides information 
over most of Africa, South America, and large parts of Russia.

Future flood protection levels were derived following the established relation: 
FPLfuture = FPLcurrent × 2L where  FPLfuture and  FPLcurrent represent future and current flood 
protection levels, respectively. The adaptation level, represented by L, increases gradually 
by 0.25 over the interval 0–10, resulting in the derivation of a maximum of forty protec-
tion levels, as  FPLfuture is capped at 1000 years (Tanoue et al. 2021). The total adaptation 
cost associated with all future protection levels is calculated based on the unit construction 
cost, fixed at $2.399 million per km per log2(FPLfuture); operation and maintenance cost, 
set at 1% of the construction cost associated with the project; and an assumed 5% discount 
rate for all subnational administrative units (Supplementary Table 2). This framework was 
established by Tanoue et al. (2021) based on information about cost and protection levels 
aggregated from 256 international flood protection projects. For each of the future pro-
tection levels, we calculated future EAD and conducted a cost–benefit analysis to deter-
mine the scenario maximizing the difference between benefits and adaptation costs, at the 
administrative level. Under this optimized adaptation scenario, flood protection remains 
relatively affordable while the protection of assets is maximized. Benefits are quantified 
as the reduction in EAD between simulation considering an adaptation scenario and the 
default simulation assuming current levels of flood protection. RFD is defined as the dif-
ference between the future and present EAD (1971–2000), adjusted for eventual socio-
economic development (Tanoue et al. 2021). Critically, we performed additional analyses 
using selecting alternative unit construction costs, operation and maintenance costs, and 
discount rates (Supplementary Table 2). Because no alternative data regarding unit con-
struction cost are available, we explored the impacts of halving and doubling the default 
unit construction cost on our analysis. Likewise, two alternative maintenance rates (3% 
and 5% of the construction cost) were selected. Finally, discount rates used in previous 
flood analyses typically range between 8%, the Chinese official discount rate, and 4%, 
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corresponding to the interbank lending rates in Shanghai (Du et al. 2020). We determined 
the influence of the discount rate by assigning values of 0, 1, 2, 3, and 8%. Performing 
additional cost–benefit analyses with these alternative values allowed us to quantitatively 
and comprehensively investigate the cascading effect of uncertainty embedded in these 
parameters on the determination of EAD, optimal flood protection levels, and RFD.

2.5  Decomposition of variance

We applied four-way multifactorial analysis of variance (ANOVA) to changes in future 
levels of flood protection to decompose the variance. Four main factors were established, 
namely, flood damage method, discount rate, unit construction cost, and maintenance 
cost, as they were reported to be primary causes of variance in flood damage assessment 
(Tanoue et al. 2021). ANOVA was conducted at the administrative level, which is compat-
ible with the levels of current and future flood protection. The total sum of squares (TTS) is 
expressed as Eq. 1 (Hattermann et al. 2018; Satoh et al. 2021):

where Xijkl is the specific value for a subnational unit corresponding to flood damage i, 
discount rate j, unit construction cost k, and maintenance rate l ; X is the overall mean; and 
N is the number of samples for a factor. The main factors are denoted with the subscripts 
met, dis, mat, and mai, indicating flood damage method, discount rate, unit construction 
cost, and maintenance cost, respectively. TTS can be further decomposed into four main 
effects and ten interaction terms, representing all interactions among flood damage method, 
discount rate, unit construction cost, and maintenance cost:

where SS is the sum of squares and suffixes indicate the main factors involved in an interac-
tion term. The main factor effect (SS) and contribution (CR) of the flood damage method to 
the overall variance can be calculated using Eq. 3 and 4, respectively:

where Xi is the mean across indices (consistent with Eq. 1) j, k, and l for flood damage 
method i. The main factor effect and contribution to overall variance of the remaining main 
effects can be computed using equations analogous to Eqs. 3 and 4 and equations for the 
interaction terms are provided in the supplementary materials (Supplementary Equations).

