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Abstract
Weather extremes have been responsible for widespread economic damage at global scale 
in the last decades. Agriculture alone absorbed 26% of the overall impact caused by natu-
ral hazards in low- and middle-income countries and even in high-income countries yield 
losses due to extreme weather are relevant. Vulnerability curves are traditionally used to 
quickly estimate the damage due to extreme events. This study maps the articles published 
from January 2000 to May 2022 implementing crop vulnerability curves to weather-related 
extreme events and climate change. Fifty-two articles have been identified through the use 
of Scopus, Web of Science, Google Scholar and the references of the selected papers. The 
selected papers have been analysed to determine for which extreme events vulnerability 
curves have been proposed, which crops have been studied, which explanatory variables 
have been used to create the curves, which functions are used to develop vulnerability 
curves and the number of parameters on which the proposed functions rely. Comparisons 
among the vulnerability curves for the various extremes are proposed, as well as indica-
tions of the main drawback of the developed vulnerability curves. Finally, areas where fur-
ther research is needed are proposed together with recommendations on which elements 
should be included in vulnerability curve development.
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1 Introduction

In the last decades, extreme weather has been responsible for widespread economic and 
social damages at global scale. Between 1980 and 2019, extreme weather caused the death 
of 1.15 million people, with droughts being the event causing the highest number of deaths 
(around 50% of fatalities due to climate extremes), followed by storms and floods (Cesarini 
et al. 2021). Weather and climate have always been strictly linked with agricultural produc-
tivity. Climate variability accounts for roughly a third of yield variability globally, while in 
the substantial areas of the global breadbaskets more than 60% of yield variability can be 
explained by climate variability (Ray et al. 2015).

Agriculture is particularly vulnerable to natural hazards too. Over the 2000–2018 period 
in low- and middle-income countries, agriculture alone absorbed the 26% of the overall 
impact caused by medium- to large-scale natural disasters. Losses in agriculture relative 
to the combined industry, commerce and tourism sectors in the same period accounted for 
63% of the whole losses from natural disasters (FAO 2021). Even in high-income countries 
such as the European ones, agricultural losses due to extreme events are relevant. As an 
example, historical drought and heat waves in Europe reduced cereal yields on average by 
9% and 7.3%, respectively, while non-cereal yields declined by 3.8–3.1% during the same 
set of events (Brás et al. 2021).

The increase in both number and frequency of extreme events observed over the past 
years poses a significant challenge to agriculture, compromising global food security 
(Chavez et  al. 2015). Climate change is expected to increase frequency and severity of 
weather-related extreme events such as floods, droughts and storms (IPCC 2022), and 
therefore, the losses that the agricultural sector is going to experience in the next years are 
expected to increase (Cammalleri et al. 2020).

The quantification of the hazard severity alone is not sufficient to develop methodolo-
gies to manage the risk (Bachmair et al. 2017). Vulnerability is a key component of the 
risk chain (Wu et al. 2021); therefore, understanding crops vulnerability to both extreme 
weather events and climate change is essential to develop appropriate adaptation strategies 
to effectively reduce yield losses. A traditional approach to assess the negative effects of 
extreme events is the use of vulnerability curves, also called vulnerability functions, stage 
damage functions or damage curves (Dutta et al. 2003; Michel-Kerjan et al. 2013; Tarbot-
ton et al. 2015).

It is worth defining properly the concept of vulnerability, to understand vulnerability 
(or damage) functions (or curves). According to (Adger 2006), “vulnerability” is defined 
as “the degree to which the system is susceptible to and is unable to cope with adverse 
effects of change”. The United Nation International Strategy for Disaster Risk Reduction 
(UNISDR 2009) provided a more comprehensive definition of vulnerability as “the char-
acteristics and circumstances of a community, system or asset that make it susceptible to 
the damaging effects of a hazard”. This definition encompasses many aspects of vulnerabil-
ity, arising from various physical, social, economic and environmental factors (e.g., poor 
design and construction of buildings, inadequate protection of assets, lack of public infor-
mation and awareness, among others). Following this definition, vulnerability is a charac-
teristic of the element at risk which is independent of its exposure to any hazard. However, 
the term vulnerability is often used more broadly to include the element’s exposure in the 
quantitative assessment of the risk associated with a specific hazard.

Vulnerability curves express physical vulnerability as a function of the intensity of the 
hazard and the degree of loss (Papathoma-Köhle 2016). They have been widely applied 
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to assess buildings’ response to hazards such as earthquakes and floods (Englhardt et al. 
2019; Polese et al. 2013).

In the agricultural sector, the exposure to a hazard is represented by the crop yield, 
while the vulnerability is described as the degree of yield loss with respect to the expected 
crop yield, thus reflecting the damage of the asset (e.g., cropland) affected by a hazard. 
It is expressed on a scale from 0 (no loss) to 1 (total loss) (UNDRO22, 76, 1984). In this 
context, vulnerability functions estimate the damage ratio and consequent loss, respec-
tively, generated by a hazard, according to a specified exposure. In particular, such curves 
relate an explanatory variable expressing the hazard intensity, such as water depth in case 
of floods, wind speed for storms and a drought index for droughts, to the negative effects of 
the hazard on crops, expressed in terms of percentage of crop yield loss (Fig. 1).

Over the past years, the interest in event-specific crop vulnerability functions has 
increased all over the world since such functions are extremely useful in drawing risk man-
agement plans, establishing the most appropriate risk reduction strategies or designing par-
ametric insurance contracts (Ming et al. 2015).

In addition, the integration of vulnerability curves in early warning systems is helpful in 
providing information on the possible impacts of future weather conditions on crop yield 
and thus can support farmers in their choices of cultivars, sowing date and crop manage-
ment (Guo et al. 2021).

The existing literature reviews on the topic of crop vulnerability to natural hazards have 
principally focused on the assessment of the economic flood damages to agriculture. For 
example, Merz et  al. (2010) reviewed the approaches to estimate flood damage to agri-
culture in economic terms, finding that simplified approaches for damage estimation are 
frequently applied. The study also highlighted that a great attention is traditionally paid 
to hazard modelling, while the economic damage estimation is treated with less attention. 
Moreover, the developed models are rarely validated. Brémond and Grelot (2013) proposed 
another relevant literature review on this topic; the paper focused its attention on the evalu-
ation of economic damages due to flood in the European agricultural sector. In this review, 
focus has been given on existing papers which developed or used vulnerability or damage 
functions for crops and various agricultural assets such as buildings, machineries and live-
stock. Both studies deal with damage due to floods only.

The present work instead aims at reviewing the studies proposing crop vulnerability 
curves not only for floods but also for the other weather-related extreme events. Crop vul-
nerability to nine weather-related extreme events has been explored. In addition, climate 
change has been included in the review as well, since the projected temperature increase 

Fig. 1  Schematic representation 
of a hypothetical vulnerability 
curve
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will play a key role in reducing crop yields (Webber et al. 2018). In particular, this study 
addresses the following topics: 

1. Type of extreme events for which crop vulnerability curves have been developed;
2. Crops for which vulnerability curves are available;
3. Methodologies and research techniques applied to develop the curves;
4. Variables that have been used to construct the vulnerability curves;
5. Types of functions considered in curve developing and number of function’s parameters;
6. Main gaps and shortcomings in the developed vulnerability functions.

