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Abstract
The agreement between meteorological data and societal perception is essential in support-
ing a robust policy making and its implementation. In humid tropic watersheds like Bran-
tas, such consensus is important for water resources management and policies. This study 
exemplifies an effort to understand the long-term rainfall characteristics within the water-
shed and to build a common link among the differing data sources: CHIRPS rainfall satel-
lite data, rain gauge data, and farmers perceptions. Six rainfall characteristics were derived 
using statistical measures from the scientific data and then were translated to a series of 
structured questionnaires given to small-scale farmers. A consensus matrix was built to 
examine the level of agreement among three data sources, supporting the spatial pattern 
of the meteorological data and farmers perception. Two rainfall attributes were classified 
with high agreement, four with moderate and one with low agreement. The agreements 
and discrepancies of rainfall characteristics were found in the study area. The discrepancies 
originated from the accuracy in translating scientific measurements to practical meanings 
for farmers, complexity of the farming system, the nature of phenomena in questions, and 
farmers’ ability to record long-term climatic events. This study shows an implication that 
a combined approach to link scientific data and societal data is needed to support powerful 
climate policy making.
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1  Introduction

Agricultural systems in humid tropics are characterized by the diversity in practices from 
fallow management to intercropping and agroforestry and at the same time are challenged 
by their ecological and social traits such as highly intensive soil weathering, erosion induc-
ing rainfall, and increased anthropogenic threats due to rapid population (Charlton 1987; 
Sul et  al. 2013; Edwards et  al. 2017). Tropical agriculture especially the conventional 
one is also generally marked with intensified small-scale farming, low capitals, and rela-
tively lower resilience to external shocks (Gil et al. 2017; Antoni et al. 2019). Agriculture 
remains a major sector absorbing around 35% of the national workforce (Ginting and Aji 
2015), despite declining shares of agricultural sectors to national products due to increas-
ing industrialization and urbanization. Agricultural farming systems and livelihoods in 
Indonesia are characterized by their mostly small-scale size, subjectivity to erosion, land 
conflict, low income, and credit dependence (Adiningsih and Karama 1992; Mohri et al. 
2013; Andriyani et al. 2017; Mariyono 2019). Spatial variation of bio-physical systems and 
diversity in cultural and social capitals exist and suggest the diversity in farming typology 
(Wiersum 2006).

Among the potential external disturbances, climate change and variability has been 
regarded as one of the stressors greatly influenced the agricultural production in Indonesia 
(Naylor et  al. 2007). Tropical agriculture is predicted to be one of most affected sectors 
by the alarming climate change, being projected to be highly exposed to the impacts and 
to experience more severe declines in production (Cohn et al. 2017; Parker et  al. 2019). 
Numerous reports confirm the escalating concerns of global climate change impacts in the 
last few decades and will be more severe in the future (IPCC 2018). The predicted climate 
changes include changes in temperature and rainfall pattern together with their correspond-
ing impacts on water availability, occurrences of pests and diseases, and intensified hazards 
and extreme weather events, which are all likely to influence the agricultural production 
(Gornall et al. 2010; Zhai and Zhuang 2012; Chakraborty and Newton 2011). The accred-
ited reports on the predicted impacts of climate change on Indonesia’s tropical area include 
an increase in annual rainfall up to 10% by 2050, and larger variations up to 5% by 2100, 
especially for Java islands where delayed onsets are predicted and decreased rainfall peaks 
are expected with wetter rainy seasons and drier dry seasons as well as higher rainfall 
extreme events (Oktaviani et al. 2011; MFAN 2018).

With the alarming world’s climate change and variability impacts, a comprehen-
sive understanding on farmers’ perceptions of such changes will be very crucial for an 
improved, well informed, and effective adaptation planning and practice and policies mak-
ing and delivery (Hasan and Kumar 2019; Imran et al. 2020; Mkonda and He 2017). It is 
understood that the threats of climate change impacts on farming systems and farmers’ 
livelihood are uneven and often regionally disproportionate, and result in new challenges 
for food security and sustainable development achievement (Wossen and Berger 2015). 
Intergovernmental Panel on Climate Change, IPCC, expected variations land carrying 
capacity as well as rainfall and temperature changes, which are consequently leading to 
variations in agricultural productions (Moore et  al. 2017). While the scientific perspec-
tives of climate change have much been globally accepted, the perception of community 
from local experiences about climate and its importance can be more complex and requires 
better understanding to how the perception is shaped and affected by the community char-
acteristics. Any potential disagreement between what the science has produced and what 
has been seen and experienced by the farmers will influence the degree of willingness from 
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community to participate in any measures or strategies in combating the climate change 
impacts. In recent years, several studies on understanding communal perceptions of cli-
mate-related phenomena have been carried out in Indonesia. These include assessment of 
adaptation strategies for small-scale fishers (Rahman et al. 2021), rice farmers (Sekaranom 
et al. 2021), citrus farmer (Hasibuan et al. 2020). These works have provided substantial 
insight into the community response to strategy measures.

Among varying climatic variables, rainfall is the widely studied variable due to its rel-
evance to water availability, soil erosion, and hazards management (Guodaar et al. 2021; 
Llasat et al. 2008), especially in tropics where rainfall is abundant and impactful. Numer-
ous studies about community’s perception toward the changing rainfall patterns primar-
ily took place in less developed and developing countries. More studies are focused on 
drought-prone regions such as Africa (Guodaar et al. 2021; Mkuhlani et al. 2020; Nnadi 
et al. 2019; Ayanlade et al. 2018), and tropics in Asia such as in India, Myanmar, Pakistan, 
and Philippines (Hein et al. 2019; Arshad et al. 2017; Joshi et al. 2014; Combest-Friedman 
et al. 2012). Despite sufficient literatures on linking the scientific measurements with the 
societal information, a perspective about spatial pattern of such links is limitedly explored.

Such a deep understanding of the changing phenomenon requires a multi-approach 
in characterizing the issues. An increasingly accepted approach is a combined approach 
employing information from people and rainfall data where most studies rely on the use of 
ground station rainfall data and perception data tabulated from surveys or questionnaires 
(Guodaar et al. 2021; Ayanlade et al. 2018; Nnadi, et al. 2019). This approach is consid-
ered more reliable because the reliance solely on meteorological observation might deviate 
from the farmer’s understanding, leading to a lack of commonalities among the community 
groups about factors pertaining to climatic changes and how the changes are such as types 
and magnitudes of indicators and methods for judging the phenomenon (Slegers 2008; 
Simelton et al. 2013). However, one visible drawback is the lack of spatial understanding, 
especially when the sites are poorly gauged. Advancement of satellite-based remote sens-
ing rainfall data offers an opportunity to complement the rainfall gauge data in the case of 
missing data, lacked coverage, and rain gauge errors. At this point, there is no common 
framework how to integrate varying information from satellite data, meteorological data, 
and field community data in such a way that is reproducible and can provide insight about 
the connectivity between satellite, meteorological, and farmer data.