(1)TSS =
Nmet
∑

i=1

Ndis
∑

j=1

Nmat
∑

k=1

Nmai
∑

l=1

�

Xijkl − X
�

(2)

TSS = SS
met

+ SS
dis

+ SS
mat

+ SS
mai

+ SS
met∗dis + SS

met∗mat

+ SS
met∗mai + SS

dis∗mat
+ SS

dis∗mai
+ SS

mat∗mai

+ SS
met∗dis∗mai

+ SS
dis∗mat∗mai

+ SS
met*dis*mat*mai

(3)SSmet = NdisNmatNmai

Nmet
∑

i=1

�

Xi − X
�2

(4)CRmet =
SSmet∕TSS
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3  Results and discussion

3.1  Historical and future flood damage under current flood protection levels

On average, EADs caused by floods during 1971–2000 estimated from the retrospective 
simulations were $58.5 (20.4–117.0;  5th–95th confidence interval given hereafter unless 
otherwise specified) and $27.9 (11.0–50.7) billion per year (2005 purchasing power parity 
basis) for methods 1 and 2, respectively. The same retrospective simulation conditions with 
a previous version of the CaMa-Flood model and method 1 were previously employed by 
Tanoue et al. (2021), who reported EAD of $62 billion in 1961–2013. The EADs obtained 
using methods 1 and 2 accounted for 0.14% (0.04–0.28) and 0.082% (0.02–0.12) of GDP 
in 2010, respectively. Overall, these estimates are well within the range of 0.044–1.6% 
reported in the literature (Winsemius et al. 2016; Alfieri et al. 2017; Kinoshita et al. 2018; 
Dottori et  al. 2018; Tanoue et  al. 2021). For 1971–2000, EAD estimates obtained with 
method 1 are systematically higher than those calculated using method 2. In addition, both 
urban and rural EADs estimated using method 1 are approximately double those estimated 
using method 2. We aggregated the EADs obtained in the retrospective simulation using 
the seven regions defined by the World Bank (see Supplementary Fig. 4 for the delinea-
tion of World Bank regions; Supplementary Fig. 5a). This analysis revealed that the larg-
est differences in EAD estimates between the two methods occurred over the regions of 
East Asia and Pacific, Europe and Central Asia, and North America. The differences in 
EADs obtained with the two methods using the same input data (retrospective simulation, 
CMIP6) stem from the number of flood events that induce damage each year (Supplemen-
tary Fig.  5b). Those numbers varied substantially between methods; for example, in the 
Europe and Central Asia region during 1971–2000, averages of 1281 and 287 flood events 
causing monetary damage per year were detected using methods 1 and 2, respectively. The 
downscaling of floodwater stage dictates the number of flood events causing monetary 
damage. As noted above, DEMs of different resolutions (Fig. 2) were used for downscaling 
due to computational cost, and the higher-resolution DEM used in method 2 substantially 
reduces flood damage in economically developed areas.

Next, we investigated the evolution of EAD without considering any further adaptations 
to flood risk using the current flood protections listed in the FLOPROS database (Scusso-
lini et al. 2016). As depicted in Fig. 3a, the differences between global-scale EADs reported 
using the two methods are substantial. During 2020–2100 under the ssp585 scenario, EAD 
increased by approximately $44.5 (42.6–46.4) and $90.3 (85.3–95.2) billion per year 
for methods 1 and method 2, respectively. In contrast, during the same period under the 
ssp126 scenario, the annual increase in EAD was much smaller, at $16.2 (15.5–16.9) and 
31.1 (29.7–32.4) billion per year for methods 1 and 2, respectively. Clearly, at the global 
scale, EADs computed using method 2 are systematically higher than those obtained using 
method 1. These differences tend to be small at first but increase steadily in the future 
under the high-emissions scenario (Fig. 3a). Under the low-emissions scenario, the EADs 
projected with the two methods had similar magnitude, but those obtained with method 2 
were larger than those computed using method 1, consistent with previous observations. 
Next, we briefly compare these results with a previous study (Tanoue et al. 2021). Despite 
substantial development of AOGCMs, the patterns in flood frequency were similar within 
CMIP5 and CMIP6, as differences in the direction of change affect limited regions in 
which the agreement regarding the direction of change in flood frequency is low among 
AOGCMs (Hirabayashi et  al. 2021b). Consequently, although the CMIP product version 
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and number of AOGCMs employed in this study and Tanoue et al. (2021) differed (5 and 
9 AOGCMs, respectively), these factors were unlikely to explain the large differences in 
EAD obtained using a common flood damage methodology (method 1; see Fig. 3a). Alter-
natively, these differences are likely to result from the use of different simulation settings 
and versions of the global river routing model (v3.9.3 vs. v4.0). Specifically, our simula-
tions relied on an updated, more accurate DEM and activation of the bifurcation scheme, 
both of which greatly improved the reproduction of flood dynamics in deltaic regions (See 
Sect. 2.2; Yamazaki et al. 2014; Yamada et al. 2021).