This work focuses exclusively on studies published between January 2000 and May 2022 
that propose crop vulnerability curves to different extreme events. The outcomes are of fun-
damental importance to explore how the topic of crop vulnerability to extreme events has 
been investigated over the past years and to understand where improvements are needed to 
better characterize crop losses due to weather extremes and climate change.

In particular, focus will be given to a pragmatic classification of the available literature, 
following different criteria, i.e.,

• Evidencing different kind of hazards each reviewed paper focuses on
• Distribution of reviewed papers’ case studies among the globe
• Distinction of analysed crop types
• Distinction of the  different methodological approaches for curve development 

applied in each paper
• Distinction of the different curve shapes and type of functions developed in each paper
• Investigate on the main co-occurrence of keywords
• Investigate on the main co-author networking on the topic

2  Journal articles selection criteria

The first step of this study involves the identification of the relevant scientific liter-
ature published between January 2000 and May 2022 on the topic of crop vulnera-
bility curves to different natural hazards. Therefore, a bibliometric review has been 
performed through the use of the online collection of three research tools: Scopus 
(https:// www. scopus. com/), Web of Science, WoS (https:// www. webof scien ce. com/) 
and Google Scholar (https:// schol ar. google. com/). The three tools are the main online 
databases available for scientific research and are widely recognised among the scien-
tific community for their reliability and multidisciplinary. The primary criterion for 
the inclusion of a scientific study was its publication as article or review in a peer-
reviewed journal. In addition, only studies published in English have been considered 
since they are comprehended by the majority of scientists and stakeholders (Droulia 
and Charalampopoulos 2021). Multiple search queries have been performed in the 
three online databases by applying different combinations of the keywords shown 
in Fig.  2. Only weather-related extreme events have been considered in this review 
since are the ones impacting on agricultural production (FAO 2015). The considered 
extreme events, shown in Fig 2, were selected based on the classification proposed by 
the Centre for Research on the Epidemiology of Disasters, (CRED), which groups the 
weather-related extreme events in meteorological (extreme temperature, fog, storms), 

https://www.scopus.com/
https://www.webofscience.com/
https://scholar.google.com/
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hydrological (flood, landslide, wave action) and climatological (drought, glacial lake 
outburst, wildfire) (CRED 2021). In addition, climate change has been added to the list 
of extreme events since the increase in temperature will influence crop growth (Malhi 
et al. 2021; Moriondo et al. 2010).

After that, the studies were further screened based on their relevance to the subject, 
given by the actual implementation of a vulnerability function in the form of curve or 
surface relating the hazard intensity to crop losses. A systematic assessment of the ref-
erences in the key identified publications was then performed to search for additional 
studies. Finally, the articles were alphabetically sorted by author and accompanied by 
information on the event type, the location of the case study area and the crop type. 
In addition, details on the variables used to build the vulnerability curve have been 
collected to understand which indicators are traditionally used to express the hazard 
intensity, together with the type of functions used to fit the collected data and the num-
ber of parameters on which the curve function depends (Fig. 3).

Following the above-mentioned criteria, fifty-two studies have been selected and are 
listed in Table 1 (studies investigating the effects of climate change on crops), Table 2 
(studies on crops response to extreme temperatures), Table  3 (studies evaluating the 
effects of storms on crops), Table 4 (papers assessing the response of crops to floods) 
and Table 5 (papers evaluating the response of crops to drought), together with infor-
mation on the extreme event considered in the article, the crop, the case study location, 
the implementation of curves for different crop growth stages, the indicators used to 
build the curves (or the surfaces), the type of functions applied and the number of 
parameters of the curve’s function. Among the research journals, “The International 
Journal of Disaster Risk Reduction” and “Natural Hazards” are the ones that published 
the highest number of papers on the topic of crop vulnerability curves to weather-
related extreme events, both with seven published papers. “Environmental Research 
Letters” published four papers, “Agricultural Water Management” three, while two 
papers are published in “Natural Hazards and Earth System Science,” “Journal of 
Hydrology” and “Agricultural Systems.” The topic is mainly investigated in journals 
dealing with environmental sciences and earth and planetary sciences. The interest 
in crop vulnerability curves to weather-related extreme events has increased over the 
years, as demonstrated by the increase in the number of studies on the topic that have 
been published in the last 5 years.

Fig. 2  Search strategy: keywords used to define the functions and the extreme events
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2.1  Article classification based on the type of hazard

A major part of the considered studies (27) proposed crop vulnerability curves for drought 
(see Table 5 for the complete list of papers). Flood is the second most represented event 
(reported in 18 papers, Table  4). Four papers implemented crop vulnerability curves to 
climate change (Table 1), while only two papers designed vulnerability curves for storms 
(Table 3) and one for extreme temperatures (Table 2), considering the effect of extreme 
cold on crops (Fig. 4a). Most of the considered articles proposes case study areas locate 
in China (16). Six studies implemented vulnerability curves in Italy, while three proposed 
global analysis (Fig.  4b). Thirteen of the 16 papers having Chinese areas as case study 
evaluate the effect of droughts on crops, while two the effects of floods. For what con-
cerns Italy, three papers investigate the impact of climate change on crops, two the impacts 
of floods and two the effects of droughts. Articles proposing crop vulnerability curves for 
storms selected Japan and the Philippines as case study, while the paper showing functions 
for extreme temperature considers a case study in China.

2.2  Article classification based on crop type and growth stage

In the 52 selected papers, the crops for which vulnerability curves have been developed are 
mainly cereals, in particular maize, rice and wheat. Maize is the most represented crop, 
studied in sixteen papers, followed by rice, reported in twelve papers. Fifteen papers pre-
sent results for more than one crop. Wheat is considered in four studies, while sorghum, 

Fig. 3  Process and criteria applied to search and select the articles to include in the review. Number of 
records identified in each step is also reported
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soybean, sunflower and olive are analysed each in one paper (Fig. 5a). Maize vulnerabil-
ity is evaluated for drought, climate change and extreme temperature, rice vulnerability is 
estimated for floods, storms and drought, while the vulnerability of wheat, sorghum, soy-
bean and sunflower is estimated only for drought. Olive vulnerability is studied for climate 
change only. Seventeen papers analyse the effect of the selected extreme event on the dif-
ferent crop growth stages (Fig. 5b). The crop response to a weather-related stress varies 
according to the growth stage since the effect the extreme event produce on the final crop 

Fig. 4  a Number of papers proposing crop vulnerability curves grouped based on the considered extreme 
event; b number of papers proposing crop vulnerability curves per event and country

