
Vol.:(0123456789)

Natural Hazards (2023) 116:3899–3923
https://doi.org/10.1007/s11069-023-05843-z

1 3

ORIGINAL PAPER

Monte Carlo modeling of tornado hazard to wind turbines 
in Germany

Romane Bouchard1 · Djordje Romanic1 

Received: 25 October 2022 / Accepted: 29 January 2023 / Published online: 9 February 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Using a Monte Carlo hazard modeling approach, this study assesses the damage and losses 
to wind turbines caused by tornadoes over Germany. The model combines observed cli-
matology of tornadoes, exposure map of wind turbines and their capacities, vulnerability 
curve (first developed in this study), and costs of wind turbines to estimate the likelihood 
of financial losses of different magnitudes. The losses are presented in terms of aggregated 
and highest annual losses as a function of the return period. Deterministic modeling of the 
vulnerability function produced larger variability of the most severe losses (rare, but high-
intensity events) compared to the pseudorandom sampling of the damage from the vulner-
ability curve. Doubling the number of current wind turbines results in smaller expected 
losses than installing fewer but more powerful units (repowerment). Tornadoes are most 
frequent in the summer months when the capacity factors of wind farms are the lowest and 
the electricity consumption is also lower than in the winter months. By repeatedly placing 
a tornado track of a fixed size over the same wind farm, we further investigated the sensi-
tivity of our model to different parameters. The probability of tornadoes of different inten-
sities hitting a wind turbine over Germany is also calculated.

Keywords  Monte Carlo model · Tornado · Wind turbine · Vulnerability · Hazard 
modeling · Wind energy

1  Introduction

Renewables have been the fastest growing energy sources in European Union, with 80% of 
new capacities being based on renewable energy (IEA 2017). Specifically, wind energy is 
expected to become the main source of electricity in the 2030s due to increasing onshore 
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and offshore installations across Europe. The growth of renewable sources of energy such 
as wind was not halted even during 2020 when the economies were severely affected by 
COVID-19 lockdowns (IEA 2021). Because the energy sector contributes to approximately 
three-quarters of the greenhouse gas emissions (IEA 2021), further investments into renew-
ables in terms of new technologies, policy adaptations, diversification of energy sources, 
cost of production, as well as reliability of energy supplies are expected to continue. A 
changing climate, however, also possesses increasing risks of physical damage to wind tur-
bines caused by severe winds and other weather perils. For example, IEA (2021) reported 
they “...estimate that around a quarter of the world’s electricity networks face a high risk of 
destructive cyclone winds.”

Germany is the leading wind energy market in Europe with over 63 GW of total capac-
ity (GTAI 2022) and over 135,000 people working in this sector. In 2021, wind energy 
accounted for 23% of net German electricity production. Investments in the wind energy 
sector and favorable policies for wind power generation are only expected to increase mov-
ing forward. The country is planning to accelerate the construction of both onshore and off-
shore wind turbines at new sites. For instance, Germany is aiming to nearly double (to 100 
GW) onshore wind power installations by 2030. This goal is in accordance with the aim of 
a 100% renewable-based energy system by 2050 (Maruf 2021). Wind energy is expected to 
be the key contributor to achieving this ambitious goal. Therefore, the undisturbed opera-
tion of wind farms that are regularly exposed to severe weather conditions is an important 
factor to consider in this process.

In addition to the increased frequency of cyclones that can be hazardous to wind tur-
bines (IEA 2021), climatological research has indicated that the occurrence of convective 
environments prone to severe thunderstorms associated with tornadoes is also likely to 
increase around the world (Diffenbaugh et al. 2013; Allen et al. 2014; Seeley and Romps 
2015; Tippett et al. 2015). Together with Bosnia and Herzegovina and France, Germany 
has the highest frequency of environments favorable for significant tornadoes (Brooks 
et al. 2003). Lepore et al. (2021) reported an increase in the frequency of proxies of severe 
weather for between 5% and 20% per °C of global temperature increase. They expect a 
significant rise in severe weather activity across Europe in the period March–November, 
which is also the peak tornado season for most of Europe, including Germany (Dotzek 
2001).

Tornado activity in Germany is highest in August and lowest in November-March. 
These monthly variations are driven by the annual trend of thunderstorm activity in this 
region (Hagen and Finke 1999). Dotzek (2001) found that Germany received between 4 
and 7 tornadoes annually with the strongest twister being the Pforzheim F4-rated tornado 
in July 1968. Here, Fujita (F) scale (Fujita 1971) is used as a discrete measure of tornado 
damage intensity with the strongest tornadoes (F5) being associated with “incredible dam-
age” (wind speeds over 112 m s −1 ) and F0 being the weakest tornadoes causing “light dam-
age” (wind speeds between 18 and 32 m s −1 ). However, Dotzek (2001) also reported that 
the actual number of tornadoes in Germany is probably around 4 times higher than the 
above figure that is based on official tornado reports. Hence, Dotzek (2001) concluded his 
study with the following statement: “Only by mere chance, tornadoes have not yet caused 
many fatalities in Germany, and their damage potential is therefore still underestimated.” 
Indeed, more recent studies show that Germany has the highest density of reported torna-
does across Europe (Groenemeijer and Kühne 2014) with an overall decrease in tornado 
occurrence from the northwest to the southeast of the country. The increasing number of 
installed wind turbines provides additional exposure to potentially harmful effects of torna-
does on these structures (Romanic et al. 2018).
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All considered—namely, Germany’s high annual number of tornadoes and the largest 
wind energy sector in Europe—this study assesses the physical damage and associated 
financial losses that tornadoes might inflict on onshore wind farms across Germany. The 
present study is based on a hazard and risk modeling approach using Monte Carlo simula-
tions, similar to Romanic et al. (2016), Refan et al. (2020), Strader et al. (2016), Arnold 
and Yildiz (2015), Sarajcev et al. (2013), Daneshvaran and Morden (2007), to name a few. 
While these types of models have been operationally used for over a decade in the pri-
vate insurance sector, most of them have not been published and their methodology is still 
undisclosed. Therefore, they are of limited, if any, use to researchers, the public sector, 
wind farm developers and operators, as well as decision-makers outside of the insurance 
industry. This study combines the observed climatology of tornadoes over Germany with 
the exposure map of wind turbines and vulnerability curves, which quantify the damage 
that tornadoes of different strengths inflict on wind turbines, to assess potential risks and 
losses due to damage caused by tornadoes to wind turbines.