Brantas, a home to 15 cities and regencies, is one of the major watersheds in Indonesia, 
playing a role in providing ecological and economic benefits for more than 20 million peo-
ple of East Java, Indonesia (Sunaryo 2002; BPS 2021). Despite its importance, Brantas has 
been increasingly exposed to varying threats such as deforestation, erosion, floods, and pol-
lution, which were mainly caused by the escalating pressures from rapid population growth 
and rapid land-use changes (Fulazzaky 2009; Widianto et al. 2010; Mariyanto et al. 2019). 
Recently, Brantas has been declared as one of the major impaired watersheds (KLHK 
2020). Agricultural land uses such as crops farming, horticultural farming, tree farming, 
and estate farming represent a dominant portion of the Brantas’ land uses. In recent years, 
there have been reports on the increased runoff and declining agricultural production (Sety-
orini et al. 2017; Hakim et al. 2021). Brantas is recognized as a topographically complex 
watershed, and hence, variation in rainfall patterns might be expected. To the best of our 
knowledge, there has been no efforts to investigate the connection between rainfall charac-
teristics as observed by satellite data, meteorological (gauge) data, as well as perceived by 
farmers in Brantas. Given the above concerns, this study then aims at (1) analyzing rainfall 
trends and changes using satellite data and rainfall gauges data as the scientific evidence, 
(2) portraying farmers’ perception of rainfall trends and changes, (3) and measuring the 
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degree of agreement between three sources of information: satellite data, gauge, and farm-
er’s questionnaire.

2 � Methods

2.1 � Study area

Brantas signifies a typical urbanizing watershed in a humid tropic. Laid on an area of 
11,832 km2, Brantas is home to 15 cities and regencies in East Java Province (Fig. 1), with 
a total population of exceeding 21 million people in 2020 (BPS 2020). This population 
accounts for around 14% of the province’s population, with a rapid population growth 
of per year, and uneven population distribution. Despite increasing industrialization and 
urbanization, Brantas remains a watershed with dominance in varying agricultural land 
uses from wetland (rice-farming) to dryland farming systems such as crops, trees, gardens, 
horticultures, and livestock. However, there has been observed declining trends of agricul-
tural roles in terms of productions, labors, and shares of total domestic products from agri-
cultural sectors (Rusliyadi and Libin 2018). Agricultural practices are distributed across 
the watershed, from upland to lowland. Climatically, Brantas is characterized by the Am 
Köppen–Geiger’s classification system with distinct monsoonal influence in rainfall pat-
terns, with the range of total annual rainfall between 1200 and 3600 mm. Brantas is topo-
graphically complex with seven mountain complexes exist and has elevation range from 

Fig. 1   Study area, with the background of elevation, cities in Brantas watershed, and main river networks 
of Brantas watershed. Orange circles symbolize cities and regencies within the watershed; blue lines portray 
the main rivers
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0 m above sea level (asl) to more than 3500 m asl, making Brantas exhibit orographic influ-
ence on the mountainous regions.

2.2 � General approach

In this study, we developed a framework to bridge between the three sources of data, 
namely satellite rainfall data, meteorological rainfall records, and farmers’ perception of 
rainfall characteristics. First, we defined the characteristics in questions and manifested 
them into technical information that can be extracted from all the three data sources. Fig-
ure  2 depicts the general framework for this study. In order to build consistency of the 
objects in questions, we determined three main aspects of rainfall, which are trends, 
changes, and pattern. These three attributes were retrieved from all the rainfall data sources 
as specified in Fig. 2. We utilized satellite data from 1995 to 2020, to match the availability 
of ground rainfall data. Each of the data source and analysis was then described in the fol-
lowing section.

2.3 � Rainfall and satellite‑based data sources and analysis

The first step in the framework is defining the criteria of rain characteristics in ques-
tions and translating these into practical meaning to all three data sources into a common 
ground. Since rainfall dataset from gauges and from satellite is in the same unit, thus the 
task is then how to bridge the information gathered from satellite—gauge data and from 
the farmers. We set up several key features describing rain characteristics. We summarized 
primary rain characteristics in which rainfall data from satellite, rain gauges, and farmers 
were compared (Table 1).

Fig. 2   Workflow of general approach in this study



2840	 Natural Hazards (2023) 117:2835–2862

1 3

Ta
bl

e 
1  

R
ai

n 
ch

ar
ac

te
ris

tic
s e

xa
m

in
ed

 fr
om

 sa
te

lli
te

 d
at

a,
 ra

in
 g

au
ge

s, 
an

d 
fa

rm
er

s

R
ai

n 
ch

ar
ac

te
ris

tic
s

Sa
te

lli
te

 a
nd

 g
au

ge
s

Fa
rm

er
s

Tr
en

ds
 in

 n
um

be
rs

 o
f r

ai
ny

 d
ay

s
Tr

en
ds

 in
 n

um
be

r o
f r

ai
ny

 d
ay

s
In

cr
ea

se
d 

N
 ra

in
y 

da
ys

D
ec

re
as

ed
 N

 ra
in

y 
da

ys
N

o 
tre

nd
s/

no
 c

ha
ng

e

Q
ue

st
io

n:
 W

ha
t d

o 
yo

u 
pe

rc
ei

ve
 a

bo
ut

 th
e 

pe
ri

od
 o

f r
ai

ny
 se

as
on

 o
r n

um
be

r 
of

 ra
in

y 
da

ys
?

Lo
ng

er
 ra

in
y 

pe
rio

d 
(m

or
e 

ra
in

y 
da

ys
)

Sh
or

te
r r

ai
ny

 p
er

io
d 

(fe
w

er
 ra

in
y 

da
ys

)
Fl

uc
tu

at
e 

pe
rio

d 
(n

o 
tre

nd
s)

N
o 

id
ea

Tr
en

ds
 in

 st
ar

ts
 o

f r
ai

ny
 se

as
on

Tr
en

ds
 in

 a
nn

ua
l D

ay
 o

f F
irs

t r
ai

n 
(D

oF
)

In
cr

ea
se

d 
D

oF
 tr

en
ds

D
ec

re
as

ed
 D

oF
 tr

en
ds

N
o 

tre
nd

s/
no

 c
ha

ng
e

Q
ue

st
io

n:
 W

ha
t d

o 
yo

u 
fe

el
 a

bo
ut

 ra
in

 o
ns

et
 c

ha
ng

es
?