Fig. 5  a Number of papers dealing with each crop for the considered extreme events; b number of papers 
analysing the effect of crop growth stages on final yield losses per crop type and event
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yield strongly depends on the sensitivity of the growth stage (Steduto et al. 2012). Thus, 
the development of stage-specific vulnerability functions could help in providing more 
detailed information on the crop damages due to an extreme. Five papers investigated the 
effects of drought on maize growth stages (Li et al. 2022; Monteleone et al. 2022; Wang 
et al. 2019; Zhang et al. 2019; Zhu et al. 2021), while one explored the sensitivity of the 
different soybean growth stages to drought (Cui et al. 2018). Ten papers evaluated the sen-
sitivity of various crop growth stages to floods: seven works focused their attention on rice 
(Ganji et al. 2012; Nguyen et al. 2021; Shrestha and Kawasaki 2020; Shrestha et al. 2016, 
2016b, 2019; Sianturi et al. 2018) and three on multiple crops (Molinari et al. 2019; Scor-
zini et  al. 2021; Vega-Serratos et  al. 2018). Masutomi et  al. (2012) instead assessed the 
impact of tropical storms on various rice growth stages. A major part of studies investigat-
ing the response of maize to extreme events are tailored to the Chinese context (8 out of 
16, see Fig. 6), two studies have been conducted on Italian case studies, while two propose 
curves which are applicable at global level. The studies proposing vulnerability curves for 
multiple crops are again mainly tailored to China and Italy, while the studies assessing the 
response of rice to extreme events present case studies from Asian countries such as the 
Philippines, Vietnam, Indonesia and Cambodia.

2.3  Methodologies for vulnerability curve development

The methodological approaches applied to derive vulnerability curves in the 52 selected 
papers include: 

1. empirical methods, in which the values of the explanatory variable accounting for the 
hazard magnitude are plotted versus observed crop damages (De Groot 1969);

2. experimental methods, in which field trials or laboratory experiments are executed to 
derive the relationship between the hazard and the damage (Flowerdew 2009);

3. expert knowledge, in which information from farmers or local experts are used to relate 
hazard and damage;

Fig. 6  Number of papers per case 
study location per crop
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4. statistical modelling, in which hazard and/or damage are derived from statistical inter-
polation (Fisher 1992);

5. modelling, in which the hazard and/or the damage are derived from the application of 
models such as for example crop models;

6. machine learning, in which methods such as artificial neural networks or random forests 
are used to derive the hazard and the damage (Mitchell 1997).

Nineteen out of 52 considered papers derived vulnerability curves through the application 
of processed-based simulation models, mainly crop models (Fig. 7). Crop models are used 
in eighteen works; the most widespread are the Environmental Policy Integrated Climate 
(EPIC) Model (Williams et al., 1989), which is applied in nine studies among which Guo 
et al. (2021); Jia et al. (2012) and Kamali et al. (2018); AquaCrop (Steduto et al. 2009), 
preferred in three cases (Li et al. 2022; Todisco et al. 2013; Zhu et al. 2021) and CERES 
(Basso et al. 2016), again used in three studies (Li et al. 2021b; Wei et al. 2019; Zhang et al. 
2019). Other crop models used to derive drought vulnerability curves are APSIM (Mon-
teleone et  al. 2022), MCWLA-Wheat (Li et  al. 2021b) and DSSAT (Eggen et  al. 2019). 
The CERES crop model is also applied to develop crop vulnerability curves to extreme 
cold temperatures in Li et al. (2021). Hendrawan and Komori (2021) instead developed a 
model to predict the effect of floods on rice yield in Indonesia starting from satellite meas-
ures of Normalized Difference Vegetation Index and Enhanced Vegetation Index, which 
are used as yield predictors, and the application of the rainfall–runoff inundation model 
to simulate the flood water depth. Vulnerability functions are derived through empirical 
methods in seventeen studies. Seven of them developed functions showing the response 
of crop to droughts (Fu et  al. 2019; Jayanthi et  al. 2013, 2014; Jiang et  al. 2018; Nau-
mann et al. 2015; Skakun et al. 2016; Wang et al. 2019), six investigate the effect of floods 
on crops (Dutta et al. 2003; Kwak et al. 2015; Li et al. 2012; Ming et al. 2015; Nguyen 
et al. 2017, 2021), and the remaining two papers evaluated the crops response to storms 
(Masutomi et  al. 2012) and climate change (Bennett and Harms 2011). Curves derived 
from expert knowledge, i.e., interview with local farmers or agronomists, are proposed in 

Fig. 7  Number of papers developing vulnerability curves through the use of different research techniques
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seven papers, all of them exploring the effects of floods on crops (Bhuiyan and Al Baky 
2014; Molinari et al. 2019; Scorzini et al. 2021; Shrestha et al. 2016, 2016b, 2019, 2021). 
Experimental yield response curves are developed in six studies. Three of them focus their 
attention on climate change (Alfieri et al. 2019; Bonfante and Bouma 2015; Monaco et al. 
2014), one on drought (Cui et al. 2018) and two on floods (Ganji et al. 2012; Sianturi et al. 
2018). The studies developing vulnerability curves for climate change and drought applied 
field tests and measurements to get the necessary variables. Ganji et al. (2012) explored 
the effects of floods on crops performing laboratory experiments to evaluate the sensitivity 
of rice to both water depth and velocity. Sianturi et al. (2018) applied the functions devel-
oped by Ganji et al. (2012) to a specific case study. Statistical modelling is adopted in four 
studies: Mehdikhani et al. (2017) showed the relationship between drought return period 
and crop damage, Blanc and Strobl (2016) assessed the effect of storms on rice, Shrestha 
et al. (2021) established a relationship between flood probability and economic losses and 
Vega-Serratos et al. (2018) related the flood exceedance probability to the economic losses. 
Finally, one study (Chen et al. 2019) applied machine learning techniques, specifically arti-
ficial neural network, to relate drought intensity to maize loss rate.

2.4  Explanatory variables used for vulnerability curve development

The variables used to develop crop vulnerability curves strongly depend on the considered 
extreme event. Thus, the following section is divided into three subsections, one for each of 
the considered hazard: drought, flood and other extremes.