This paper is organized in the following manner. Section 2 describes the methodology 
that was used to develop our hazard model. Section 3 presents the results in the form of 
exceedance curves and modeled spatial occurrence of tornadoes over the wind turbine 
exposure map of Germany. We also address the risks associated with the projected increase 
of installed wind capacities by (1) increasing the number of units twofold while following 
a similar capacity apportioning as the currently installed wind turbines; and (2) repower-
ing—namely, installing fewer, but more powerful units. We also test the sensitivity of our 
model under controlled simulation conditions (e.g., fixed tornado path size and the rela-
tive position between wind turbines and tornado path). Concluding remarks are provided 
in Sect. 4.

2 � Data and model construction

2.1 � Tornado database and climatology

We used a historical database for German tornadoes from 1970 to 2021. This database is 
available via the European Severe Weather Database (ESWD) (ESWD 2022; Dotzek et al. 
2009). For every tornado event, it provides the date, the initial latitude and longitude loca-
tion, and other fields that are not of interest to this study. It is relevant to note that for 51.5% 
of the events, the intensity, given in F scale (Fujita 1971), is not provided. In the absence 
of more information, an intensity F0 is given to the events that lack an intensity rating. 
Since the F scale is a subjective rating that is based on the quantity, type, and degree of 
damage caused, it makes sense to assume that an observed tornado with no known casualty 
would receive the lowest intensity rating. This is also consistent with a policy mentioned 
by Brooks (2004) that was made in 1982 and meant to assign F0 to all tornadoes that do 
not have rated damage. However, as discussed by Schaefer et al. (1986), we note that the 
inconsistencies in the database, combined with the subjective intensity evaluation, intro-
duce a possibility of bias. However, this is a common issue in many studies that rely upon 
an official severe weather database (ESWD 2022; Dotzek et al. 2009; Romanic et al. 2022). 
The only reliable way to remove this bias would be to improve the quality of the database. 
Note that from now on, tornado intensities mentioned as F0 are either categorized as per 
the database or assumed as per the explanation above and will not be distinguished.
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Because of the changes in reported tornadoes over the years, a change-point detection 
method (Romanic et al. 2020) is used to identify abrupt changes in the annual number of 
tornadoes (Fig. 1). We observe an abrupt change in the mean annual number of tornadoes 
between 1970 and 1998, and between 1998 and 2021. Given that these types of abrupt 
discontinuities are artificially caused, rather than being a result of a natural process (Elsner 
et al. 2013; Edwards et al. 2013), we only consider the years post-1998 (inclusively). This 
24-year-long interval is close to a climatological standard (30 years) and deemed as a suf-
ficiently large sample for Monte Carlo simulations of the annual number of tornadoes.

As demonstrated by Thom (1963), Elsner et  al. (2014) and Strader et  al. (2017) and 
also implemented in Romanic et al. (2016) and Refan et al. (2020), the annual frequency 
of tornadoes is properly represented using a negative binomial distribution (Fig. 1b). The 
distribution parameters in our model are r = 8.63 and p = 0.15 . From this distribution, 
the model uses the Monte Carlo method to pseudo-randomly generate an annual num-
ber of tornadoes and thus restricts the simulated climatology to that of the database (i.e., 
observations).

2.2 � Spatial distribution and direction of tornado tracks

For each simulated year, the model first generates an annual number of tornadoes ( ny ), as 
described in Sect. 2.1), and then randomly samples ny reported events from the database. 
The intensity (F scale) and initial longitude and latitude of the sampled events are further 
used in the simulations in the following way. We generate a pair of pseudo-random num-
bers from a normal distribution to randomly nudge the longitude and latitude coordinates of 
an observed event that was randomly sampled from the database. Using this approach, we 
preserve the spatial distribution of tornadoes across Germany while simultaneously intro-
ducing randomness into their reported positions (Fig. 2). This methodology is an improve-
ment from generating random points uniformly across a geographic region because it aims 
to follow the observed climatology of tornadoes. Furthermore, this approach also avoids 
the issue of randomly sampling points on a sphere (i.e., the convergence of longitudes at 

Fig. 1   a Annual occurrence of all registered tornadoes over Germany from 1970 to 2021. b Histogram of 
the annual number of tornadoes in the period 1998–2021 fitted with a negative binomial distribution
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the poles) versus a flat plane, which is important for large regions that span over several 
latitudes (Strader et al. 2016).

A kernel density estimator (KDE) is often used to represent the spatial distribution of 
tornadoes over a region in the absence of a commonly recognized density distribution. Fan 
and Pang (2019) discussed that the KDE approach is among the most used techniques for 
spatial analysis of tornado occurrence. They implemented a bi-variate normal distribution 
as the KDE in their simulation of geographically dependent tornado locations. Similarly, 
our nudging parameter is based on a normal distribution in both longitudinal and latitudi-
nal directions; hence making the same assumption as Fan et al. that there is no correlation 
between the two directions. These results will further be discussed in Sect. 3. The present 
implementation of the KDE in our model does not account for possible spatial correlation 
between multiple tornadoes such as a tornado outbreak. Tornado outbreaks are challeng-
ing to implement into hazard models due to the lack of data associated with the statistical 
characteristics of tornadoes during an outbreak. More data on the frequency of occurrence 
of tornado outbreaks, the average number of generated tornadoes and their intensities per 
outbreak, favorable locations for outbreaks, et cetera, are needed before outbreaks can reli-
ably be implemented into the model. In that case, for example, Ripley’s K-function could 
be used to distinguish between random, clustered, and regular spatial patterns of tornado 
occurrence.

We also observed that 31% of the tornadoes in the database were located above water 
(e.g., seas, lakes, or rivers). In all instances, their intensity was F0. Even though we are 
interested in damage to onshore wind turbines and F0 tornadoes including waterspouts 
are unlikely to affect the losses calculated by this model, the offshore regions cannot be 
neglected when the model simulates tornado locations in order to preserve the annual 

Fig. 2   Map of Germany showing a wind turbine locations and their nominal power, including a pie chart of 
the proportion of different installed capacities in the total number of wind turbines; and b tornado locations 
categorized by their F scale intensities
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number and spatial distribution of tornadoes over Germany in accordance with the obser-
vations. Thus, to restrict the simulated tornadoes to remain within the lands and territorial 
waters of Germany after perturbing the observed initial locations of reported tornadoes 
using the bi-variate KDE method, the model generates tornado events until the longitude 
and latitude pairs of all ny events are within Germany’s territory.

Hagen and Finke (1999) investigated the prevailing path of thunderstorms using a light-
ning position system during the summer months of the years 1992–1996 over southern 
Germany. We used their results to reconstruct tornadoes’ bearing angles (i.e., the horizon-
tal angle between the North and the direction of movement, � ) in our study (Fig. 3a). In 
Fig.  3a, we implement a kernel probability distribution with a normal kernel smoothing 
function (K) and an optimized bandwidth (h) of 15◦ to fit their data (of size n).

