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Abstract
Extremely heavy rainfall has posed a significant hazard to urban growth as the most com-
mon and disaster-prone natural calamity. Due to its unique geographical location, the metro 
system is more vulnerable to waterlogging caused by rainstorm disaster. Research on resil-
ience to natural disasters has attracted extensive attention in recent years. However, few 
studies have focused on the resilience of the metro system against rainstorms. Therefore, 
this paper aims to develop an assessment model for evaluating metro stations’ resilience 
levels. Twenty factors are carried out from dimensions of resistance, recovery and adap-
tation. The methods of ordered binary comparison, entropy weight and cloud model are 
proposed to build the assessment model. Then, taking Chongqing metro system in china 
as a case study, the resilience level of 13 metro stations is calculated. Radar charts from 
dimensions of resistance, recovery, and adaptation are created to propose recommendations 
for improving metro stations’ resilience against rainstorms, providing a reference for the 
sustainable development of the metro system. The case study of the Chongqing metro sys-
tem in china demonstrates that the assessment model can effectively evaluate the resilience 
level of metro stations and can be used in other infrastructures under natural disasters for 
resilience assessment.
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1  Introduction

In the background of global climate change, various natural disasters such as floods, 
typhoons, drought, hailstorms, earthquakes, and low-temperature freezing have severely 
affected people’s lives with different frequencies and degrees (Lyu et al. 2020). Extreme 
heavy rainfall is the most common and disaster-prone natural calamity among them (Srini-
vas et al. 2018). Its increasing frequency has threatened urban development and the safety 
of residents’ lives and properties globally (Zhang et al. 2021; Li et al. 2019; Wang et al. 
2020a). Meanwhile, the metro system has gradually become the most significant trans-
portation component for sustainable development in urban areas due to its large capac-
ity, energy-saving, environmental protection, better safety and high punctuality (Shen et al. 
2015; Lin et al. 2021). Compared to road traffic, such as ground transportation and elevated 
transportation, the metro system is more vulnerable to waterlogging caused by extremely 
heavy rainfall due to its unique geographical location and characteristics, i.e., exposure of 
exits and enclosed structures in the relatively low elevation. (Lyu et al. 2019a, 2019b, 2020; 
Wang et al. 2020b). Recently, metro systems worldwide have been forced to suspend opera-
tions because of extremely heavy rainfall. For example, in 2012, heavy rainfall hit seven 
metro lines in New York, seriously impacting the metro operation (Blake et al. 2013). In 
2016, because of the high-intensity extreme heavy rainfall outbreak, many metro stations 
were flooded in China and stopped operating, such as those in Shanghai, Guangzhou and 
Wuhan (Lyu et al. 2018, 2019a). In 2021, a severe rainstorm hit Henan Province in China, 
causing the metro systems to be severely flooded. Even the passengers were trapped in the 
underground space in Zhengzhou, where the maximum rainfall reached 201.9 mm in an 
hour. The increasing frequency of extremely heavy rainfall has seriously threatened the 
regular operation of the metro system. Therefore, scientifically and rationally developing 
prevention work of waterlogging in the metro system to improve the reliability of metro 
operation and the travel safety of residents under the damage of extremely heavy rainfall 
has become an urgent problem that needs to be resolved.

Research has been carried out from different perspectives to protect the metro sys-
tem from damages caused by the rainstorm disaster. For example, Derrible et  al. (2010) 
developed indicators to measure state, form, and structure by studying 33 metro networks 
worldwide and analysing rainstorms’ impacts on the metro system. Aoki et al. (2016) pro-
posed anti-inundation measures such as developing and installing waterproofing doors 
for metro stations in Tokyo. Wu et al. (2020) constructed an evaluation index system of 
emergency plans for waterlogging disasters. They selected Huilong Road West Station Pro-
ject in Chengdu to verify the feasibility of the group decision-making method. Wang et al. 
(2020b) proposed an emergency decision-making method based on regret theory to assess 
the emergency decision-making of the metro system in different rainstorm scenarios. Liu 
et al. (2020a) investigated the vulnerability of the metro system under the background of 
rainstorms based on the accessibility metrics proposed. Lyu et  al. (2018) constructed a 
flood risk assessment structure of a metro system, including average rainfall, slope, land 
use and so on, from dimensions of hazard, exposure and vulnerability, and analysed the 
flood risk of the metro system by using analytic hierarchy process (AHP) and interval AHP 
methods. Furthermore, fuzzy AHP, fuzzy clustering analysis and triangular fuzzy number-
based AHP are also applied to assess the flood risk of the metro system (Lyu et al. 2019a, 
2020).

Nevertheless, with the frequent occurrence of natural disasters, more and more scholars 
have explored the ability to resist natural disasters from the resilience perspective to develop 
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disaster prevention and mitigation management. Resilience is defined initially as a measure of 
the persistence and the ability to absorb systems disturbances while maintaining the relation-
ship between the population and the variables by Holling and applied in the ecological field 
(Xiao et al. 2020). In recent years, research on resilience assessment has attracted extensive 
attention. For example, Li et al. (2019) constructed a flood resilience evaluation system cov-
ering the dimensions of resistance, coping and recovery, and adaptation. Zhang et al. (2021) 
diagnosed the resilience to flooding disasters in 31 cities in China based on the entropy-
weighting TOPSIS method. Chen et  al. (2021a) investigated the relationship between city 
resilience against COVID-19 and factors including the virus, city agglomeration character-
istics, and healthcare resources. By applying structural equation modelling, Guo et al. (2020) 
proposed that new information channels contribute to city resilience in the background of the 
typhoon. Vona et al. (2018) built a resilience model to quantify the city’s resilience under an 
earthquake. For the resilience of the metro system, Deloukas et al. (2017) conceptualized the 
resilience of the metro system and developed resilience management guidelines by consid-
ering static and dynamic resilience. Zhang et  al. (2018) established a large-scale resilience 
framework for the metro system and verified its practicality by using the Shanghai metro as 
a case study. Integrating the network topological and passenger volume characteristics, Lu 
(2018) raised the resilience to assess the model of the metro system in response to emergen-
cies to quantify the metro resilience.