2.4.1  Drought

The papers dealing with drought present crop vulnerability curves generally propos-
ing a measure of the severity of the drought on the x-axis and the crop yield (in kg/m2 
or equivalent units) or a yield loss rate (expressed in percentage or with values going 
from 0 to 1) on the y-axis. The proposed drought hazard indices are various and can be 
divided in three groups. The first group includes the traditional drought indices such as 
the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspi-
ration Index (SPEI), the Standardized Soil Moisture Index (SSMI), the Reconnaissance 
Drought Index (RDI). In the second group there are the remote sensing drought indi-
ces as the Vegetation Health Index (VHI), the Vegetation Condition Index (VCI) or the 
Leaf Area Index (LAI). The third group includes indices that are computed according to 
different methodologies. The studies simulating the yield through the use of calibrated 
and validated crop models as EPIC (the Environmental Policy Integrated Climate model 
(Williams et al. 1989)), AquaCrop (Steduto et al. 2009), APSIM, the Agricultural Pro-
duction System sIMulator (Keating et al. 2003) and CERES, derives the drought index 
from the daily water stress retrieved from the model simulation. EPIC and its derivative 
GEPIC (the georeferenced version of EPIC) is the most widespread crop model, utilized 
in nine studies (Guo et al. 2016, 2021; Jia et al. 2012; Kamali et al. 2018; Su et al. 2021; 
Wang et al. 2013; Wu et al. 2021; Yin et al. 2014; Yue et al. 2015), AquaCrop is applied 
in three studies (Li et  al. 2022; Todisco et  al. 2013; Zhu et  al. 2021); CERES  in two 
(Wei et al. 2019; Zhang et al. 2019), while APSIM was applied in one stydy (Montele-
one et al. 2022). The studies deriving the drought severity from observations choose the 
sum of the SPI over the crop growth period (Chen et al. 2019; Jiang et al. 2018) or the 
sum of the absolute values below zero of the selected drought indicator during a given 
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drought event, where the indices are again the SPI, the SPEI or the RDI (Naumann et al. 
2015). Other indicators are also used to derive the drought vulnerability curves. As an 
example, Kamali et al. (2018) uses a Drought Exposure Index, which is again related to 
the SPI and the SPEI over the crop growth season.

The work by Guo et al. (2016) should be mentioned because it shows multiple crop 
drought vulnerability surfaces, with the water stress derived from EPIC on the x-axis, 
the loss rate on the y-axis and an environmental indicator (selected between elevation, 
slope and seven soil properties such as the bulk density) on the z-axis. The innovative 
approach is highly interesting due to the inclusion in the analysis of environmental indi-
cators, such as soil type, that provide additional information on crop’s exposure.

2.4.2  Flood

The papers dealing with flood do not simulate yield through crop models but gener-
ally rely on observations of yield losses due to reported events. The methodological 
choice is attributable to the renowned poor performance of the major part of existing 
crop models in simulating the effect of water excess on crops (Liu et al. 2020). Among 
the 17 papers reporting crop vulnerability curves to flood, ten use the water depth as 
x-axis indicator (Bhuiyan and Al Baky 2014; Ganji et al. 2012; Hendrawan and Komori 
2021; Kwak et al. 2015; Molinari et al. 2019; Nguyen et al. 2017; Scorzini et al. 2021; 
Shrestha et  al. 2016b, 2019, 2021) while the remaining seven utilize other indicators 
such as the flood duration (Nguyen et  al. 2021), the Reynolds number (Sianturi et  al. 
2018), the flood exceedance probability (Shrestha and Kawasaki 2020; Vega-Serratos 
et  al. 2018) or rainfall (Li et  al. 2012; Ming et  al. 2015). Some papers present vul-
nerability surfaces or assess the crop damage based on more than one indicator. As an 
example, Dutta et al. (2003) propose vulnerability curves based on the flood duration for 
different water depths. The same approach is followed in Molinari et al. (2019); Scorzini 
et al. (2021). Vulnerability surfaces are defined in Ming et al. (2015). The authors show 
how crop damage is related to rainfall and wind speed.

2.4.3  Other extremes

Four papers implement vulnerability curves to climate change. In three of the studies, vul-
nerability curves are based on evapotranspiration or the relative crop evapotranspiration 
deficit (Bennett and Harms 2011; Bonfante and Bouma 2015; Monaco et al. 2014), while 
in Alfieri et al. (2019) the relative soil water deficit is preferred. Crop evapotranspiration 
is strongly linked with crop productivity, as already underlined by Steduto et  al. (2012). 
In addition, the temperature increase foreseen in a climate change context will alter the 
crop evaporative demand. Only two papers design crop vulnerability curves to storms, 
even if storms caused relevant yield losses. Blanc and Strobl (2016) relate the typhoon 
return period to crop yield losses, while Masutomi et al. (2012) link the ratio of damaged 
area with the typhoon intensity. Finally, one paper deals with crop vulnerability curves 
to extreme temperature, in this case extreme cold (Li et al. 2021). The paper applied the 
CERES crop model to relate a Chilling Index to yield losses. The Chilling Index is based 
on various indicators such as the deviation of the Growing Degree Days from normal and 
the Leaf Area Index (LAI), retrieved from satellite records.
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2.5  Types of vulnerability functions

Among the 52 considered papers, 29 applied explicit functions and reported both the equa-
tion and the parameters of the equation used, one proposed a non-explicit function (Jiang 
et al. 2018) while 22 did not report the function’s equation (Fig. 8).

Some studies applied more than one function to develop vulnerability curves: 1) to 
assess which one best represents the observations, 2) to investigate the response of different 
crop growth stages to the extreme event (thus, the function type could change according to 
the growth stage) or 3) to evaluate the response of different crops to the extreme event.

The preferred function is the logistic (or S-shaped curve), applied in 14 cases (Fig. 9a). 
The logistic seems to be particularly appropriate to simulate the crops response to drought, 
in fact 13 out of the 14 studies selecting this function for drought vulnerability curves. The 
second preferred function is the ramp function, applied in 11 studies. The ramp function 
is applied in seven studies dealing with floods, three with climate change and one with 

Fig. 8  Number of papers propos-
ing explicit and non-explicit 
vulnerability curves and papers 
not reporting the function’s 
equation

Fig. 9  a Types of functions applied to derive crop vulnerability curves in the considered papers; b number 
of parameters used to parametrize the curves



2781Natural Hazards (2023) 116:2761–2796 

1 3

drought. Linear, logarithmic and exponential functions are applied each one in five studies; 
the linear functions are applied to develop vulnerability curves for climate change (Ben-
nett and Harms 2011) and drought (Fu et  al. 2019; Jayanthi et  al. 2013, 2014; Su et  al. 
2021), while logarithmic functions are preferred for floods (Ganji et al. 2012; Hendrawan 
and Komori 2021; Sianturi et  al. 2018) and are used also for storms (Blanc and Strobl 
2016) and drought (Su et al. 2021). Exponentials again are used for floods (Li et al. 2012; 
Nguyen et al. 2017, 2021) and droughts (Su et al. 2021; Zhang et al. 2019). Other applied 
functions are polynomials and power, employed in four studies. Polynomials are used in 
Dutta et al. (2003); Shrestha and Kawasaki (2020); Vega-Serratos et al. (2018) to evaluate 
crops response to floods and in Wang et al. (2019) to assess maize response to drought. 
Power functions are used only to evaluate crops response to drought (Kamali et al. 2018; 
Mehdikhani et al. 2017; Naumann et al. 2015; Su et al. 2021).

Other types of functions used in fewer studies are the Lowess fit (Eggen et al. 2019), the 
quadratic regression (Li et al. 2021), the spline (Li et al. 2021b) and the Weibull (Masu-
tomi et al. 2012). Two studies proposed vulnerability surfaces (Guo et al. 2016; Ming et al. 
2015) and two studies simply show the results of an interpolation of points (Bhuiyan and 
Al Baky 2014; Jiang et al. 2018).