The mean of the fitted distribution is 242◦ with standard deviation of 58.2◦ . Hagen and 
Finke (1999) reported that the most frequent bearing angle of storms is 240◦ . Figure 3b 
shows 100 bearing angles generated pseudo-randomly from this kernel distribution. A sim-
ilarity between the modeled and observed angles is apparent. Moreover, in Fig. 3c, a histo-
gram of the reported bearing angles in the ESWD database since 1998 (corresponding to 
27% events of the database) is also shown. While we observe that both sources depict the 
same prevailing direction of storms toward the northeast ( � = 250◦ ), we used Hagen and 
Finke (1999) data to construct the pseudo-random number generator of this process due to 
their larger sample compared to the limited number of ESWD reports.

2.3 � Wind speeds and tornado tracks lengths and widths

The distribution of widths and lengths of tornado paths per their intensity is shown in 
Fig. 4. Here, we further compared the ESWD data for Germany to of tornado’s path length 
and width over the USA from Brooks (2004). In both regions, the length and the width 
of tornado paths tend to increase with the intensity of tornadoes (Fig. 4). Despite the two 
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Fig. 3   a Empirical histogram 
and modeled kernel distribution 
of bearing angles of storm tra-
jectories over Germany (Hagen 
and Finke 1999). b Distribution 
of the bearing angles from a 
100-year simulation run of our 
model. c Distribution of bearing 
angles of tornado tracks from the 
ESWD database (ESWD 2022)
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regions being climatologically different, the geometry of their tornado paths is similar. 
Dessens and Snow (1993) showed that tornadoes in France have mean path sizes simi-
lar to tornadoes in the USA. They further suggested that if path data of all tornadoes that 
occurred in France were available, the statistical trends of tornadoes in the USA and in 
France would likely be even more similar. We argue that similar conclusions should hold 
for Germany too. Therefore, our model makes use of Brooks’ results to simulate tornadoes’ 
path lengths and widths using a Weibull distribution:

where f (pw,l) is the probability density function of tornado path width or length pw,l (here, 
pw,l can be either the path length or the width for a given F scale), 𝛼 > 0 is the shape 
parameter and 𝛽 > 0 is the scale parameter (Table 1).

Weibull distributions have been used repeatedly in literature to represent wind speeds 
in different regions around the globe as well as wind speeds associated with different types 
of wind events (Justus et  al. 1976; Seguro and Lambert 2000; Brooks 2004; Ghosh and 
Rafkin 2012; Standohar-Alfano and Lindt 2015; Romanic et  al. 2018, 2020). Similarly, 
Weibull distributions have been found to properly model tornado’s path length and width 
(Brooks 2004; Dotzek et al. 2003; Meyer et al. 2002).

Given that there has not been a tornado with a rated intensity stronger than F3 in the ESWD 
database in the period 1998–2021 over Germany, the presented model will therefore never 
simulate an F4 or F5 tornado. That is, the simulated tornadoes are sampled from the database. 
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Fig. 4   Box-and-whiskers plot of tornadoes’ paths for a path lengths, b path widths. Gray boxes represent 
the ESWD database for Germany (GRAY points as outliers) and black are the US data (Brooks 2004)

Table 1   Weibull distribution 
parameters of the length and 
width of tornado paths (Brooks 
2004): � is the shape parameter, � 
is the scale parameter and � is the 
mean of the distribution. � and � 
are given in meters for width and 
kilometers for length

F scale Width Length

� � � � � �

0 0.94 27.2 28.4 0.65 0.9 1.4
1 0.85 57.7 64.0 0.62 3.1 4.7
2 0.79 107.4 125.9 0.64 7.5 10.7
3 0.84 240.2 263.6 0.83 20.4 22.5
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Though the possibility that such a tornado could occur over a sufficiently long time period is, 
of course, not excluded given that F4 tornadoes did happen before 1998 (Dotzek 2001), this 
scenario does not affect the outcome of our model because F3 tornadoes already cause the 
maximum damage to wind turbines (Marshall et al. 2022). This topic is further discussed in 
Sect. 2.5.

A proper representation of the variability of tornado intensity during their lifetime is impor-
tant to adequately model the monetary losses caused by this type of non-stationary wind haz-
ard. Schaefer et al. (1986) analyzed the tornado variation in intensity (F scale) versus length 
for 5 surveyed tornado outbreaks in the USA (cf. Table 2 in Schaefer et al. (1986)). Standohar-
Alfano and Lindt (2015) combined the work of Schaefer et al. (1986) with additional tornado 
damage surveys and proposed a method to account for a tornado variability in intensity along 
the length and the width of the tornado path. They summarized the variability by segment-
ing the footprint into zones of different intensity magnitudes. Each segment is rectangular in 
shape and defined as a percentage of the total length and width of the tornado path (Fig. 5). 
Because their model was constructed using mixed data that did not distinguish between F and 
Enhanced F (EF) (McDonald et al. 2006) tornado intensity ratings, they considered both clas-
sifications to be equivalent in terms of the variation of tornado intensity along the path. Simi-
lar to Romanic et al. (2016), we adopted the method of Standohar-Alfano and Lindt (2015) 
herein. 

It is arduous to analyze tornado wind speeds because they cannot be routinely measured. 
Instead, wind speeds are inferred from the damage caused by tornadoes. This method is also 
often uncertain due to structural and construction differences of the "standard" structures from 
which damage can be assessed (McDonald et al. 2006). Moreover, wind speeds vary along 
the track of a tornado, as discussed above, and these wind gradients are even harder to esti-
mate. Because no wind speed data was available in the ESWD database, we assumed similar 
wind speed distributions for tornadoes in the USA and Germany, and, therefore, used Elsner 
et al. (2014) wind speed simulations to estimate a distribution of wind speeds across tornado 
F segments. Elsner et al. (2014) investigated tornado intensities on a continuum by estimating 
wind speed based on damage, path dimensions, and EF ratings. We use their model diagnos-
tic plot (cf. Fig. 3a in Elsner et al. (2014)) to obtain a distribution of tornado wind speeds in 
our model. Weibull, log-normal, and gamma distributions were applied to Elsner et al.’s data 

Fig. 5   Blueprint of a segmented F3 tornado (not to scale) (Standohar-Alfano and Lindt 2015). The illus-
trated wind turbines are subjected to four different wind speeds, each wind speed corresponding to different 
F zones
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using the maximum likelihood method and the log-normal distribution provided the best fit 
of data with a Chi-square ( �2 ) of 0.022 (Fig. 6b). Log-normal distributions are appropriate to 
model tornado wind speeds since they are non-negative and positively skewed (Fig. 6). The 
probability density function of a log-normal distribution that models wind speeds (v) as a ran-
dom variable is:

where � is the scale parameter (i.e., the median of the distribution) and � is the shape 
parameter. Because the lowest wind speed in an F0 tornado is 18 m s −1 by definition, a 
location parameter ( � ) is added to the log-normal distribution to account for the cut-in 
wind speed, as:

In our model, � , � and � parameters are 2.32, 0.66 and 27.52, respectively. Within each F 
zone (e.g., Fig. 5), wind speeds at locations of the affected wind turbines are pseudo-ran-
domly generated from log-normal distribution within the bounds of wind speeds associated 
with a given F scale.