The trends discussed above at the global scale are not necessarily observed after aggre-
gation of EADs using the seven regions defined by the World Bank (Fig. 3b). Regardless of 
the flood damage method employed, EADs are particularly high over the regions of South 
Asia, East Asia and Pacific, and Sub-Saharan Africa, as the current level of flood protec-
tion (obtained from FLOPROS; see Supplementary Fig. 6) in these regions is rather low. In 
general, EADs estimated in the previous study (using CMIP5, method 1, and CaMa-Flood 
v3.9.3) were highest, consistent with global-scale aggregation (Fig. 3a), particularly over 
the South Asia and East Asia and Pacific regions (Fig. 3b). Previous research has high-
lighted the importance of an accurate DEM and representation of mega deltas for accurate 
flood simulation in such regions (Yamazaki et al. 2014, 2017). Likewise, the use of dif-
ferent DEMs and the activation of various options embedded in CaMa-Flood have been 
reported to strongly influence the estimate of population exposed to flood risk (Yamada 
et  al. 2021). Comparing methods 1 and 2, the EADs calculated using method 2 are far 
greater than those obtained with method 1 in low-income economies such as South Asia, 
Sub-Saharan Africa and much of the East Asia and Pacific region (Fig.  3b). As briefly 
discussed in the methods section above, only overflow floodwater is used to assess flood 
exposure and derive flood damage with method 1. In contrast, when the flood frequency 
exceeds the level of local flood protection, the latter is assumed to be breached; therefore, 
all water stored in the floodplain contributes to the exposure assessment and derivation of 
flood damage in method 2. The EADs calculated with method 2 were substantially lower 
than EADs obtained using method 1 in high-income economies such as Europe and Central 
Asia and North America. Current levels of flood protection are high in these regions (sup-
plementary Fig. 6), mitigating minor flood events. The volumes of floodwater originating 
from major flood events (i.e., those with recurrence periods higher than the level of flood 
protection) are downscaled in both flood damage methods. The high-resolution (3 arcsec) 
DEM used in method 2 accurately redistributes floodwater. Method 1 does not rely on the 
same high-resolution DEM due to prohibitive computational cost, and a lower-resolution 
(15 arcsec) DEM is employed (Fig. 2). In high-income regions, accurately redistributing 
floodwater is particularly critical due to the high concentration of high-value assets and the 
nonlinear increase in flood damage with flooding depth. Notably, the frequency of future 
floods is anticipated to decrease with climate change in these regions, further diminishing 
the difference in EADs calculated with the two methods.

Fig. 3  Expected annual damage (EAD) from flooding under current level of flood protection. a Global EAD 
for the two methods and two scenarios. The color bands represent the first and thirst quartiles range from 
AOGCMs. b Average EAD under ssp585 scenario between 2071 and 2100, aggregated for the seven World 
Bank regions

▸
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3.2  Mitigation of future flood damage under a portfolio of adaptation measures