The major part of the selected functions (17) depends on two parameters (Fig. 9b). The 
curves parametrized through the use of two parameters are the linear functions, the loga-
rithmic, the power, the exponential and one type of logistic. Six functions used to develop 
drought vulnerability curves depend on four parameters. (In all cases, the functions are 
logistics.) Four curves (two for drought and two for floods) depend on one parameter, and 
four curves depend on three parameters (all for drought). Ming et al. (2015) developed a 
quadratic trend surface that depend on six parameters. Finally, two studies define the type 
of function applied to derive the curve but do not report the functions equations; thus, the 
determination of the number of parameters has not been done.

3  Discussion

The section proposes some qualitative investigations on the network of authors developing 
vulnerability functions and the main keywords of the studies. In addition, the section com-
pares the analysed vulnerability functions, individuating the main issues and shortcomings 
of the functions and proposing future developments of the research. For simplicity, the sec-
tion is divided in five subsections proposing qualitative investigations on the selected stud-
ies, remarks on vulnerability functions for drought, floods and other extremes and some 
general considerations.

3.1  Qualitative investigations

Based on the selected papers (presented in Tables  1,  2,  3,  4 and 5), some qualitative 
investigations are made using Mendeley reference manager and VOSviewer software. In 
Fig. 10, network of authors and main cooperation on the topic of crop vulnerability curves 
to weather extremes are shown. Each link represents the co-authorship of at least one 
paper, each colour represents the main time period in which paper has been published and 
the name’s size represents the numerosity of contribution in terms of number of papers 
in the selected database. Six clusters can be identified. BB. Shrestha is the author who 
published the highest number of papers (five), developing flood vulnerability curves. The 
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group including Guo, Wang and Shi proposed drought vulnerability curves, the research 
team of Jayanthi published two papers on drought vulnerability curves. Nguyen wrote two 
papers on flood vulnerability curves, and Cui worked on drought vulnerability curves as 
well as Wang. A similar analysis is made for the co-occurrence of keywords in the papers’ 
titles (Fig. 11). The font size of the various words gives the number of occurrences in the 
dataset of titles, while links between words show the co-occurrence between them in the 
same paper. Relevant recurrence is for the words “climate change,” which is connected to 
both “drought” and “flood hazard,” then “drought” which is the main issue evidenced in 
this review and of course “vulnerability curves.” Relevant is also the presence of “maize” 
as keyword, as it is one of the most investigated cereals, and “EPIC” or “EPIC model” 
keywords, as it represents a commonly used crop model for vulnerability analysis. “Adap-
tation” concept is also of interest, strictly connected with the climate change issue. The net-
work summarizes the results of the analysis done in this review, by evidencing that drought 
is the extreme event for which the highest number of vulnerability curves has been devel-
oped and that maize is the crop analysed by the major part of studies. In addition, it clearly 
emerges that EPIC is the most commonly applied crop model.

3.2  Remarks on crop vulnerability functions for drought hazard

Drought is the extreme event for which the highest number of vulnerability functions has 
been proposed; in fact, 27 papers out of the 52 included in this review implemented drought 

Fig. 10  Authors’ network in reviewed papers. The boxes colours represent the year of the collaborations, 
while the boxes sizes and the font sizes indicate the number of collaborations



2783Natural Hazards (2023) 116:2761–2796 

1 3

vulnerability curves. As a matter of fact, drought is the extreme event that causes most of 
the crop yield losses. It is indeed the first economic sector that suffers because of drought 
(Monteleone et al. 2020); insufficient soil moisture triggered by low precipitation produced 
devastating effects on crop yield. In addition, drought is a long-lasting extreme event (Wil-
helmi and Wilhite 2002); its duration goes from weeks to months or even years, unlike in 
the case of the other meteorological extreme events. Thus, it is not surprising that a lot of 
attention has been dedicated to investigate the effects of drought on crops. As evidenced 
by the analysis of the 27 studies showing drought vulnerability functions, there is a sig-
nificant inhomogeneity in the variables used to relate the effect of drought on crop losses. 
The high number of indicators used to measure the drought intensity/severity is clearly 
due to the large number of drought indices available in the scientific literature (World 
Meteorological Organization (WMO) and Global Water Partnership (GWP) 2016; Zargar 
et al. 2011) and to the difficulties in finding a universal drought definition (Lloyd-Hughes 
2014). The variables used can be grouped into traditional drought indices based on ground 
observation, remote sensing drought indices and variables expressing the crop water defi-
cit (mainly derived from crop models). The selection of a specific explanatory variable 
strongly depends on the available data. The studies selecting traditional drought indices 
and indicators (as the SPI; the SPEI, rainfall, etc.) as explanatory variables generally derive 

Fig. 11  Co-occurrence of 
keywords in selected papers. The 
boxes and the font size indicate 
the number of times a keyword 
is present
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them from station measurements of simple weather parameters as rainfall and temperature 
or from Global Climate Models (GCMs). In addition, those studies relate the explanatory 
variables to yield losses derived from the analysis of national or regional databases, as the 
FAOSTAT or the China Economic and Social Development Statistical Database. The stud-
ies preferring remote sensing indices as the LAI (derived from MODIS) or the VHI simu-
late the yield through the use of crop models, calibrated by weather data obtained from 
automatic weather stations or satellite images. Thus, a huge amount of data is necessary to 
develop such curves. Finally, the studies applying crop models to derive both the explana-
tory variable and the crop damage require as input a consistent amount of data on weather 
(rainfall, temperature, wind speed, solar radiation, etc.) and soil, plus information on crop 
management practices as fertilization or sowing date. Moreover, a careful calibration of 
the crop model is necessary to ensure the reliability of the obtained results. Crop models 
calibration often relies on the assumption that the period over which it is performed is rep-
resentative of the situation in terms of both weather, soil and crop productivity as well as 
management practices.

The comparison of drought vulnerability curves is challenging, given the diversity of the 
explanatory variables. However, considering the papers which report the vulnerability curves 
equations and use comparable explanatory variables, an illustrative comparison among stage-
specific drought vulnerability curves for maize is proposed in Fig. 12. The curves are reported 
in four studies (Li et al. 2022; Monteleone et al. 2022; Wei et al. 2019; Zhu et al. 2021) that 
apply different crop models (AquaCrop in Li et al. (2022); Zhu et al. (2021), CERES in Wei 
et  al. (2019) and APSIM in Monteleone et  al. (2022)) to derive both the Drought Hazard 
Index, which is the water deficit experienced by maize, and the yield loss ratio. The results 
obtained in the studies are quite different. Li et al. (2022) consider the Shijin Irrigation District 
in the Hebei province as case study area and applies the AquaCrop model; the study concludes 
that the booting stage is the most sensitive to water stress. The Aquacrop model is applied 
also in Zhu et al. (2021), which consider 241 prefecture-level administrative regions in the 
five main maize-growing regions of China as case study. In this paper the tasseling–milking 
stage was found to be the most sensitive to water stress. Wei et al. (2019); Zhang et al. (2019) 
apply the CERES model in the Huaibei plain and in the Jilin Province, respectively. The first 

Fig. 12  Comparison among stage-specific drought vulnerability curves for maize. The values reported in 
Zhu et al. (2021) have been scaled to the 0–1 range to enable a comparison with the functions reported in 
the other three studies
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study concludes that the jointing stage in the most sensitive to water stress, while in the sec-
ond study the most drought sensitive stage is the jointing–heading. Monteleone et al. (2022) 
applied APSIM in the Po River Basin and found that the flowering stage is the most sensitive 
to drought.