2.4 � Exposure map

Exposure map of onshore wind turbines over Germany (Fig.  2a) is obtained from the 
Helmholtz Centre for Environmental Research (UFZ) data research portal (UFZ 2019; 
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Fig. 6   a Percentage occurrence of tornadoes per their F scale over Germany. The values at the top of the 
plot represent the observed percentages in the ESWD database. b Distribution of wind speeds as a function 
of tornado intensity based on the model by Elsner et al. (2014) with the log-normal fit added (black line)
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Eichhorn et al. 2019). Their data from 2015 provide wind turbines (24,475 units in total) 
Northing and Easting coordinates (ETRS 1989 geodetic Cartesian reference frame), the 
nominal wind turbine capacity in kilowatts (kW), and other attributes of installed wind 
turbines that are not relevant to this study. 18 wind turbines were associated with a 0 kW 
capacity and were removed from the analysis to avoid unnecessary speculation. The only 
instance of an offshore wind turbine was also eliminated such that the final exposure map 
consists of 24,456 wind turbines. The highest concentration of wind turbines is found in 
the north and northwest parts of Germany.

2.5 � Vulnerability and loss assessments

Vulnerability functions are a quintessential part of risk assessment models. In our model, 
the vulnerability function describes the relationship between a tornado’s wind speed and 
expected damage to a wind turbine. The damage is quantified through a damage index (D) 
which is a percentage of the replacement or full reparation of a wind turbine. The maxi-
mum damage ( D = 1 ) is associated with a collapse of the wind turbine or damage so severe 
that the full replacement of the unit is necessary even if some components of the wind 
turbine are in place. A damage index of D = 0 represents no damage inflicted to a wind 
turbine (Fig. 7).

Vulnerability functions are not expected to be accurate for a single incident, but 
rather to overlay the global pattern of events for a particular type of phenomenon and 
structure (Walker 2011). Therefore, vulnerability curves are often the main source of 
uncertainty in a hazard model. In fact, a significant amount of data is required to empiri-
cally develop a reliable vulnerability curve, but due to high variability in the events 
(e.g., different spatiotemporal characteristics of tornadoes, the orientation of their trajec-
tories relative to a wind turbine, orographic influences, flying debris, pressure deficits in 
the tornado core, etc.), different wind turbine characteristics (e.g., size and hub height, 
rotor diameter, soil properties and type of foundation, material, building standards, etc.) 
and limited pool of damage surveys, composing a highly reliable vulnerability model is 

Fig. 7   Vulnerability curve. 
Degrees of Damage (DOD) Mar-
shall et al. (2022) is associated 
with the expected lower bounds 
of damage index and resistance 
wind speeds
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always challenging. Some of these issues are further discussed in Romanic et al. (2016), 
Walker (2011) and Papathoma-Köhle et al. (2012).

Surveys of wind turbine damage caused by tornadoes that will be included in the 
updated EF scale recommendation report (Marshall et  al. 2022) provide a quantita-
tive relationship between typical resistance wind speed and a given degree of damage 
(DOD) inflicted to a wind turbine (Table 3). DODs are categorical measures (0–no dam-
age to 4–highest damage) of the severity of the damage that a wind turbine sustained 
in a tornado. Here, we propose a generalized logistic function—the so-called Rich-
ard’s curve—to develop a continuous vulnerability function from discrete DOD points 
(Fig. 7):

where � is the lower asymptote ( D = 0 ), L is the upper asymptote ( D = 1 ), vm is the point 
of maximum growth (49.1 m s −1 ), k is the growth rate (0.504) and I is a variable associ-
ated with the point of inflection (0.970). Cumulative distribution functions in the form of 
Eq. (5) are appropriate choices of models to construct vulnerability curves as they define 
DOD in a both-sided defined interval and are steady monotonic increasing functions (Papa-
thoma-Köhle et al. 2012). Other types of cumulative distribution functions (e.g., Weibull, 
log-logistic, Frechet, and logistic) have also been used in literature to develop vulnerabil-
ity curves for other hazards (Papathoma-Köhle et  al. 2012; Totschnig and Fuchs 2013; 
Totschnig et  al. 2011). In our case, five parameters of the generalized logistic function 
facilitate the curve fitting of limited DOD data more easily than employing other cumula-
tive distribution functions with fewer degrees of freedom.

Figure  7 implies that no damage is caused by F0 tornadoes and that total destruc-
tion is expected for F3 tornadoes. As previously mentioned, this implies that F3 and 
higher tornadoes equally affect wind turbines in terms of losses as the damage cannot 
exceed D = 1 . Figure 7 also depicts the largest variability in the damage caused by F1 
(0≤D<0.6) and F2 (0.6≤D≤ 1) tornadoes.

The final module of our model is the loss calculations by which the physical damage 
described by the vulnerability curve (Fig. 7) is linked to financial losses (€). Each DOD 
state that was used to develop our vulnerability curve provides a qualitative description 
of the damage that a wind turbine is expected to sustain in tornadoes (Table 2). These 
estimates are based on surveyed wind turbines affected by tornadoes. We combined 
this information with the estimates of the typical cost of replacement of different wind 
turbine components as a function of the total cost of a wind turbine (P) of a nominal 
capacity C (Blanco 2009; Martin-Tretton et al. 2022; WISDEM 2019) (Table 3). While 
Blanco (2009), Martin-Tretton et al. (2022) and WISDEM (2019) provide similar esti-
mates of the cost of different wind turbine components, there are also some differences 
in their assessments due to a variety of wind turbine types and manufacturers on the 
market (Blanco 2009).

In our model, the total cost value of a wind turbine (V) that includes all components, 
grid connection, engineering work, licensing, and other costs is calculated as:

where R is a typical price of a wind turbine per kW of nominal power. Here, R is gener-
ated pseudo-randomly from a normal distribution with the mean of 1,250 € kW−1 , stand-
ard deviation of 15% and, following the work of Blanco (2009), the values are bounded 

(5)D(v) = � + L
(

1 + Ie−k(v−vm)
)−1∕I

,

(6)V = C ⋅ R,
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between 1,100 and 1,400 € kW−1 . The nominal capacity, C, of each wind turbine within the 
exposure map is provided in the UFZ database (UFZ 2019; Eichhorn et al. 2019) (Fig. 2a).