The effects of a portfolio of future flood protection measures on future EAD are provided 
in Fig. 4 for the seven World Bank regions. The construction period required to complete 
or upgrade existing flood protections was set to 30 years. Hence, future EADs until 2050 
for all regions were identical under all scenarios of the adaptation portfolio (Fig. 4). After 
2050, increasing levels of flood protections (Sect.  2.4) generally reduced EAD, although 
the extent of this reduction varied greatly among regions. Considering the most ambitious 
protection scenario, the average annual benefits (between 2071 and 2100, minimum and 
maximum values across all regions) were $167–705 and $151–2,287 billion per year for 
methods 1 and 2, respectively (Fig. 4). The two flood damage methodologies produced the 
largest differences over South Asia and Sub-Saharan Africa under the high-emissions sce-
nario (Fig. 4 and Supplementary Fig. 8). Under the low-emissions scenario, the ranges of 
EADs predicted using the two methods were generally similar in a given region. Consistent 
across emissions scenarios, increasing the level of flood protection tended to reduce these 
differences in EAD, reconciling the EAD estimates obtained with the two methods (Sup-
plementary Fig. 9).

The difference in EADs computed using the two methods directly affected the cost–ben-
efit analysis used to determine optimal future flood protection strategies. On average across 
all administrative units, optimal levels of flood protection reached 65.2 and 91.7  years 
with method 1 under ssp126 and ssp585, respectively. Employing method 2, optimal lev-
els of flood protection were slightly lower than the estimates from method 1 at 57.3 and 
82.7 years under ssp126 and ssp585, respectively. At the administrative level, the results 
were more complex (Fig.  5 and Supplementary Fig.  10). For example, under the high-
emissions scenario, notably higher optimal levels of future flood protection in South Asia, 
East Asia and Pacific, and Sub-Saharan Africa regions were obtained using method 2 than 
method 1 (brown areas in Fig. 5c). These trends are consistent with the results discussed 
for EAD (Fig. 3b) discussed above, which is central to the cost–benefit analysis used to 
determine future levels of flood protection (Sect. 2.4). Note that the current levels of flood 
protection in these regions are uncertain and the low levels of protection included in FLO-
PROS may magnify the difference between optimal flood protection levels obtained with 
the two methods. In regions where the estimated EADs are lower with method 2 than 
method 1 (i.e., Europe and Central Asia, North America; see Fig. 3b), future levels of flood 
protection were slightly higher in the analysis relying on method 1, and the reverse was true 
for regions in which method 1 produced lower EADs. With climate change, some regions 
in Europe and Central North America will experience a decrease in flood frequency (Hira-
bayashi et al. 2013, 2021b), and thus increasing the level of existing flood protection may 
be justified only in cases of extreme GDP growth, while optimal levels of flood protec-
tion generally remain close to current levels of flood protection (Supplementary Fig. 6). 
Optimal levels of flood protection were lower under the low-emissions scenario (Supple-
mentary Fig. 10) than the high-emissions scenario due to a gentler increase in flood fre-
quency and slower increase in GDP per capita compared to the high-emissions scenario 
(Supplementary Fig. 7). Nevertheless, the spatial pattern of the difference in optimal flood 

Fig. 4  Expected annual damage (EAD) under a portfolio of future flood protections. EAD are computed for 
different levels of adaptation, two flood damage methodologies and aggregated for the seven World Bank 
regions. The results for the ssp585 scenario are shown. The top red line represents the scenario with no 
further adaptation (setting L = 0) and results are hence analogue to those given in Fig. 1a at the global scale

▸
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protections between methods 1 and 2 (Supplementary Fig. 10c) is strikingly similar to the 
pattern obtained under the high-emissions scenario (Fig. 5c).