Even if the four studies classifies maize growth stages in slightly different ways, all of them 
agree on the fact that the flowering stage is the most sensitive stage to water deficit, but the 
yield losses of the flowering stage varies from 16% in Wei et al. (2019) to 82% in Monteleone 
et al. (2022). The comparison in any case is only indicative since the case study locations are 
different, and thus, the model calibration plays a crucial importance in influencing the results. 
The fact that flowering is the most drought sensitive stage holds for other crops too. Cui et al. 
(2018) explored the sensitivity of soybean to drought based on observations and field experi-
ments in China and found that the drought stress during the flowering–podding and the seed 
filling stages on yield formation were greater than those during the branching and seedling 
stages.

The preferred type of function used to represent the effects of drought on crops is the logis-
tic, which is applied in 13 studies on drought, among which there are all the four studies pro-
posing the stage-specific vulnerability curves for maize reported in Fig. 12. Logistic functions 
are found to be appropriate for other crops beyond maize; in fact, they are applied for rice, 
wheat, sunflower and soybean too. Together with the logistic, linear and power functions are 
used to represent the effects of drought on maize and cereals in general. However, the com-
parison among these functions is not possible, given the different variables used to relate the 
drought effect to the crop damage.

An evaluation of how well the selected functions fit to the data points in the case of drought 
is generally performed through the R2 metric (used in 15 studies). Generally, the logistic func-
tions are the ones showing the best performances, with R2 ranging from 0.68 to 0.98. Linear 
functions show lower R2 values, ranging from 0.14 to 0.79 (Fu et al. 2019; Jayanthi et al. 2013, 
2014), while the exponential functions proposed in Su et al. (2021) and Zhang et al. (2019) fit 
well to the data, with R2 going from 0.6 to 0.88. However, linear and exponential functions 
are simpler than the logistics and depend on a lower number of parameters (two instead of 
the three or four parameters generally present in the logistics). The use of simpler functions 
relying on few parameters makes their practical application more appealing with respect to the 
logistics. The use of exponential and power functions could be a good compromise to avoid 
having a huge number of parameters.

The main issues found in drought vulnerability curves are related to the complexity of the 
explanatory variables used to define the drought severity and intensity. In fact, the major part 
of the explanatory variables considered in the reviewed studies are computed through the elab-
oration of weather variables traditionally measured from automatic weather stations (drought 
indices) or through an interpolation of the results obtained from remote sensing images or 
should be inserted in a crop model that needs to be specifically calibrated for the selected loca-
tion. Thus, a practical use of the drought vulnerability functions is challenging. The develop-
ment of curves using a directly measurable variable as explanatory variable could be precious 
to exploit the curves in risk prevention programmes or insurance policy. In addition, the devel-
opment of experimental drought vulnerability curves is recommended since only one study 
(Cui et al. 2018) performed field experiments to evaluate crop sensitivity to drought.
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3.3  Remarks on crop vulnerability functions for flood hazard

Eighteen of the 52 articles investigated the effects of floods on crops, mainly rice and 
multiple crops. Usually, agricultural areas are located near rivers or lakes or water bodies 
because the easy access to water is fundamental for irrigation. However, those areas are 
also the more flood prone ones. There is more homogeneity in the variable used to meas-
ure flood intensity with respect to the case of drought. Water depth is considered in twelve 
cases, flood duration in five studies, rainfall and the Reynolds number in two studies and 
the flood exceedance probability in one study. Some studies reported vulnerability curves 
relating crop damages to both water depth and flood duration, while others propose vulner-
ability functions for more than one variable. (For example, Ganji et al. (2012) propose a 
function with water depth as explanatory variable, another with shear stress and another 
with the Reynolds number.)

Most of the studies on flood vulnerability curves derives the explanatory variable of 
from direct observations or from station measurements (prevalently streamflow and rain-
fall). Ganji et al. (2012) instead performed a laboratory experiment and thus had the com-
plete control of all the explanatory variables, while Hendrawan and Komori (2021) applied 
the rainfall–runoff inundation model to simulate the flood extent and water depth. For what 
concerns yield data, again the highest number of studies derives them from national or 
regional loss database. Hendrawan and Komori (2021)  and Kwak et  al. (2015) derived 
yield from MODIS satellite images. Generally, the variables used to develop flood vul-
nerability functions are easier to measure with respect to the ones used for crop vulner-
ability curves related to drought hazard. In fact, water depth and flood duration are easy to 
measure and to understand. The Reynolds number instead requires the availability of four 
parameters (the liquid density, the flow velocity, the linear dimension and the fluid viscos-
ity) and thus is used only in laboratory experiments, even if Ganji et al. (2012) underlines 
that it reproduces crop damages better than the other explanatory variables (water depth, 
flood duration, etc.)

Since rice is the crop on which the major part of studies is focused, a comparison among 
the flood vulnerability functions developed in the works relating flood water depth to yield 
losses is proposed. Two studies developing flood vulnerability functions for rice are com-
pared, namely the one by Hendrawan and Komori (2021) and the one by Nguyen et  al. 
(2017). Both studies relate water depth to rice yield losses, expressed as loss ratio ranging 
from 0 to 1 and do not consider the effect of floods on the different growing stages. Hen-
drawan and Komori (2021) propose a logarithmic function, while Nguyen et al. (2017) test 
an exponential, a quadratic and a logistic function and estimates that the logistic is the best 
choice to reproduce the observed losses Fig. 13.

The stage-specific functions proposed by Shrestha et al. (2016, 2016b, 2021), presented 
in Fig.  14 for a flood duration of four days, are ramp functions specifically derived for 
Southeast Asian countries. The ripening stage is considered only in Shrestha et al. (2016) 
and is the most tolerant to prolonged submergence, and the reproductive stage is instead 
the most sensitive to the excess of water. Overall, rice seems to be more sensitive to floods 
in Myanmar than in the Philippines. The functions are derived from expert knowledge and 
interviews with local farmers, so it is plausible that the observed response to floods is dif-
ferent in the two contexts. The six papers assessing flood effects on rice growth stages 
based their conclusions on field experiments or observations and all the works consider 
Asian countries as case study areas. Ganji et  al. (2012) show that for rice, yield loss 
increases in the following order: after transplanting, shooting, harvesting and clustering 
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stages. The Reynolds number is the parameter selected to represent the flood character-
istics. Nguyen et al. (2021) evidence that at the ripening stage, the rice yield loss caused 
by complete submergence is the most critical with a reduction in yield up to 30–50% 
when complete submergence is imposed for only 2–4 days. In the case of 5–8 days of sub-
mergence, the yield loss was equally detrimental to the vegetative stage (approximately 
50–90%). The submergence at the ripening and vegetation stages for 4–5 days was equally 
harmful as that of 7 days at the reproductive stage. Shrestha et al. (2016) evidenced that 
damage occurs if the flood depth reaches 0.2 m in the newly planted and vegetative stages, 
while in the reproductive, maturity and ripening stages damage occurs if the water depth 
is greater than 0.5 m. The same functions are considered in Shrestha et al. (2021). Finally, 
Sianturi et al. (2018) affirm that crop damage is low in clustering, moderate at harvesting, 
high at shooting and very high at transplanting.