The monetary loss associated with a damaged wind turbine ( Lwt ) is:

Naturally, Lwt is zero for F0 tornadoes as well as F0 tornado zones in the peripheral regions 
of stronger tornadoes (Fig.  5), which also includes any tornadic wind speeds v < 36 m 
s −1 (Fig. 7). On the other hand, Lwt = V  for v ≥ 58 m s −1 . Moreover, if D ≥ 0.7 , the loss 
is still deemed to be V because such a high level of sustained damage to a wind turbine 
requires the entire unit to be replaced. Indeed, considering that the tower contributes to 

(7)Lwt =

{

D(v) ⋅ V , if D < 0.7;

V , if D ≥ 0.7.

Table 2   Main components of a typical horizontal axis onshore wind turbine and their percentage contribu-
tions to the total capital cost (Blanco 2009)

Component % Description

Tower 26.3 Structure supporting the wind turbine
Rotor blades 22.2 Airfoil shaped blades that "capture" wind energy and drive the rotor
Rotor hub 1.37 Holds the blades in position as they turn
Rotor bearings 1.22 Balance the various forces imposed by the wind
Main shaft 1.91 Transfers the rotor torque to the gearbox
Main frame 2.80 Supports the turbine drive train
Gearbox 12.9 Boosts the low rotational speed of the shaft for the generator
Generator 3.44 Converts mechanical energy to electrical energy
Yaw system 1.25 Rotates the nacelle in an optimal way
Pitch system 2.66 Adjusts the angle of the blades in an optimal way
Power converter 5.01 Converts the direct current to alternating current for the grid network
Transformer 3.59 Converts the electricity to a higher voltage for the grid network
Brake system 1.32 Pauses the functioning wind turbine when needed.
Nacelle housing 1.35 Covers the turbine drive train
Cables 0.96 Links the wind turbine to an electrical station
Screws 1.04 Maintain the components in place

Table 3   DODs for wind turbines in tornadoes (Marshall et al. 2022). The wind speeds represent the typical 
resistance wind speed (3-second gusts) for a given DOD. A higher DOD incorporates the damage of lower 
DODs

DOD Affected components v [m s −1]

0 No damage <36
1 Brake system including cables and screws 36
2 Blade(s), rotor hub, rotor bearings, gearbox, pitch system 45
3 Generator, nacelle, main shaft, yaw system, main frame, small damage 

to tower
49

4 Entire wind turbine collapses 58



3911Natural Hazards (2023) 116:3899–3923	

1 3

approximately 30% of the value of V (Blanco 2009), the total replacement of the unit 
for D ≥ 0.7 is regarded as a reasonable estimate of the loss for the most severe levels of 
damage.

While a deterministic relationship between wind speed, damage, and loss is the simplest 
way to link these parameters, we also propose and test an alternative approach to model 
D and therefore Lwt too. To account—at least partially—for various uncertainties associ-
ated with vulnerability and damage estimates as a function of tornadic wind speeds, we 
also allow for damage to be normally distributed around the mean values calculated by the 
deterministic Eq. (5). Then, we used a standard deviation of 15% (Romanic et  al. 2016) 
to pseudo-randomly sample the final value of D that was used to calculate losses in Eq. 7. 
The upper and lower limits of a random sampling of D are set to be 1 and 0, respectively, 
in order to suppress non-physical results. This approach attempts to further generalize the 
derived vulnerability function to a large number of possible wind turbine-tornado interac-
tion scenarios.

The total loss caused by a tornado event ( Levent ) is the sum of Lwt losses of all wind 
turbines affected by the tornado. Finally, the aggregated loss (AGG) is the sum of all Levent 
losses in the year, and the largest Levent loss in the year is the so-called occurrence loss 
(OCC). These definitions are borrowed from the insurance sector (Romanic et al. 2016). 
AGG and OCC are used to derive tail risk values for risk management of expected losses, 
which are further linked to different return periods (RPs). RP is defined as the one over the 
cumulative likelihood such that a 1% likelihood of exceedance of a loss is given an RP of 
100 years (Romanic et al. 2016).

3 � Results and discussion

3.1 � Tornado spatiotemporal occurrence

The negative binomial distribution of the annual occurrence of observed tornadoes yields 
a mean of 48 events per year (Fig. 1b). A kernel smoothing function estimation was per-
formed on 5 runs of 100-year simulations to compare the simulated spatial occurrence of 
annual occurrence of tornadoes with observations (Fig. 8). The estimate is based on a bi-
variate normal kernel function to remain consistent with the methods. It seems that the 
spatial density of the simulated tornadoes is coherent with the database for F0 and F1 tor-
nadoes. Figure  8 also projects noticeable variability for the F2 category and even more 
pronounced irregularities for F3 tornado locations, suggesting a poorer ability of the model 
to reproduce F2 and particularly F3 tornado climatology. These observations suggest that, 
while reproducing the spatial distribution of tornado occurrence can improve the adequacy 
of a model when a sufficient amount of data is available, this method might also be a draw-
back when only a few records exist (in this case 100 F2 and 15 F3 tornado records). Nev-
ertheless, relative frequencies of tornado intensity are similar to observations as shown in 
Fig. 6a.

More than two-thirds of the total number of observed tornadoes over Germany in the 
period 1998–2021 belong to the weakest twisters; a similar ratio is obtained for 30 runs of 
1000-year simulations (68.4%). This finding suggests that only about a third of the annual 
tornadoes have the potential to be damaging to wind turbines. Nearly 10% of the events are 
severe (F2 and stronger tornadoes) and can result in drastic damage or the complete col-
lapse of wind turbines (Fig. 7).
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Tornado tracks over Germany are shown in Fig. 9 for a different number of simulated 
years. The total number of tornadoes is coherent with the annual mean. In the six presented 
cases, the annual number of tornadoes ranges between 43 and 51. The 500- and 1000-year 
simulations show that the pseudo-random selection of tornado initial locations, based on 
a KDE of the observed tornado spatial occurrence, results in a tendency to favor certain 
regions based on the observed climatology. Namely, weak tornadoes (F0–F1) are predomi-
nant in northwestern Germany, whereas stronger tornadoes (F2–F3) seem to appear mostly 
in the mid-west and east sectors. The south seems to be the least favored region for torna-
does (Fig. 8).