3.3  Residual flood risk under the optimal flood adaptation scenario

Adopting optimal levels of flood protection do not fully mitigate all flood events. On aver-
age, global RFDs were equal to $36.2 and 93.2 billion  yr−1 under ssp585 for methods 1 
and 2, respectively (Table  1). Consistent with the literature (Tanoue et  al. 2021), RFDs 
remained high under ssp126, as future floods were predicted to cost $25.8 and 59.6 billion 
 yr−1 with methods 1 and 2, respectively. These results are driven by changes in both flood 
frequency and future economic development (GDP), the latter of which increases linearly 

Fig. 5  Optimum future flood protection levels determined through the cost–benefit analysis. The results for 
the ssp585 scenario are given for a method 1, b method 2, and c the difference in future flood protection 
levels between method 1 and method 2

Table 1  Summary of global 
evaluation (All values in US$ 
billion  yr−1)

† Under optimum flood protection level

RDF† Benefit Adaptation cost Cost-
effective-
ness

ssp126
Method 1 25.8 11.6 5.3 2.2
Method 2 59.6 61.1 14.5 4.2
ssp585
Tanoue et al., (2021) 24.3 74.0 6.8 10.8
Method1 36.2 30.0 11.0 2.7
Method2 93.2 112.0 19.0 5.9
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and exponentially under the low- and high-emissions scenarios, respectively (Supplemen-
tary Fig. 7). The importance of economic development cannot be overstated, as multiple 
analyses suggest that socioeconomic changes, rather than climate change, will drive future 
impacts on water, biodiversity, energy, and other factors (Schewe et al. 2014; Dobson et al. 
2021). At the global scale, the benefit, adaptation cost, and RFD values obtained using 
method 2 were systematically higher than the corresponding values obtained with method 
1 (Table 1), consistent with the results for EAD (Fig. 4) and optimal flood protection level 
(Fig. 5). The importance of the gradual increase in GDP and projected intensification of 
flood intensity will increase greatly when future protection levels are considered, magnify-
ing the effect of including all floodwater versus only overflow floodwater. Consequently, 
future EAD and RFD values predicted using method 2 are higher than those obtained with 
method 1 and these differences tend to increase over time.

The proportion of administrative units experiencing high RFDs (> 0.05% of subnational 
administrative GDP) increases sharply with the switch from method 1 to method 2 (Fig. 6 
and Supplementary Fig. 11). We found that 23.3% (16.9%) of all administrative units expe-
rienced high RFDs under method 1, which would increase to 43.1% (38.0%) for method 

Fig. 6  RDF as a proportion of the subnational administrative GDP for the optimized adaptation objective. 
The result for the SSP585 scenario are shown for a method 1, and b method 2
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2, under the high-emissions (low-emissions) scenario. Most administrative units exhibit-
ing low RFDs under method 1 and large RFDs under method 2 were located in Africa 
(Fig. 6b), where current levels of flood protection are assumed to be low. In Central Africa, 
optimal levels of flood protection are, on average, 25.7 and 39.3 years higher for method 2 
than method 1 under the low- and high-emissions scenarios, respectively (Fig. 5 and Sup-
plementary Fig. 9). Despite these enhanced levels of flood protection, the high EADs pre-
dicted with method 2 explain the difference in RFDs between the two methods. A similar 
situation appears over the South Asia and East Asia and Pacific regions. Over arid regions 
of Africa, optimal levels of flood protections obtained using methods 1 and 2 are identi-
cal. This result arises because, from the perspective of cost–benefit analysis, high levels 
of flood protection are not justified to mitigate rare flood events (Hirabayashi et al. 2013, 
2021b) given the relatively low administrative-level GDP. The North America and Europe 
and Central Asia regions show the opposite trend: the RFDs obtained with method 2 aver-
age 56.3 and 45.1% lower than the corresponding values obtained with method 1 under 
the low- and high-emissions scenarios, respectively. In these high-income and upper-mid-
dle-income economies, relatively high levels of flood protection are already available. In 
addition, some important economic areas are anticipated to experience decreases in flood 
frequency. Overall, in these regions, adjustment of EAD for future GDP conditions (i.e., 

Fig. 7  Effect of cascading uncertainty for determining optimum levels of flood protections. a The overall 
variance, calculated as the fraction of standard deviation to the ensemble mean. b–f) The contribution rate 
of discount rate, maintenance cost, unit cost, flood damage methodology, and interaction term between dis-
count rate and maintenance cost upon the overall variance
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keeping the GDP spatial distribution constant at the 2010 level and correcting for future 
intensity only at the subnational level) and selection of a high-resolution DEM are the pri-
mary factors explaining differences in EAD and RFD between the two methods. These two 
factors outweigh the overflow (method 1) and all (method 2) floodwater assumptions that 
explain the differences in EAD and RFD in other regions (Figs. 2 and 3).