St
ar

ts
 e

ar
lie

r
St

ar
ts

 la
te

r
Fl

uc
tu

at
ed

 (N
o 

tre
nd

)
N

o 
id

ea
Tr

en
ds

 in
 ra

in
fa

ll 
am

ou
nt

Tr
en

ds
 in

 a
nn

ua
l t

ot
al

 a
m

ou
nt

 o
f r

ai
nf

al
l

In
cr

ea
se

d 
tre

nd
s o

f t
ot

al
 a

nn
ua

l r
ai

nf
al

l
D

ec
re

as
ed

 tr
en

ds
 o

f t
ot

al
 a

nn
ua

l r
ai

nf
al

l
N

o 
tre

nd
s/

no
 c

ha
ng

e

Q
ue

st
io

n:
 W

ha
t d

o 
yo

u 
pe

rc
ei

ve
 a

bo
ut

 ra
in

 a
m

ou
nt

 c
ha

ng
es

?
D

ec
re

as
ed

 a
m

ou
nt

In
cr

ea
se

d 
am

ou
nt

Fl
uc

tu
at

e/
no

 tr
en

ds
/n

o 
ch

an
ge

N
o 

id
ea

Es
tim

at
es

 o
f t

im
e 

of
 c

ha
ng

e
C

la
ss

ifi
ca

tio
n 

of
 B

re
ak

in
g 

po
in

t f
ro

m
 P

et
tit

 te
st

C
la

ss
 1

 (l
as

t 5
 y

ea
rs

)
C

la
ss

 2
 (l

as
t 1

0 
ye

ar
s)

Q
ue

st
io

n:
 S

in
ce

 w
he

n 
yo

u 
pe

rc
ei

ve
d 

th
e 

ch
an

ge
s s

ta
rt

ed
 to

 o
cc

ur
?

Fr
om

 th
e 

la
st 

fiv
e 

ye
ar

s
Fr

om
 th

e 
la

st 
te

n 
ye

ar
s

N
o 

id
ea

Tr
en

ds
 in

 n
um

be
r o

f d
ay

s w
ith

 ra
in

 
ex

tre
m

es
 (>

 50
 m

m
)

Tr
en

ds
 in

 ra
in

 e
xt

re
m

es
 (R

50
)—

ra
in

 e
xc

ee
di

ng
 5

0 
m

m
In

cr
ea

se
d 

tre
nd

s
D

ec
re

as
ed

 tr
en

ds
N

o 
tre

nd
s/

no
 c

ha
ng

e

Q
ue

st
io

n:
 W

ha
t d

o 
yo

u 
pe

rc
ei

ve
 a

bo
ut

 o
cc

ur
re

nc
es

 o
f r

ai
n 

ex
tre

m
es

 e
ve

nt
s?

In
cr

ea
se

d
D

ec
re

as
ed

N
o 

tre
nd

/fl
uc

tu
at

e
N

o 
id

ea
Tr

en
ds

 in
 li

gh
t r

ai
n 

ev
en

ts
 (<

 5 
m

m
)

Tr
en

ds
 in

 li
gh

t r
ai

n 
ev

en
ts

In
cr

ea
se

d 
tre

nd
s

D
ec

re
as

ed
 tr

en
ds

N
o 

tre
nd

s/
no

 c
ha

ng
e

Q
ue

st
io

n:
 W

ha
t d

o 
yo

u 
pe

rc
ei

ve
 a

bo
ut

 o
cc

ur
re

nc
es

 o
f l

ig
ht

 ra
in

 e
ve

nt
s?

In
cr

ea
se

d
D

ec
re

as
ed

N
o 

tre
nd

/fl
uc

tu
at

e
N

o 
id

ea



2841Natural Hazards (2023) 117:2835–2862	

1 3

We collected daily rainfall data from all water resource agencies in East Java, and we 
obtained around 201 stations. First screening was done to these stations by filtering the 
coverage of at least 25 years of data. Further filtering was done by assessing the complete-
ness of the data and removed all stations having missing data higher than 5% of the total 
observations (daily records for 25 years). We also checked for the unusual extreme values 
(> 400 mm/day). Final screening resulted in daily rainfall data from 201 stations. For the 
satellite rainfall data, we utilized daily CHIRPS rainfall estimates and retrieved the period 
the same as that of meteorological data. We selected the CHIRPS data as it was found to be 
more reliable for the study area, compared to other satellite rainfall products, and presents 
in the highest spatial resolution (~ 5 km) (Wiwoho et al. 2021). We used the locations of 
the rain gauges to extract the CHIPRS data. The rainfall datasets were downloaded using 
Google Earth Engine, in a rain rate unit (mm/day) and converted to rain depth (mm) simi-
lar to rain gauge data unit.

2.3.1 � Rainfall trends from daily time series measurement

The filtered daily rainfall data from both gauges and satellite were then extracted at each 
pixel corresponding to the location of gauges. The data were then shifted to follow the 
water year (started from 1st October at the current year to the 30th of September of the 
following year). The shift was carried out to enable quantification of the rainy season peri-
ods and other measures specified in Table 1. In each water year, we calculated the date 
of first rain (DoF) and number of rainy days. The rainy day was defined as a day having 
a rain depth at least 1  mm. To determine the increase or decrease trend, we calculated 
the Mann–Kendall time series to daily and monthly data from gauges and satellite. The 
Mann–Kendall test is a nonparametric statistical test to test for the absence of a trend, and 
this has been widely used to the hydro-climatic data (Yue et  al. 2002; Chiew and Siri-
wardena 2005; Ahmad et al. 2015). Mann–Kendall test was used for viewing whether there 
is a trend in a data series based on relative rankings of the time span data; the Mann–Kend-
all statistical test formulas are as follows:

where sign(Xj − Xk) is a sign function that has a value of 1 if sign > 0 and if sign < 0 the 
variable S is represented by mean µS = 0 and variance; the test for variable Z will relate to S 
with the following formula.