In terms of the prevailing bearing angle of tornado tracks, the mean direction of the 
simulated tornadoes ( � = 242◦ , which also corresponds to the mean of our fitted kernel 
distribution), our simulations agree well with the most frequent bearing angle of storms 
observed by Hagen and Finke (1999), � = 240◦ . While the modeled angles are independent 
of the tornado intensity in this work, we acknowledge that the intensity and the orienta-
tion of tornado tracks might be dependent parameters. Having more data on tornado paths 
would improve the accuracy of the model to depict the orientation patterns of tornadoes, 
rather than relying on thunderstorm trajectories.

Fig. 8   Normal bi-variate kernel density estimators of the spatial occurrence of tornadoes across Germany. 
Each row represents a different F scale (F0 to F3 starting from the top). The left column is tornado clima-
tology from the ESWD database, and the subsequent columns are based on model runs
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Tornadoes are the most active through the summer months when the electricity produc-
tion by wind turbines is the smallest (Fig. 10). Between 2000 and 2014, the mean capac-
ity factor of wind farms in Germany was around 18.3 ± 7.5% (Germer and Kleidon 2019) 
with values over 40% occurring only occasionally in the winter months. Seasonal decou-
pling between tornado occurrence and mean capacity factors, which are slightly above 10% 
during the summer (Fig. 10), is beneficial in terms of potential disruption of a wind farm 
operation and associated financial burden that wind farm owners might sustain if we equate 

Fig. 9   Modeled tornado tracks over Germany for return periods of 1, 10, 20, 100, 500, and 1000 years. The 
total number of modeled tornadoes and mean bearing angles of tornado tracks are indicated in the bottom-
left of each figure

Fig. 10   Monthly capacity factors of wind farms in Germany (left y-axis, blue) Germer and Kleidon (2019), 
normalized energy consumption in Germany (second right y-axis, green—normalized to the peak value of 
58,993 MWh in February) Bach (2022) and relative frequencies of the monthly number of tornadoes over 
Germany (first right y-axis, red)
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the smaller capacity factors with reduced revenues from the exported electricity to the grid. 
However, from the energy consumption point of view, the high frequency of occurrence of 
tornadoes in summer months might be problematic given that the minimal consumption in 
August is only 12% smaller than in the peak month of February (Fig. 10). That is, the high 
demand for electricity is maintained throughout the year. Germany is rather specific in this 
regard because, for example, the load in summer months in France is ∼35–40% lower than 
in the winter months (not shown) (Bach 2022).

3.2 � AGG and OCC losses

The model uses two methods to simulate losses (Sect.  2.5): (1) a deterministic relation-
ship (DR) between D, wind speed, and loss; and (2) added randomness in the deterministic 
relationship (RDR). The AGGs and OCCs are computed for both methods and illustrated 
in Fig. 11 as a function of the RP.

Both curves are steep for the RPs below 200 years and approach the highest expected 
losses for larger RPs. Nevertheless, positive gradients are still observed on the curves for 
RP = 1000 years, suggesting AGGs and OCCs should flatten at values larger than 25 M€. 
In other words, losses with higher RPs can be expected. The results seem to diverge in 
the tail region of the curves. Also, the AGG losses calculated using the DR method show 
more spread around the mean. This suggests that the choice between using the determin-
istic (DR) or random-deterministic (RDR) approach to estimate the relationship between 
wind turbine damage and wind speed is less significant for high-frequency events (i.e., 
small RPs), but becomes more relevant for lower frequency losses (i.e., large RPs). The 
low-frequency events, however, are particularly important considerations for insurance and 
reinsurance underwriters in the wind energy sector. We also notice that the lower-bound 
losses in the DR approach already cap at the RP of approximately 500 years. Larger uncer-
tainty of the tail losses is associated with the DR approach and, also, the tail OCC losses of 
the DR method are larger than for the RDR method in the tail region (Fig. 11).

Given the S-like shape of the vulnerability function (Fig. 7), the RDR method tends to 
augment the losses for weaker tornadoes (low-end F1) and reduce them for strong torna-
does (upper-end F1 and lower-end F2). For example, consider a wind speed of 40 m s −1 
and the associated damage index of DDR ≈ 8.5 × 10−3 (i.e., negligible in the DR approach). 

Fig. 11   Probability exceedance 
curves showing AGG (full lines) 
and OCC (dot-dashed lines) 
losses associated with the DR 
(red) and RDR (blue) vulner-
ability modeling methods. The 
profiles are based on an average 
of 60 1000-year RP model runs. 
The shaded regions represent one 
standard deviation around the 
mean AGG losses
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In the RDR model, however, a new value of DRDR will be re-sampled from a normal dis-
tribution with the mean of DDR and a 15% standard deviation. Given that DDR is already 
small, a potential re-sampling toward even lower values does not affect the loss signifi-
cantly because of the small slope of the vulnerability function in that region and, moreo-
ver, the damage is capped at 0. However, the steep slope of the vulnerability curve toward 
higher damage than DDR can significantly increase the damage and consequently the loss. 
The reader can convince themselves that the opposite argument holds at the high end of the 
vulnerability curve (Fig. 7).

This trend is particularly observed in the mean OCC losses (Fig. 11) that are higher in 
the DR approach over the tail region of the probability exceedance curves. The variability 
of RDR model is smaller in the low-frequency range. For both methods, the losses are 
bounded by V if D > 0.7 . Since RDR re-samples D normally, but caps the losses equiva-
lently to DR, we expect the extreme cases of RDR to be slightly smaller than DR on aver-
age as the method often re-samples smaller values and both methods are equally bounded 
at the high end. Similarly, as D is bounded below by 0 in both DR and RDR models, we 
expect RDR to re-sample D slightly positively for the small loss events (i.e., small D) on 
average. While this property of the vulnerability models affects the calculated losses across 
the probability exceedance curves, the influence is more noticeable in the high-frequency 
range due to a large number of high DDR damage states of affected wind turbines in these 
extreme years and prior to their DRDR re-sampling.