The preferred type of functions to assess rice vulnerability to floods are the ramp func-
tions, applied in five studies, followed by the logarithmic, applied in three papers. The 
response of rice to floods exhibits huge variations among the various studies and is strictly 
related to the flood duration, as shown in Shrestha et al. (2021). The three studies taking 
into account multiple crops are quite different among them. Vega-Serratos et al. (2018) use 
Mexican data on floods and crop harvested areas to produce damage functions for maize, 
soybean, groundnut, rice, tomato, sorghum, watermelon, bean and pepper. However, the 
paper shows the results obtained for corn only. A table with the economic damage associ-
ated with different flood duration in each month of the year is proposed, and the different 
sensitivity of the crop growth stages to the flood is reflected in the different damage associ-
ated with each month of the year. Molinari et al. (2019) consider four crops: maize, wheat, 
rice and alfalfa. The vulnerability curves for the different crops at the various growth stages 
are obtained from a French study (Agenais et al. 2013) for maize, wheat and alfalfa, and 
from Shrestha et al. (2016) for rice. Besides maize, Scorzini et al. (2021) include wheat 
and grassland, vegetables (cabbage, spinach, lettuce and bean) and grapevine in the analy-
sis. The framework applied is the same proposed in Molinari et al. (2019). The yield reduc-
tion due to flood varies greatly according to the crop type and the growth stage. The studies 
considering the effects of floods on multiple crops apply mainly polynomial functions to 
relate the water depth to the yield losses (Dutta et al. 2003; Shrestha and Kawasaki 2020; 

Fig. 13  Comparison among flood 
vulnerability functions for rice 
developed in Hendrawan and 
Komori (2021) and Nguyen et al. 
(2017)
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Vega-Serratos et al. 2018). However, none of them reports the function’s equation; there-
fore, the analysis on the number of parameters of the polynomial is not possible. The R2 of 
the functions with respect to the data points is reported only in four studies (Hendrawan 
and Komori 2021; Li et al. 2012; Ming et al. 2015; Shrestha and Kawasaki 2020). All of 
them use different functions and different explanatory variables; however, the performance 
of the selected functions is high since the R2 values range from 0.71 to 0.98.

With respect to drought vulnerability curves, the application of the flood ones in practi-
cal contexts is easier, given the lower number of input data used to derive the functions and 
the fact that the proposed functions are mathematically simpler, relying on a lower number 
of parameters. However, flood vulnerability functions are often very specific for the con-
sidered case study location and the difference among the locations is huge, as underlined 
in Fig. 14. Most of the reviewed functions are developed using national loss databases or 
expert knowledge; thus, their transferability to other context with respect to the one for 
which they are developed should be carefully evaluated.

3.4  Remarks on crop vulnerability functions for other extreme events

Four papers discuss the effects of climate change on crops. Alfieri et al. (2019) assess the 
response of olive to the relative soil water deficit, Bonfante and Bouma (2015) again use 
the soil water deficit as an indicator of maize response to climate change, Monaco et al. 
(2014) relate the evapotranspiration to maize losses due to climate change, and Bennett and 
Harms (2011) assess the response of multiple crops to evapotranspiration. The first three 
studies propose ramp functions derived from field experiments, while Bennett and Harms 
(2011) select linear functions based on the methodology shown in Steduto et  al. (2012) 
and applying crop parameters specifically derived for the Canadian case study. The com-
parison among the developed functions is difficult since the crops and the case study loca-
tions considered are different. While three studies (Alfieri et al. 2019; Bonfante and Bouma 
2015; Monaco et al. 2014) show the results of field trials and thus had the opportunity to 

Fig. 14  Comparison among 
stage-specific rice vulnerability 
functions developed in Shrestha 
et al. (2016, 2016b) and Shrestha 
et al. (2021) for a flood duration 
of 3–4 days. The functions devel-
oped in Shrestha et al. (2016, 
2016b) are tailored to the Philip-
pines, while the ones proposed in 
Shrestha et al. (2021) are tailored 
to Myanmar
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directly measure both the explanatory and the damage variables, the fourth one (Bennett 
and Harms 2011) uses weather station data combined with the information retrieved from 
losses dataset at national level. The major drawback of such functions is their scalability; 
in fact the transferability of the functions based on field trials should be proved, while the 
curved developed in Bennett and Harms (2011) are specifically tailored to Canada. None 
of the studies evaluated the R2 of the developed functions. One paper shows the relation 
between damage area ratios and typhoon intensity for different growth stages of rice in 
Japan (Masutomi et al. 2012). It concludes that the heading stage of paddy rice is the stage 
with the highest vulnerability to typhoons in Japan; Weibull functions are applied to relate 
the damage area ratio to the storm intensity. The impact of storms on rice is investigated 
in Blanc and Strobl (2016) too that propose a logarithmic function to relate yield losses to 
storm return period. Again, in this case the function equations are not reported; a compari-
son of the obtained results would have been challenging in any way given the differences 
in both the explanatory variable and the loss indicator adopted in the two studies. Both the 
papers selected as case study Asian countries (Japan and the Philippines), underlined the 
importance rice has in Southeast Asia. Finally, Li et al. (2021) apply a quadratic regression 
to investigate the effects of extreme cold on maize in China. The paper based its results 
on the application of the CERES crop model given the lack of direct observations of crop 
losses due to extreme cold. Although the computation of the Chilling Index is not straight-
forward, the index is promising to assess the effect of extreme cold on crops and its appli-
cation in insurance programmes could be evaluated.

3.5  General considerations

While the impacts of droughts and floods are extensively studied, as witnessed by the fact 
that 45 of the 52 reviewed studies dealt with these two extreme events, the effect of other 
extremes on crops should be analysed. The impact of storms deserves further analysis 
since it has been investigated in two articles only. All the two articles proposed case stud-
ies located in Asia. An analysis on the effect of storms in other areas, such as North and 
Central America, could be interesting since the area is exposed to devastating hurricanes 
with impacts on crop production. The effect of extreme temperature on crops should be 
deepened too. Among the 52 studies here considered, only one evaluated the crop sensitiv-
ity to extreme cold. Since it is well known that extreme cold in critical crop growth stages 
can produce devastating effects on final crop yield, studies investigating the relationship 
between anomalous cold waves and final crop yield will provide an interesting advance 
to the state of the art. The effect of hot waves on crop is partially included in the articles 
evaluating crops response to drought, but the proposed articles mainly focus their attention 
on water stress (which includes a temperature component) without explicitly mentioning 
high temperatures. The studies dealing with climate change mainly use evapotranspiration 
as an indicator of crop vulnerability and therefore take into consideration the temperature 
effect on crop. However, the effect of extreme temperature and hot waves should be better 
investigated to produce temperature vulnerability curves for crops.