The Mann–Kendall test accepts the null hypothesis if − Z < Zcr < Z, where Zcr is the criti-
cal value of the statistical normal distribution, and the Z value is the normal distribution 
and α is the level of significance. The level of significance is determined from the values of 
Z and α, if Z is positive the movement of the rainfall trend is up and is negative if the move-
ment of the rainfall trend falls, evaluating trend results can be combined with a two-tailed 
computed probability (P) compared to the confidence level set from the normal distribution 
curve (Gebremicael et al. 2017). To obtain more practical information, each of the results 
from MK test was classified based on the following rules (Table 2).

(1)S =

n−1
∑

i=1

v
∑

j=i+1

sgn
(

xj − xi
)

(2)Zc =
S − 1

√

Var(S)
, S > 00, S = 0

S + 1
√

Var(S)
, S < 0.



2842	 Natural Hazards (2023) 117:2835–2862

1 3

2.3.2 � Rain event classes, amount, and time of changing

In addition to trends analysis to daily rain gauge data, we also examined the trends of the rain 
event classes. In this regard, we classified the rain events: the lightest and the heaviest based 
on the following classes (Table 3) (WMO 2008). We used these light and heaviest classes as 
these are generally easier to perceive by lay meteorological observes.

We plotted the classes on annual basis time series in order to observe trends of classes. 
This approach permitted identification of rain event distribution from year to year. In addition, 
we also quantified the temporal total annual amount of each rain gauge during the period of 
study. To investigate the start of change, we first identified gauges having significant MK trend 
as explained in Sect. 2.3.1. From these selected stations, we then calculated Pettit test using 
R platform. Pettitt test (Pettitt 1979) is a test identifying the changing time of the time series 
data. Further, the starts of change identified from the Pettit test were tabulated for all stations. 
The Pettitt test has been widely applied to examine the changes in hydro-climatic phenomena 
such as trends in river sediments (Zhang et al. 2008), rainfall patterns (Kundu et al. 2015), 
and the changing temperature (Ghasemi 2015). The mode of identified Pettit’s’ breaking point 
year was then used as the baseline to determine the before-after period. To understand the dif-
ference between these two periods, average of total annual rainfall, starts of rainy season, and 
number of rainy days were used as the key attributes for comparison.

2.4 � Questionnaires for farmer’s perception about rainfall pattern and adaptation 
measures

We collected farmer’s perception data through the dissemination of questionnaires. The ques-
tionnaires distribution and response collection were carried out in June–July 2021. At initial 
stage, we used information on number of farmers or agricultural labors derived from agri-
cultural statistics (BPS 2020), which was around 1,844,426 farmers unevenly distributed in 
14 municipalities within the watershed. From these 14 regions, we selected only those with 
more than 25% of farmer population. Proportional sampling was initially applied to the vil-
lages within from these 14 regions to have around 250 farmers. However, the condition under 

Table 2   Codes of MK result classification and the associated meaning

Code Description Marked as

1 If the p value is ≤ 0.05, slope is positive Significantly increased
2 If the p value is ≤ 0.05, slope is negative Significantly decreased
3 If the p value is > 0.05, slope is positive Insignificantly increased
4 If the p value is > 0.05, slope is negative Insignificantly decreased
5 If slope = 0.00 (no change) No trends (no change)

Table 3   Classes of rain events 
used in this study

No Rain even 
classes 
(mm)

1 0–5
2 > 50
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COVID-19 pandemic was not favorable. Due to large social restrictions of COVID-19 (semi-
lockdown), we could not obtain a full closure to engage with people and thus as some of farm-
ers or local agencies were not willing to interact with people outside their villages in addition 
to village border closings. With this situation, we were only able to gather permission from 73 
villages, which were then used to evenly allocate the potential respondents (targeted farmers). 
With heavy social restriction, we did have limited timeframe to conduct farmer interview, and 
therefore, we decided to choose the farmers based on convenient sampling. In this case all 
the farmers who were found in the farms during the interview period were willing to partici-
pate, which finally resulted in only 211 respondents. We acknowledge the limitations of the 
convenient sampling for the possibility of not fully representing the agricultural household 
population’s characteristics due to significant constraints in financial resources and pandemic 
situation. However, since this study was intended to provide an initial assessment and given 
the relatively high sample size, we considered this approach was sufficient.

The descriptive statistics of the farmers’ socio-economic setting (“Appendix 1”) reveal 
that the majority of the farmers are between 36 and 55 years old (52%), with 3–6 family 
members. The majority of education level is primary school (44%) followed by secondary 
school (38%) and only 14% of which obtained higher education. Most farmers are catego-
rized as low-income farmers with average monthly income that is below 200 USD (73%), 
with the majority who has a farming with size ranging from 0.25 to 1.00 ha (48%) and 
followed by very small size farming less than 0.25 ha (40%). Most of them own the farm 
(64%), while around 21% are the land renters. Based on their farming experience, most of 
them (58%) have experience more than 10 years as a farmer.

The questions were delivered in a multiple choice for ease in giving responses. The 
questionnaires record the socio-economic, physical setting as well as the details of farm-
ers perception. We divided the questions into two types, first about the personal details 
such as age, education, types of farming, quality of farming, number of family members, 
and addresses. The second section was about the details of perceptions. These included 
the questions about trends, changes, patterns, impacts, and adaptation measures taken to 
deal with the perceived changes. To minimize difficulties in getting access to local farmers, 
we recruited third-year geography students association living in 14 regions during their 
online study to serve as enumerators. At this level, the students have already owned suf-
ficient knowledge about agricultural livelihoods. To ensure the same interpretation among 
the enumerators, we performed a training for all enumerators and carried a Q&A session 
during the training for confirming any issues or confusion. “Appendix 1” summarizes the 
characteristics of the farmer’s livelihoods.

2.5 � Quantifying the degree of agreement of three sources of information

To deduce the agreement of each information source about rainfall characteristics, the var-
iables listed in Table  1 were used as the key parameters. The degree of agreement was 
determined from how well three sources of rain data describe and agree on the defined 
rainfall characteristics. Table 4 presents an overview of the agreement level.

2.6 � Comparing spatial patterns of satellite rainfall, gauges, and farmer’s 
perception

To compare the performance of satellite data and gauge data, we derived information of 
rainfall gauge data spatially by plotting spatially the 201 selected gauges data. We mapped 
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the information pertaining to rain characteristics using the coordinates of the gauge’s loca-
tions. To map the spatial orientation of the farmers’ perceptions, we geotagged the loca-
tions of the villages of the respondents and linked this information to map the perception 
about rain characteristics. This approach enabled a visual comparison of the spatial pattern 
of the phenomena from satellite data, gauges, and farmers. We selected three primary rain 
characteristics, which are trends of total annual rain (rain amount), trends of starts of rainy 
seasons, and trends of number of rainy days.