3.3 � Modified exposure map: increased number of units and repowering

Considering Germany’s goal to double the onshore wind turbine energy production by 
2030 (GTAI 2022), we analyzed two different scenarios of the modified exposure map: (1) 
doubling the number of units while following a similar capacity distribution as the pres-
ently installed wind turbines (2NUM); and (2) installing fewer but more powerful units, 
which also addresses the inclination toward the so-called repowering (2CAP). The added 
wind turbines in the 2NUM case are uniformly distributed following random sampling on 
a sphere across the exposure map. Capacities of new wind turbines are randomly sampled 
with replacement from the existing database (see Fig. 2). A somewhat simplified portrayal 
of Germany’s future wind turbine exposure map is implemented for 2CAP. We use the 100 
GW goal (GTAI 2022) as the total onshore wind energy capacity of Germany and normally 
randomize individual wind turbine capacities. According to the International Renewable 
Energy Agency (IRENA 2019), ongoing innovations and enhancement for the wind energy 
sector is expected to shift the international average of capacities for individual units from 
2.6 MW to 4–5 MW for turbines commissioned by 2025. Because this report dates from 
2019 and technologies have improved since then, and also given that 7.5 MW onshore wind 
turbines are now operational on Magdeburg-Rothensee and Ellern onshore wind farms in 
Germany, we use a mean nominal power of 5.2 MW and restrict capacities to be within 4 
and 8 MW. Thereby, the mean of 5.2 MW with a 15% standard deviation are used to nor-
mally randomize the 2CAP wind turbine capacities. This way, the initial number of wind 
turbines (24,456) is reduced by about 27%, which is an appropriate figure for doubling 
wind farm capacities with the repowering method. The locations of the repowered turbines 
are randomly sampled without replacement from the existing wind turbine exposure map.

Figure 12 shows the AGG and OCC losses associated with 2NUM and 2CAP using the 
DR method. The significant gradient in the tail losses of both curves suggests higher than 
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1/1000 AGG and OCC losses. The losses for 2CAP are more significant than the losses for 
2NUM across the exceedance curves and nearly double the 2NUM values in the tail region.

This simplified comparison model suggests two outlooks. First, the repowering of 
onshore wind turbines is expected to yield more significant losses due to tornado damage 
than increasing the number of existing units. Thus, increasing the capacity (2CAP)—i.e., 
increasing the monetary value of the units associated with the increased capacity through 
Eq. 6—contributes more to the losses than increasing the number of intersections between 
wind turbines and tornadoes caused by the increased number of existing wind turbines 
(2NUM).

Second, this result shows that our model is particularly sensitive to the installation costs 
of wind turbines. Therefore, we highlight the importance of more available and standard-
ized data from the wind energy sector in order to accurately depict wind turbines’ monetary 
values and related damage costs. Particularly, there is a lack of data on which wind turbine 
components are most susceptible to tornadic wind loads and what are the expected modes 
of failure. One could hypothesize that doubling the number of units does not directly dou-
ble the potential losses, as the probability of tornadoes hitting wind turbines remains low. 
However, doubling the capacity would significantly amplify the potential losses because 
they are intrinsically linked with damage cost in our model. Thus, the 2CAP losses are 
greater than the 2NUM losses.

Wind turbines are expected to last around Ny = 20 years (Salameh et al. 2018; Blanco 
2009) and their economic payback period is about Ny = 10 years (Blanco 2009). Here, 
we shall calculate the probability (P) of a tornado hitting a wind turbine in Germany over 
a period of Ny years. For a wind turbine with a nacelle length s and a rotor diameter d, 
the horizontal area that the wind turbine sweeps under a 360◦ yaw rotation is Awt = �R2

e
 , 

where the effective radius is Re =
√

(D∕2)2 + (s∕2)2 , assuming that the tower and nacelle 
are connected at approximately the middle of the nacelle length. Furthermore, the area 
of a rectangular tornado track (Fig. 5) is At = lw , where l and w are the total length and 
width of the track, respectively. Under these assumptions, the probability of one tornado 
hitting a wind turbine (p) is found in two steps: (1) Determining a region, Atwt , such that 
Awt intersects At in one and only one point within Atwt , and (2) Dividing the area Atwt by the 
total area of Germany ( AG = 357, 588 km2 ). It can be demonstrated that the area Atwt is a 
rounded rectangle with the sides l and w and a corner radius Re:

Fig. 12   AGG (full lines) and 
OCC (dot-dashed lines) loss 
profiles for modified exposure 
map: doubling the number of 
wind turbines with capacities 
similar to the currently installed 
units (red) and new repowered 
wind turbines adding to a total 
capacity of 100 GW (blue). The 
results are based on 30 model 
runs. Similar to Fig. 11, the 
shaded regions represent one 
standard deviation around the 
mean AGG losses
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Therefore, p = Atwt∕AG for one tornado. However, given that the average number of tor-
nadoes in a year is Nt , the probability that none of them intersects Awt is (1 − p)Nt ; hence, 
the probability at least one of them intersects Awt is 1 − (1 − p)Nt . For small p, this expres-
sion can be approximated as pNt . The derivation also assumed that AG >> Atwt in order to 
neglect the effect of irregular border shape. Finally, the probability P of at least one tor-
nado hitting a wind turbine over Ny years is:

Under the reasonable assumption that s = 10 m, D = 150 m, the probabilities for torna-
does of different intensities hitting a wind turbine in Germany are provided in Table 4. The 
results of Brooks (2004) (see Table 1) on tornado path lengths and widths and a mean of 
48 tornadoes year−1 (Fig. 1) are used to approximate l, w and Nt , respectively. Interestingly, 
the probability of a hit by an F0 tornado is lower than the probability of a hit by either F2 
or F3 tornadoes. Despite being the most numerous, F0 tornadoes are also the smallest in 
size, which results in a low probability of the hit. It is also important to note that F0 tor-
nadoes are not causing damage to wind turbines in our model (Fig. 7). The probability of 
a hit by F1 and F2 tornadoes is similar and approximately two times larger than that of an 
F3 tornado. Since the calculated probabilities assume a uniform distribution of tornadoes 
across the exposure map, which is not fully supported by the observed tornado climatology 
(Fig. 8), the provided figures should be taken as an "average" probability of the hit.

Further research concerning the optimization of the two scenarios (e.g., combining 
2CAP and 2NUM) in order to determine the dependency of results on varying different 
parameters (e.g., mean repowering capacity or the number and locations of added wind 
turbines) would be particularly interesting to pursue in a future study. The results of that 
research will also alter the calculated probabilities in Table 4.

3.4 � A fixed tornado path

Multiple model runs of a tornado with a fixed length, width, and orientation of the track 
(Fig. 13) were conducted to investigate the sensitivity of our model to unchanged initial 
conditions. This fixed path is positioned to traverse an existing wind farm at Schleswig-
Holstein, Germany, that has 17 wind turbines—16 of 2 MW capacity and one of 1.8 MW 
capacity. The location of the wind turbines within the track and the dimension of the tor-
nado track are portrayed in Fig. 13 (not to scale). A total of 18 scenarios, consisting of 30 
runs of 1000-year simulations, were executed. These scenarios include varying the tornado 
intensities (F1–F3), three different capacities of the wind turbines (halved, unchanged, and 
doubled), and the two vulnerability modeling approaches (DR and RDR).

(8)Atwt = lw + 2Re(l + w) + �R2
e
.

(9)P =
Atwt

AG

⋅ Nt ⋅ Ny.