The effect on crops of the other meteorological extreme events listed in Fig. 2 is never 
considered. Wildfires, due their high destructive power, simply cancel all the crops grown 
in an area, as well as landslides. Glacial lake outbursts and fog are not known to affect 
crops, while wave action is not significant since only a few fields are located in the proxim-
ity of the sea and in that case the major issue for crops is the saline intrusion, which alters 
the soil PH and affects crop growth.
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For what concern crop types, the major part of articles deals with cereals (maize, rice, 
wheat and sorghum). The choice of annual crops can be explained by the fact that damages 
on annual crops are easier to evaluate with respect to that on perennial crops, where inter-
annual variability of the factors influencing crop growth can be difficult to evaluate. How-
ever, the effect of extreme events on vegetables and perennial crops such as grapevine and 
orchards deserves further attention. In this review, only Alfieri et al. (2019) investigated the 
sensitivity of olive to climate change, while Scorzini et al. (2021) proposed flood vulner-
ability curves for vegetables and grapevine. Further attention on the topic is needed since 
perennial crops and vegetables are important productions from the economic point of view. 
The effects of flood on crops other than rice should be explored, including the flood impact 
on growth stages in the analysis. Effects of climate change on crop vulnerability are also 
investigated. In three of the papers implementing vulnerability curves to climate change, 
the indicators used to build the curves are evapotranspiration or relative crop evapotranspi-
ration deficit (Bennett and Harms 2011; Bonfante and Bouma 2015; Monaco et al. 2014). 
It is well known that evapotranspiration is a key component in the water balance evaluation 
in hydrology and water resources management (Borzì and Bonaccorso 2021; Borzì et al. 
2020; Zhao et al. 2013), and from this review, it emerges that it has relevant effects also 
in crop vulnerability analysis. In the fourth paper which implement vulnerability curves to 
climate change, the indicator used on the x-axis of the curve is the soil water deficit (Alfi-
eri et al. 2019). The issue of soil water content in hydrology has been widely explored by 
explicit representation of soil in hydrological modelling (Borzì et al. 2019; Jakeman and 
Hornberger 1993) and crop modelling (APSIM, EPIC, Aquacrop, etc.). Furthermore, soil 
water content influence on crop vulnerability evaluation has been evidenced even in recent 
studies.

4  Conclusions

This work presented a review of the articles published between January 2000 and May 
2022 on the topic of crop vulnerability curves to weather-related extreme events and cli-
mate change. The articles have been retrieved from Scopus, Web of Science and Google 
Scholar, and additional studies mentioned in the reference section of the collected papers 
have been examined. In the end, 52 articles implementing crop vulnerability curves to 
weather-related extreme events and climate change have been considered. Fifty-two per-
cent of the considered studies (27 out of 52) implemented drought vulnerability curves, 
35% developed flood vulnerability curves, and 8% showed vulnerability curves to climate 
change, 4% to storms and 2% to extreme temperature (cold). In the case of drought vulner-
ability curves, there is a clear inhomogeneity in the explanatory variables proposed. Flood 
vulnerability curves base the evaluation of the flood intensity on water depth, flood dura-
tion or the Reynolds number. Climate change vulnerability functions determine the mag-
nitude of the phenomenon using evapotranspiration or indicators derived from the evapo-
transpiration. Storm damage functions used the typhoon return period or the crop damaged 
area to define the hazard intensity, while a Chilling Index, determined from indicators such 
as the deviation of the current year Growing Degree Days (GDD) from normal and the 
Leaf Area Index (LAI), is applied to express the magnitude of extreme temperatures. Vul-
nerability curves have been implemented prevalently for cereals, with 16 articles develop-
ing functions for maize, 13 for rice, three for wheat and one for sorghum. The damage due 
to extreme events on annual crop is easier to determine than the damage on perennial crops, 
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such as orchards or grapevine. Only two studies provided vulnerability curves for perennial 
crops (olive and grapevine). Fifteen papers showed vulnerability curves for more than one 
crop. In this case, cereals were always present, while other crops such as forage and veg-
etables were considered. Maize vulnerability is evaluated for drought, climate change and 
extreme temperature, rice vulnerability is estimated for floods, storms and droughts, while 
the vulnerability of wheat, sorghum, soybean and sunflower is estimated only for drought. 
Olive vulnerability is studied for climate change only. Seventeen papers analysed the effect 
of extreme events on the different crop growth stages. The yield losses caused by droughts 
happening at different growth stages are investigated for maize (five papers), wheat and 
soybean (one paper each). The response to the different crop growth stages to floods is 
instead evaluated in ten papers; seven of them deals with rice while three consider multiple 
crops. One paper investigated the response of the different rice growth stages to storms. 
The analysis considered also the functions used to develop the vulnerability curves and 
the number of the corresponding parameters on which the function depends. The preferred 
function is the logistic, mainly applied in the drought vulnerability curves, while ramp and 
logarithmic functions are applied in the case of floods.

Based on the analysis, some key points for future work have been identified: 

1. The investigation of crop vulnerability to other extremes than floods and droughts should 
be deepened. In fact, the effect of extreme cold happening at specific growth stages 
could be highly dangerous for the final crop yield and cause high crop losses as well as 
hot waves and extreme hot temperatures. Storms too could have a devastating impact 
on crop production in hurricane prone areas.

2. Vulnerability curves for crops other than cereals should be implemented, given the 
importance that perennial crops and vegetables have in terms of economic value. Func-
tions for forage crops (alfalfa, pastures or similar) could be useful to evaluate the impacts 
of extreme events on livestock and have not been considered in none of the reviewed 
studies.

3. The inclusion of field experiments to assess the effect of extremes on the different crop 
growth stage should be better studied by including field observations in the analysis, 
rather than using crop models results.

In addition, some recommendations to develop vulnerability functions are proposed: 

1. A compromise between the vulnerability function’s complexity and its reliability should 
be searched. In fact, very complex functions, relying on many parameters, are of difficult 
practical use.

2. The equation of the developed function and its parameters should be reported in the 
study. In addition, an evaluation of how well the developed vulnerability curve fits to 
the data points should be performed to assess the reliability of the proposed curve.

3. Explanatory variables should be easily measurable (such as water depth or rainfall) or 
directly linked with measured variables. In fact, the application of functions consider-
ing explanatory variables derived from models is complex since models often require a 
huge amount of location-specific data to be initialized and a careful calibration.

4. A validation of the developed vulnerability functions is recommended, although it is 
difficult due to the scarcity of measured loss data.
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