3 � Result

3.1 � Rainfall characteristic trends as observed by CHIRPS and gauges data

Trends of daily rainfall series (1996–2020) from satellite and gauges are presented in 
Table 5. Overall, based on the p values of MK trend analysis, most of locations showed 
no statistically significant trends. Among 201 stations, only 8% of gauges data and 4% 
of CHIRPS data showed significantly increased trends and only 1% showed a significant 
decrease in the last 26 years. In a broader view, most of the data reveal increasing trends of 
rainfall, with more than 80% of the 201 locations either from gauge or CHIPRS indicated 
wetter days.

The increased in rainfall depth is more clearly depicted in Fig. 3. This figure portrays 
the increasing trends of rainfall depth from 1996 to 2020. The CHIRPS data evidently 
showed a larger gradient than that of the gauge data. Increased daily rain magnitudes cor-
respondingly led to the increase of total annual rain amount as depicted in Fig. 3.

Figure 4 shows that both CHIRPS and gauge data observed increased trends of rainy 
days. “Appendix 2” shows that most of rain gauge stations experienced increased trends, 
around 74% (22% of which were increased significantly). Similar to this, CHIRPS data 

Table 4   Level of consensus of each rainfall characteristics as identified from three sources

Degree of consensus Description

High If majority of observations (> 50%) from all three sources 
(satellite-based rain data, rain gauges, farmer’s perception) 
show the same ideas (i.e., all shows increased trends)

Moderate If one of majority groups from all sources show different ideas
Low If all majority groups show different ideas

Table 5   Summary of Mann–Kendall test on daily data from CHRIPS and 201 rain gauges

Types of results CHIRPS Rain gauge

Number % Number %

Showing significant positive slope (p value ≤ 0.05, slope > 0) 10 4.98 17 8.46
Showing significant negative slope (p value ≤ 0.05, slope < 0) 0 0.00 2 1.00
Not significant with positive slope (p value > 0.05, slope < 0) 177 88.06 171 85.07
Not significant with negative slope (p value > 0.05, slope < 0) 14 6.97 11 5.47
No observed trends (slope = 0) 0 0.00 0 0.00
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showed even a larger portion with 100% of locations experiencing increased trends 
(24% of which significantly increased). “Appendix 3” confirms this finding. Around 
78% of gauge locations exhibit increased number of rainy days, while all 100% CHIRPS 
pixels in gauge locations experience elevated rainy days.

The changes in rain amount and number of rainy days evidently did not result in 
changes in the onsets of the rainy season. Figure 5 reveals that both CHIRPS and gauge 
data did not show a clear trend. “Appendix 4” shows that only 3% of 201 gauges and 
CHIRPS locations showed significantly increased trends of DoF, indicating accelerated 
onsets of rainy seasons. Around 80% of rainfall locations are from gauges and CHIRPS 
pixels.

Observing trends of rain depth classes provides a deeper understanding of the 
changes in rainfall distribution, especially the rainfall trends at the highest class 
(extreme class: > 50 mm) and lowest class (< 5 mm). Figures 6 and 7 portray the trends 
of number of days having extreme rain (> 50 mm) and number of days having light rain 
(< 5  mm). From both data, the positive trends were observable. It is obvious that the 
wetter condition was attributed to the increased number of both rainy days and days 
having heavier rains.

As opposed to heavy rains, in the last 25 years, there has been a decrease in the num-
ber of days with daily rain depth fewer than 5 mm. Figure 7A and B depicts this con-
dition where clear decreasing trends are observed from CHIRPS and rain gauge data. 
Around 70% of gauge locations and almost 100% CHIRPS location exhibit negative 
slopes (“Appendix 6”).

Fig. 3   Trends of total annual rain depth (in mm) during 1996–2020. The red line trends represented the 
mean value of the data distribution in each year
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Fig. 4   Trends of number of rainy days as observed by CHIRPS satellite data and rainfall gauge data (aver-
aged over 201 stations)

Fig. 5   Trends of rainy season onset (DOY of first rain) comparison between CHIRPS satellite data and rain-
fall gauge data (n = 201 locations)
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Fig. 6   Trends of number of days receiving rain higher than 50 mm in a day (n = 201 locations)

Fig. 7   Trends of number of days with light rain events 1995–2020. Each boxplot was derived from 201 rain 
gauges
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3.2 � Rainfall characteristic changes as observed by CHIRPS and gauges data

The Pettitt test K value indicates the break point in the data time series. Table 6 summa-
rizes the break point year from both CHRIPS and gauge rainfall data. In most locations, 
the period identified as the break point commonly longer than 10 years ago, accounting for 
54% of the 201 gauges’ rainfall. Around 40% of the gauges show that the changes are rela-
tively more recent with the break point year occurred after 2015 (mode value 2009). On the 
other hand, CHIRPS identified differently with 100% occurred in year 2009.

The differences between before and after the break point year at mode value from 
CHRIPS and gauge data (2009) are presented in Fig. 8. Changes in averages of total annual 
rain, starts of rainy season, and number of days before and after the break point year (2009) 
were as below.

The biggest change was the change in average total annual rainfall, which is from around 
1700–1800 mm/year (both CHIRPS and gauge) to around 2000 and 2100 mm/year. A con-
siderable change in number of rainy days is also found in both datasets. While CHIRPS 
rainfall shows a change of approximately in 18 days higher in after period, the gauge rain-
fall data show a change of approximately 15 days higher in the after period. The only small 
change was the start of the rainy season (DoF), with 2 days later than the average DoF in 
the before period for gauge rainfall (1.28 day later for CHIRPS rainfall data).

3.3 � Farmer’s perception on rainfall characteristics and generic adaptation 
strategies

Table 7 presents the summary of the perception about rain characteristics.
Most farmers (98%) perceive that rain has changed with floods and landslides were 

considered as the most physical impact. However, when it comes to describing the nature 
of the change, most of them responded inconsistently by choosing “fluctuate/no trends” 
(66%) instead of choosing “decrease” or “increase.” Similar responses were found when 
they were asked to describe the duration or number of rainy season and starts of rainy sea-
son. The most obvious response was the response to changes in rain amount with almost 
95% perceived an increase in rain amount trends. When being asked to estimate the start 
of changes, most farmers found that rain has changed since the last 5  years (79%). The 
perception of farmers on rainfall classes was shown from the response in classifying the 
occurrences of extreme rains and light rains. The majority concluded that occurrences of 
both extreme rains and light rain are decreased.