3.4  Relative importance of the flood damage methodology

In a previous analysis of residual flood damage under an intensive adaptation scenario, 
Tanoue et al. (2021) reported that their results were generally robust to various assump-
tions of discount rate, construction period, and unit construction cost. However that study 
did not investigate the relative importance of such factors at the administrative level and 
their analysis was restricted to a single method of estimating flood damage.

We report the spatial distribution of overall variance, presented as the standard deviation 
as a fraction of the ensemble mean optimal flood protection level (Fig. 7a and Supplementary 
Fig. 12a). Averaged across administrative regions, the variance was similar between emissions 
scenarios, at 0.32 and 0.31 under the low- and high-emissions scenarios, respectively. Notably, 
the variance is null across some regions of North and Central Africa, indicating that optimal 
levels of flood protection are insensitive tested main factors in such regions. This result sug-
gests that, despite consideration of alternative estimates for the cost and maintenance of flood 
protection structures (Supplementary Table 2), the cost of building and upgrading flood pro-
tection remains unachievable, highlighting the necessity of a country-specific unit cost data-
base (Tanoue et  al. 2021). Nevertheless, the variance in optimal levels of flood protection, 
attributable to the four main factors is large over most of North America, Europe, Central 
Asia, Southeast Asia, and East Asia.

The contribution rates of each main factor and one interaction term to the overall variance 
(Sect. 2.5), at the administrative level were estimated using four-way ANOVA (Fig. 7b–f and 
Supplementary Fig. 12b–f). Consistent across emissions scenarios and administrative zones, 
changing the cost of maintenance only marginally impacted the derivation of optimal flood 
protections as its average contributions to total variance were only 1.5% and 1.1% under 
the low- and high-emissions scenarios, respectively (Fig. 7c). In contrast, the flood damage 
methodology contributed to the largest fraction of the overall variance under both the low- 
and high-emissions scenarios, averaging 31.3% and 38.2%, respectively (Fig. 7e). Clearly, in 
Alaska, Congo, Egypt, and multiple administrative regions of East Africa, the optimal level 
of flood protection was driven solely by the flood damage methodology, which had a relative 
contribution to total variance of nearly one. As noted above, this result is due to the use of only 
overflow water or all floodwater, the use of different high-resolution DEMs for downscaling, 
and different spatial distributions of future GDP. Notably, these factors affect developing and 
high-income economies differently. The spatial distributions of the relative contribution rates 
of the discount rate and unit construction cost under the two emissions scenarios are similar. 
The contributions to overall variance of the discount rate and unit construction cost are rela-
tively high, averaging 12.4% and 22.3% under the low-emissions scenario and 14.8 and 19.6% 
under the high-emissions scenario, respectively (Fig. 7b and d). Their spatial distributions are 
also similar, particularly over Central Asia, East Asia, and South America, where the contri-
butions of discount rate, unit construction cost, and flood damage method are similar.

Our results show low contributions of interaction terms (both first- and second-order 
terms). One notable exception is the third-order interaction term (Fig.  7f and Supple-
mentary Fig.  12f), which averaged 15.2% and 12.8% of total variance under the low- and 
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high-emissions scenario, respectively. Discount rate generally affects EAD, optimal flood 
protection, and RFD results through maintenance costs, and this impact is particularly pro-
nounced over eastern North America and some administrative regions of China and Russia. 
The significant influence of the flood damage methodology selected on overall variance is 
clear across all World Bank regions (Table 2). Interestingly, in the regions of East Asia and 
Pacific and Latin America and Caribbean, the unit construction cost has a comparable influ-
ence to flood damage methodology on determination of the optimal flood protection level. 
Additionally, the switch from the low-emissions to high-emissions scenario increased the con-
tribution of the discount rate to overall variance in all regions.