Table 4   Probabilities in 
percentages for tornadoes of 
different intensities (F scale) to 
hit an average-sized wind turbine 
in Germany over the period of 10 
and 20 years

Ny P (%)

F0 F1 F2 F3

10 years 0.0249 0.0306 0.0349 0.0164
20 years 0.0498 0.0611 0.0699 0.0327
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The histograms associated with the F1 tornado (the first column in Fig. 14) show no pronounced 
distinction between the DR and RDR methods. The mean losses scale linearly among the 3 wind 
farm capacity cases (halved, unchanged, and doubled capacities). This result suggests that a lower 
range of damage and fewer occurrence of intersections result in similar loss distributions with both 
approaches. Since the lower bound of F1 wind speeds results in no damage (Fig. 7), the F1 histo-
grams exhibit a Poisson-like shape with the left tail being cut off at a zero loss. On the other hand, 
the F2 and F3 histograms (the second and third columns in Fig. 14) show a systematic shift from 
RDR to the DR distributions. The RDR losses are more spread around the mean and lower than 
the DR losses. This trend can be explained by further examining the vulnerability function (Fig. 7) 
in terms of the RDR sampling. In the RDR approach, the deterministic damage (DR) is randomly 
re-sampled from a normal distribution with the mean equal to the DR damage and a 15% standard 
deviation. For large DR damage states, the losses are already close to the replacement cost, and the 
RDR re-sampling toward higher losses is capped at the replacement cost, V, see Eq. (7). However, 
the re-sampling toward the lower losses is effectively not bound (i.e., formally it is bound at the zero 
loss, but the probability of a zero loss being re-sampled at F2–F3-rated wind speeds is albeit negli-
gibly small). Therefore, the RDR method on average produces smaller losses and the discrepancy 
between the mean DR and RDR losses increases with tornado intensity (i.e., compare the second 
and third columns in Fig. 14). The losses, once again, scale linearly with the wind farm capacity.

4 � Conclusions

Wind turbines are often exposed to adverse weather conditions, which sometimes include 
tornadoes of different intensities. Since Germany continues to lead the progress in wind 
power generation in Europe, this study investigated the damage and losses to wind turbines 
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Fig. 13   A tornado track of the fixed size and bearing angle is placed over 17 wind turbines (dots). The bear-
ing angle value of 4° is exaggerated for the sake of better visualization. The tornado F-scale rated intensity 
is varied from F1 to F3 (a–c)
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caused by tornadoes across Germany. On average, Germany received 48 tornadoes per year 
in the period 1998–2021. It is logical to expect that a wind turbine-tornado interaction is a 
matter of time.

In this study, we proposed a hazard modeling approach by which Monte Carlo simula-
tions were used to combine tornado climatology (the annual spatiotemporal occurrence of 
tornadoes per intensity, length, width, and orientation of tornado tracks), exposure map 
of wind turbines and their installed capacities, vulnerability curve, and financial module 
of wind turbine costs to estimate financial losses associated with tornado damage to wind 
turbines. The vulnerability function in the form of a generalized logistic curve was first 
proposed in this study. More precisely, the reported wind turbine damage in the form of 
categorical data—the so-called degrees of damage— was transformed into a continuous 
function using the generalized logistic curve. The annual number of tornadoes was repre-
sented using the negative binomial distribution, whereas their spatial frequency of occur-
rence across Germany was modeled by means of a kernel density estimator with normal 

Fig. 14   Histograms of AGG losses caused by the single tornado track placed over a wind farm as indicated 
in Fig. 13. Columns correspond to different F scales (F1–F3) and rows correspond to wind turbines’ capaci-
ties halved (first row), unchanged (second row) and doubled (third row). The mean values of the losses are 
shown in each plot for the DR (red) and RDR (blue) vulnerability modeling methods
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distribution in both longitudinal and latitudinal directions. Variations of tornadoes’ path 
lengths and widths were simulated using a Weibull distribution and a log-normal distribu-
tion was used to represent the randomness of wind speeds across different tornado inten-
sities. A kernel estimator was utilized to model the prevailing bearing angle of tornado 
tracks. These underlying distributions were based on the published literature. Lastly, we 
linked the financial cost (i.e., losses) of a damaged wind turbine as a percentage of the total 
cost of the unit by accounting for the costs of major wind turbine components. The results 
were presented in terms of the aggregated loss (AGG—sum of all losses in a year) and 
occurrence loss (OCC—the highest loss in a year) curves plotted as a function of the return 
period (RP). These probability exceedance curves are often used in the insurance sector 
and operational market to estimate the risk associated with a given peril (i.e., tornadoes).

Our statistical model properly replicated both temporal and spatial distributions of tor-
nado occurrence across Germany. Over 65% of tornadoes were the weakest twisters (F0—
based on the Fujita scale) and only about one-third of tornadoes had the potential to cause 
damage to wind turbines (F1 and stronger). Moreover, about 10% of tornadoes were severe 
(F2 and stronger). Weak tornadoes were more frequent in northwest Germany, whereas the 
stronger tornadoes were more common in the mid-west and east parts of the country. The 
highest occurrence of tornadoes was during the summer months, which is also the season 
characterized by low wind turbine capacity factors and somewhat lower electricity con-
sumption than in the cold part of the year.

We used two approaches to simulate losses: (1) a deterministic relationship (DR) 
between damage and loss (i.e., deterministic vulnerability function); and (2) added ran-
domness in the deterministic relationship (RDR) by allowing the damage to be normally 
distributed around the mean that was calculated using the DR approach. While the two 
methods produced similar losses for the high-frequency events (i.e., short return periods), 
the DR model gave more variability of the results in the low-frequency region (i.e., long 
return periods beyond ∼500 years). The OCC losses for the DR approach were also larger 
than those for the RDR case in the tail region of the curves. We also demonstrated that 
doubling the number of current wind turbines (2NUM scenario) results in more minor 
losses than installing fewer but more powerful wind turbine units (2CAP scenario—the 
so-called repowering). We deemed this result as an important consideration for future plan-
ning of the wind energy sector in Germany.

We also investigated an idealized case in which a tornado track of a fixed length and 
width was repeatedly placed over the same wind farm that contained 17 wind turbines. 
The tornado intensity, wind turbine capacity and vulnerability function modeling (DR and 
RDR) were varied in order to quantify the sensitivity of our model to these parameters. 
While the losses caused by F1 tornadoes were practically independent of the vulnerabil-
ity treatment, a significant distinction between DR and RDR was observed for F2 and F3 
tornadoes. In all cases, the loss and capacity were linearly correlated. The probability of a 
tornado of different intensities hitting a wind turbine in Germany was also calculated.
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