The variations in responses are also shown in impacts perceived and adaptation meas-
ures taken by farmers. Table  8 portrays the general types of adaptation strategies per-
formed by farmers. When being asked what the impacts of rain changes to their farming 

Table 6   Summary of Pettitt’s 
break point year classified by the 
5-year and 10-year period

Break-point time CHIRPS Gauge

n % n %

> 2015 (since 5 years) 0 0.00 82 40.80
> 2010 (since 10 years) 0 0.00 9 4.48
Else (> 10 years ago, before 

2010, mode value is 2009)
100 100.00 110 54.73



2849Natural Hazards (2023) 117:2835–2862	

1 3

are, around 45% blamed the rainfall changes as the cause of increased pest/diseases/weeds, 
followed by 40% choosing the increased of wild animal attacks.

When being asked whether or not they applied some measures to deal with the impacts, 
most of them responded as “yes” (85%) and only 15% saying “no.” The most popular 
measures taken by farmers are applying farming inputs, accounting for 37% of the group, 
followed by changing the plants or cattle (30%). Given the fact that most farmers are eco-
nomically marginal, it is not surprising to find that 73% of farmers face multiple obstacles 
(mostly lack of funding and skills) in applying the adaptation measures.

3.4 � Assessing the consensus level of rainfall characteristics from different data 
sources

Based on the proposed consensus matrix as specified in Sect. 2.5 (Table 4), there have been 
disagreement and agreement among the three data sources as shown in Table 9. Among the 
six rain characteristics, two rainfall attributes have “High” agreement: trends of total rain-
fall amount and light rain events, meaning both rainfall parameters from satellite and gauge 
are in the same direction as that of farmers’ perception. Three rainfall attributes, namely 
trends in number of rainy days, time of change, and trends of extreme rain events, were 
classified as “Moderate” with farmer’s perception became the primary source of disagree-
ment. The only rain characteristics classified as “Low” is the trends in rainy season onset. 

Fig. 8   The averaged values of three rain characteristics at before and after periods from both CHIRPS and 
gauge data
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In this regard, three data sources exhibit different results. Table 9 compiles the majority of 
responses for each rain characteristics question.

3.5 � Spatial patterns of rainfall characteristics

Figure 9 depicts the spatial patterns of three rain characteristics from three different data 
sources. In general, there have been different levels of visual agreement from the three 

Table 7   Summary of farmers’ perception about rain characteristics

Rain changes and patterns characteristics n %

What do you perceive about rain trends
Increased 33 15.64
Decreased 20 9.48
Fluctuate/no trends 141 66.82
No idea 17 7.58
What do you perceive about the period of rainy season or number of rainy 

days?
Longer rainy period (more rainy days) 34 15.64
Shorter rainy period (fewer rainy days) 20 9.48
Fluctuate period (no trends) 141 66.82
No idea 16 7.58
What do you feel about rain onset changes
Starts earlier 43 20.38
Starts later 56 26.54
Fluctuate/no trends/no change 105 49.76
No idea 7 3.32
What do you perceive about rain amount changes
Decreased amount 12 5.69
Increased amount 199 94.31
Fluctuate/no trends/no change 0 0.00
No idea 0 0.00
Since when you perceived the changes started to occur?
From the last five years 167 79.15
From the last ten years 44 20.85
No idea 0 0.00
What do you perceive about occurrences of rain extremes events?
Increased (more frequent) 80 37.91
Decreased 131 62.09
Fluctuate 0 0
No idea 0 0.00
What do you perceive about occurrences of light rain events
Increased (more frequent) 88 41.71
Decreased 120 56.87
Fluctuate 0 0
No idea 3 1.42
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sources. The spatial pattern of trends of rainy days between CHIRPS and rain gauge is rela-
tively similar with a dominance of insignificantly increased trends across the watershed. 
However, most farmers’ geolocations show the differing spatial pattern with a dominance 
of fluctuated trends. On the other hand, the spatial pattern of rain amount trends shows that 
three data sources have higher agreement. Visual similarity of the spatial pattern across 
the watershed is quite obvious. This feature is classified as “High” in Table 9. The “Low” 
classified DoF in Table 9 is also evident in Fig. 9C. Three data sources show considerably 
different patterns. While CHIPRS data show a dominance of “decreased” trend in the mid-
dle to the south of the watershed, the gauge data show a dominance of “increased trends” 
across the watershed. As opposed to this, farmers perception is dominated by “fluctuated or 
no trends.”

4 � Discussion

The study demonstrates work on how three different assessments on a particular phenome-
non can be evaluated and examined for their association. The research shows that a qualita-
tive and quantitative characterization approach can be assessed together to provide deeper 

Table 8   Summary of farmers’ perception about adaptation characteristics

Question n %

What are the impacts for your farming?
(a) Increased pests/diseases/weeds 113 53.55
(b) Eroded lands 2 0.95
(c) Wild animal attacks 92 43.60
(d) Drought-driven loss 4 1.90
(e) No idea 0 0.00
Types of adaptation strategies carried out
(a) Applying farming inputs (forages, water, growth controllers, fertilizers, 

pest drugs)
78 36.97

(b) Changing the plants/cattle 64 30.33
(c) Carrying conservation and farming techniques improvement 32 15.17
(d) Combined at least two 7 3.32
(e) Do nothing 30 14.22
Obstacles in carrying strategies?
(a) Lack of funding 19 9.00
(b) Lack of skills and experiences 23 10.90
(c) Lack of time and labors 9 4.27
(d) Difficult terrain and farm conditions 6 2.84
(e) Combined at least two responses above 154 72.99
From where you received assistance to deal with the impacts?
(a) Farmers’ association 99 46.91
(b) Government at local and national 12 5.68
(c) NGOs/local communities 35 16.58
(d) Relatives/family 61 28.91
(e) None 4 1.89
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insights into how farming systems are influenced by rainfall changes and an opportunity to 
develop a link between geospatial data, field data, and farmers data. The six rain charac-
teristics examined in this research reveals differing degrees of agreement among the three 
data sources. These result in two characteristics assigned as “High,” two others as “Moder-
ate,” and the rest as “Low.”