4  Conclusion

Using an updated global river and inundation model based on accurate topography and 
forced by the lasted climate simulations, we quantified changes in EAD from flooding, 
optimal levels of flood protection, and RFD while considering two established flood dam-
age methodologies and key economic assumptions.

In the future, assuming current levels of flood protection, global EAD will increase 
sharply by $16.2 and $44.5 billion per year under a low- and high-emissions scenarios, 
respectively. However, these estimates approximately double when an alternative flood 
damage methodology is used, reaching $31.1 and $90.3 billion per year under the low- and 
high-emissions scenarios, respectively. The uncertainty in EAD estimates cascades down 
to the estimation of optimal flood protection level, which is determined through cost–ben-
efit analysis. Compared to current levels of flood protection, optimal levels of flood pro-
tection will increase by 35.5 and 62.1  years under the low- and high-emissions scenar-
ios, respectively. Using the alternative methodology for determining flood damage, these 
optimal levels of flood protection were approximately 10 years shorter under both emis-
sions scenarios. Uncertainties in optimal levels of flood protection further propagate to the 

Table 2  The average contribution rates (in %) of the discount rate, maintenance cost, unit construction cost, 
flood damage methodology, and third interaction term on the overall variance across all seven World Bank 
regions (EAP: East Asia and Pacific, ECA: Europe and Central Asia, LAC: Latin America and Caribbean, 
MENA: Middle East and North Africa, NA: North America, SA: South Asia, SSA: Sub-Saharan Africa) are 
presented for both ssp126 and ssp585 scenarios

WB regions EAP ECA LAC MENA NA SA SSA

ssp126
Discount rate 13.0 8.4 17.5 11.9 13.1 14.1 10.6
Maintenance rate 1.2 0.8 1.4 1.1 0.8 1.2 0.9
Unit construction cost 26.1 16.8 30.0 21.8 19.6 23.8 16.8
Flood damage meth 38.6 47.0 30.2 40.0 44.9 42.9 54.2
Interaction term 13.1 18.3 13.1 17.0 13.7 12.9 12.2
ssp585
Discount rate 17.7 10.2 19.5 13.3 17.3 19.9 16.2
Maintenance rate 1.0 0.7 1.0 0.8 0.6 0.7 0.8
Unit construction cost 23.2 15.6 22.6 17.9 15.7 16.5 18.0
Flood damage meth 37.9 51.7 38.2 43.9 45.6 52.0 50.0
Interaction term 12.5 14.5 11.8 16.0 12.0 10.5 10.1
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calculation of RFDs, which differ by an average of $45.4 billion per year between flood 
damage methodologies.

ANOVA results were consistent across emissions scenarios, and flood damage meth-
odology was identified as the dominant source of uncertainty in an average of 18.0% of 
the 3,508 administrative units. Uncertainties due to flood damage methodology arise 
mainly from three mechanisms: reliance on either floodplain or overflow floodwater for 
estimation of flooded area, selection of a high-resolution DEM for downscaling of data, 
and adjustment of future GDP levels at the administrative scale. Critically, these mecha-
nisms have contrasting impacts on developing and high-income economies. Economic 
assumptions about unit construction cost and discount rate still play an important role in 
determining optimal flood protections measures, explaining at least 20% of the total vari-
ance in an average of 17.5% of all administrative units. In these administrative units, the 
uncertainty stemming from the flood damage methodology selected is not disproportion-
ately high compared to the uncertainties of key economic assumptions; therefore, the less 
resource-intensive flood damage methodology (method 2) is not detrimental to the quality 
of analysis in such areas. Notably, variance in the optimal level of flood protection was null 
for approximately 66.3% of all administrative units, principally located in Africa and Latin 
America. This finding indicates that the range of economic assumptions considered in this 
study may not reflect the unit construction costs and advantageous discount rates available 
in these regions. While acquiring realistic data for these regions should be a research prior-
ity, our findings emphasize the need for cooperative frameworks that will support adapta-
tion to future flood risk.
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