The two characteristics classified as “High” are the trend in rainfall amount and trends 
in light rain events. The nature in rainfall trends is linked with large-scale climatic phenom-
ena. Total annual rainfall represents a cumulative portion of rain received. While in rain 
gauge data and satellite data, this characteristic can be easily examined through statistical 

Fig. 9   Spatial pattern of rain characteristics as observed by CHIRPS data, rain gauge data, and farmers’ 
perception
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measures, the farmers’ recognition to this phenomenon might not be straightforward. The 
fact that most farmers could generate the same information as that of satellite and rain-
fall data might not be very surprising. Total annual rainfall is an accumulation of daily 
rain events. Farmers might observe the elevated rainfall from their daily observation. High 
rain is visually observable from their intensified rain and can be also approached from the 
increasing occurrences of floods and landslides. Data from local disaster agencies show 
that there have been elevated frequencies of water-related hazards (Handayani et al. 2020). 
Similar to this, the decrease in light rain can be perceived properly by most farmers. How-
ever, unlike extreme rains, light rain lower than 5 mm is hard to quantify accurately as the 
rain might not be noticeable. The farmers’ response that corresponds to the observation 
from gauges and satellite data might be attributed to the association of domination of per-
ceived high rains throughout the season.

In terms of onsets, generalized perception such as ’it’s difficult to tell when the rainy 
season begins’ was represented in both rainfall data in terms of interannual variability of 
onsets. Determination of DoF for farmers might be associated with the start of planting and 
play a role in decision making of the farming practices (Ingram et al. 2002), and therefore, 
it is expected that the response is not contradictory to result from satellite and gauge data. 
However, the result shows that most farmers perception about DoF is different. The inabil-
ity of farmers on perceiving this phenomenon could potentially be attribute to the fact that 
the magnitudes of changes in DoF for the before and after period (Fig. 8) were not notice-
able, showing very slight change (1–2 days). Farmers’ perceptions of rainfall characteris-
tics and meteorological data can be at odds. One cause of disagreements is that farmers 
may tend to state a more recent break point change than the meteorological data indicates. 
This is in line with the findings of Marx et al. (2007), who found that perception of massive 
rain events can be vivid if they occur on a regular basis and became more memorable. Such 
discrepancies can also stem from the farmers’ difficulty in recording long-term patterns 
and tend to capture more recent ones (Debela et al. 2015). Another potential source of disa-
greement is the quality of the rainfall data. Despite many similarities between satellite rain-
fall data and gauge rainfall data, the discrepancy that occurred on DoF between CHIRPS 
and gauge infers the inability of satellite data capture the rainy days. Many studies reported 
limitations of satellite CHRIPS data such as insensitivity to light rain and rain influenced 
by orographic effect (Bai et al. 2018).

Bridging information obtained from scientific data such as meteorological data to com-
munity like farmers cannot always be direct since there might be differences among users 
in deriving the meaning of the information. The fundamental part is how the issue in ques-
tion can be perceived from differing sources. The first step carried out in this study is defin-
ing the issue, which is the changes of rainfall, into a series of quantifiable assessments. 
The six rain characteristics statistical tests in Table 1 exemplified such an issue description 
from a meteorological data perspective, and the six questionnaire questions were developed 
to address the corresponding assessment from meteorological data. For example, the MK 
test was calculated to identify a trend of a rainfall time series data, and this can be extended 
to a form of question to farmers about the trend by providing directed response choices: 
increased, decreased, fluctuate or no trend, and no idea, which can be practically articu-
lated to farmers and can be responded to quite directly. The degree of success in translat-
ing the scientific statement into societal perception might be influenced by the complexity 
of the scientific assessment. In other case, quantitative assessments such as rain extremes 
might be more challenging for farmers as they might be difficult to qualitatively measure 
how much is considered extremes. On the other hand, the way farmers capture meteoro-
logical events can be influenced by the relative importance of such events to their daily life 
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context such as the growing season and wood haunting (Guodaar et al. 2021). However, 
albeit being prone to subjectivity, this study offers a simple approach in solidifying the 
results from differing sources. The resulting divergence among the local perception and 
scientific measurement emphasizes the importance of integration for adaptation policy and 
planning in rural agro-ecological context.

It is well understood that farmer’s perception toward the rainfall changes as well as their 
ability to adapt is influenced by internal and external variables such as their self-capacity, 
governmental support, technological advancement, and physical land conditions (Smith 
and Skinner 2002; Kessler 2006). Therefore, variations in farmers’ characteristics are 
expected. Understanding farmer’s farming systems, their perception, and acts is essential 
toward successful climate management in the prone to pressures small-scale systems. It 
provides not only information the variability of farming systems but also their beliefs and 
capacity to deal with climatic hazards and accordingly determine their potential resilience 
in sustaining the system. In this research context, an understanding of local farming sys-
tems and the variability is important to investigate the relationship between rainfall data 
and farmers’ perception in the region. Determination of rainy season onset has been the 
most challenging where “Low” agreement was observed. Studies show the importance of 
rainy season onset and its link to farmers’ choices of plants (Marteau et al. 2011; Ngetich 
et al. 2014). About 75% of 201 rain gauges observed an increased trend of rainy season 
onset (rainy season start is getting later), only 26% of farmers responded “later start,” while 
most of them (46%) perceived fluctuations. If we look at further to the variety of eight 
farming types as specified in Appendix 1, we found that differences in perception appeared 
in differing farming system types. The differentiation in response apparently was influ-
enced by the differentiation in farming types. Among the 26% of total farmers with correct 
perception, farming groups with vegetables/horticulture and farmers planting mixed paddy 
and vegetables showed relatively high portion of correct response (“start later”), which is 
39% and 30% of their total groups. This is much higher than farmers with crops, which 
only 19% of them state the later trends of rainy season onset. Similarly, low portion of 
correct perception was evident from fruit tree farmers and industrial plant farmers, where 
none of them stated “later.” The differentiation in response apparently was influenced by 
the differentiation in farming types. In this regard, farmers growing vegetables appear to 
have a better sense of observing the early rains. This was not surprising, given the fact that 
vegetables are types of plants needing intensive care in soil tillage practices including plant 
watering. With the dependence on rainfall and river water, farmers’ sensitivity to initial 
rainfall occurrences became higher. On the other hand, differing perspective was exempli-
fied from farmers with cattle and fruit trees or industrial plants. Cattle do not need water 
for intensive early growth. Similarly, water supply for fruit trees and industrial plants such 
as durians, cloves, avocado, and sugarcane is not intensive when these plants are already 
established.

The findings from this study provide several implications not only for the purpose of 
scientific development but also for the climate-related policy making and implementa-
tions. For the scientific perspective, this study provides a systematic assessment to obtain 
an initial insight about the variability of farmers’ livelihood and their belief toward climatic 
issues. The variability and spatial patterns of farmer’s perception in this study would be a 
beneficial input for refinement of the sampling design in future studies. This would even 
be more essential when such studies are expected to be the source of a policy making. Sec-
ond implication is that the achievement of agreement between scientific data and societal 
perception depends largely on how to define a common ground for an issue as assessed by 
scientific measurement, such as rainfall changes, can be translated to a practical assessment 
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by society without losing much meaning. If the observation from scientists and perceptions 
from local stakeholders such as policy makers, farmers, and other community members 
exhibit a divergence, there would be likely a failure in policy design and delivery. While 
the climate change is increasingly a global concern, a shared understanding about this 
would inevitably expedites the success in managing the concern.

5 � Conclusion

This study demonstrates an effort to develop an understanding of the consensus and dis-
crepancies of farmers and two meteorological measurements toward the rainfall changes 
in a tropical watershed region using a combined quantitative and qualitative approach. The 
statistical analysis results reveal that during the last 25 years, Brantas river basin has been 
experiencing an increase in rainfall amount, duration, rain extremes occurrences, and a 
decrease in light rain occurrences. Among these phenomena, only two rainfall attributes 
that the farmers perceived in agreement with all satellite data and field measurements. The 
discrepancies between satellite and field data were purely the differing ability of these two 
scientific tools in sensing and measuring the rain phenomena. While the discrepancies 
from the farmers infer the ability of farmers in perceiving and recording long-term rainfall 
events and in quantifying the phenomena, the ability of farmers in observing climatic phe-
nome is complex and influenced by farmers’ inherent and external factors such as farming 
types. A potential way to reduce the discrepancies is to jointly define the issue in question 
and derive practical meanings for the lay observers like farmers. The simple approach in 
this study could potentially be extended and improved for other applications.

Appendix 1: Summary of farmer’s socio‑demographic setting

Variable n %

Age
< 35 years old 27 12.80
36–55 years old 111 52.61
> 55 years old 73 34.60
Number of family members
< 3 persons 33 15.64
3–6 persons 112 53.08
> 6 persons 66 31.28
Sex
Male 188 89.10
Female 23 10.90
Level of education
Never 4 1.89
Primary school 95 45.02
Secondary school 81 38.38
Higher education 31 14.69
Level of income
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Variable n %

< 200 USD 157 73.46
200–345 USD 39 18.96
> 345 USD 15 7.11
Types of farming
Cattle only 20 9.48
Crops 31 14.69
Horticulture 38 18.01
Paddy + crops* 21 9.95
Paddy + horticulture/vegetables 23 10.90
Fruit tree 4 1.90
Industrial plants* 6 2.84
Paddy only* 68 32.23
(*) owned small cattle
Farming size
< 0.25 ha 84 39.81
0.25–1.00 ha 102 48.34
> 1.00 ha 22 10.43
Land status
Self-owner 139 65.86
Renting 45 21.33
Shared 25 11.84
“Bengkok”/rewards (gift) 1 0.47
Labor 1 0.47
Farming experience
< 5 years 44 20.85
5–10 years 40 18.96
> 10 years 127 60.18

Appendix 2: Summary of MK trends of total annual rainfall time series 
1996–2020

Types of results CHIRPS Rain gauge

Number % Number %

Showing significant positive slope (p value ≤ 0.05, slope > 0) 24 11.94 46 22.89
Showing significant negative slope (p value ≤ 0.05, slope < 0) 0 0.00 4 1.99
Not significant with positive slope (p value > 0.05, slope > 0) 177 88.06 106 52.74
Not significant with negative slope (p value > 0.05, slope < 0) 0 0.00 45 22.39
No observed trends (slope = 0) 0 0.00 0 0.00
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Appendix 3: Summary of MK trends of number of rainy days time series 
1996—2020

Types of results CHIRPS Rain gauge

Number % Number %

Showing significant positive slope (p value ≤ 0.05, slope > 0) 18 8.96 62 30.85
Showing significant negative slope (p value ≤ 0.05, slope < 0) 0 0.00 6 2.99
Not significant with positive slope (p value > 0.05, slope > 0) 183 91.04 97 48.26
Not significant with negative slope (p value > 0.05, slope < 0) 0 0.00 32 15.92
No observed trends (slope = 0) 0 0.00 4 1.99

Appendix 4: Summary of MK trends of DOY of first rain time series 
1996–2020

Types of results CHIRPS Rain gauge

Number % Number %

Showing significant positive slope (p value ≤ 0.05, slope > 0) 6 2.99 6 2.99
Showing significant negative slope (p value ≤ 0.05, slope < 0) 4 1.99 0 0.00
Not significant with positive slope (p value > 0.05, slope > 0) 69 34.33 151 75.12
Not significant with negative slope (p value > 0.05, slope < 0) 102 50.75 24 11.94
No observed trends (slope = 0) 20 9.95 20 9.95

Appendix 5: Summary of MK trends of number of days with extreme 
rains (rain depth > 50 mm)

Types of results CHIRPS Rain gauge

Number % Number %

Showing significant positive slope (p value ≤ 0.05, slope > 0) 6 2.99 38 18.91
Showing significant negative slope (p value ≤ 0.05, slope < 0) 0 0.00 11 5.47
Not significant with positive slope (p value > 0.05, slope > 0) 40 19.90 78 38.81
Not significant with negative slope (p value > 0.05, slope < 0) 0 0.00 35 17.41
No observed trends (slope = 0) 155 77.11 39 19.40
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Appendix 6: Summary of MK trends of number of days with light rains 
(rain depth < 5 mm)

Types of results CHIRPS Rain gauge

Number % Number %

Showing significant positive slope (p value ≤ 0.05, slope > 0) 0 0.00 1 0.50
Showing significant negative slope (p value ≤ 0.05, slope < 0) 3 1.49 42 20.90
Not significant with positive slope (p value > 0.05, slope > 0) 1 0.50 42 20.90
Not significant with negative slope (p value > 0.05, slope < 0) 197 98.01 102 50.75
No observed trends (slope = 0) 0 0.00 14 6.97
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