However, few studies concentrated on the resilience of the metro system against rainstorm 
disaster. Goldbeck et al. (2019) developed an integrated, dynamic modelling and simulation 
framework to assess the resilience of the metro system in London to a local flooding incident. 
Zhou et al. (2021b) analyzed the spatio-temporal characteristics of passenger flow under rain-
storms by utilizing big data and introduced the meteorological warning signals and ridership 
resilience curve to analyse the resilience of the operation of the metro system.

Based on the above discussion, the existing research mainly concentrated on urban resil-
ience assessment. A mechanism is required to help analyse the metro system’s resilience to 
improve stability and safety. Therefore, this study aims to (1) develop an assessment model to 
evaluate the level of resilience of metro stations based on the cloud model; (2) demonstrate the 
application of the model through the case study of the metro stations in the city of Chongqing 
in China; (3) analyse the calculation results of the metro stations through radar chart to reflect 
the comparison between comprehensive resilience level and resilience level in three dimen-
sions of resistance, recovery and adaptation.

The contributions of this paper are as follows. First, given the continually growing con-
cerns about natural disasters (Lyu et al. 2019a, b), a resilience perspective to metro stations 
in the context of the rainstorm disaster can effectively advance the literature on disaster pre-
vention and mitigation management. Second, a multi-dimension, a multi-method evaluation 
framework is proposed. In particular, the development of the social perspective dimension and 
the application of the cloud model in metro resilience are both bold attempts and significant 
explorations. Third, suggestions are beneficial to increase public knowledge of how to deal 
with the devastation caused by rainstorm disasters in metropolitan areas and the planning and 
design of the metro’s upcoming construction.
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2 � Methodology

This study combines the ordered binary comparison, entropy weight, and cloud models 
to develop the resilience assessment model. The ordered binary comparison method and 
entropy weight method are used to calculate the weights of factors. The cloud model is 
used to realize the comprehensive resilience evaluation.

2.1 � Ordered binary comparison method

In the subjective weighting methods, the criteria weights and the alternatives’ scores 
mainly depend on the decision makers’ judgements and preferences via pairwise com-
parisons, the potential uncertainty of which is considered the prime disadvantage of the 
subjective methods (Sahoo et al. 2016; Sitorus and Brito-Parada 2022). As a subjective 
weighting method, the ordered binary comparison method combines qualitative ranking 
and quantitative scaling, aiming to distinguish the importance of factors by repeatedly 
comparing every two factors to identify the ranks and weights of factors. The method 
can effectively solve the problem of fuzzy set category, and the specific steps are as fol-
lows (Xu 2018):

Step 1. Establishment of scaling matrix based on importance.

Assume a set of factors to be compared in the system, shown as 
D =

{
d1, d2, d3,⋯ , dm

}
 , where di represents i - th factor, i = 1, 2,⋯ ,m . Then, the impor-

tance degree can be measured by comparing one factor to another in the D. If dk is more 
important than dl , ekl = 1 and elk = 0 . When the importance of dk is equal to dl , ekl = 0.5 
and elk = 0.5 . Similarly, if dk is less important than dl , ekl = 0 and elk = 1 . Among them, 
kl = 1, 2,⋯ ,m . According to the comparison results, the scaling matrix based on impor-
tance can be expressed as:

Step 2. Consistency check of scaling matrix.

Suppose thinking contradictions exist in binary comparison of the importance of fac-
tors, the consistency check of the scaling matrix should be raised, that is, ehk > ehl while 
elk > ekl , and ehk < ehl while elk < ekl , and if ehk=ehl , elk=ekl= 0.5 . If the scaling matrix fails 
the consistency check, in that case, there is a contradiction in the thinking process of judge-
ment, and the scaling matrix needs to be adjusted until the consistency check is met.

Step 3. Judgement of importance level.

By summing the elements in each row of the scaling matrix that passed the consistency 
check, the importance level can be proposed based on the size of the values.

(1)E =

⎡
⎢⎢⎢⎣

e11 e12 ⋯ e1m
e21 e22 ⋯ e2m
⋯ ⋯ ⋯ ⋯

em1 em2 ⋯ emm

⎤
⎥⎥⎥⎦
=
�
ekl

�
m × m
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Step 4. Determination of factor weight.

Fuzziness is essential for humans to make binary comparisons of things using empirical 
knowledge. Therefore, this study introduces tone operators, fuzzy scale values, and member-
ship values to calculate the weights in Table 1.

As is shown in Table 1, tone operators are divided into ten categories. In contrast, a tone 
operator corresponds to two membership values. According to the importance level, a weight 
vector can be carried out by comparing the relationship of tone operator between the most 
critical factor and others and transforming to relative membership values. After normalizing, 
the weight vector can be expressed as w =

{
w1,w2,⋯ ,wm

}
 eventually.

2.2 � Entropy weight method

The entropy weight method is an objective weighting method that utilizes the amount of informa-
tion provided by the entropy value to determine the weight of each factor. In information theory, 
entropy measures the degree of disorder in the system while extracting helpful information from 
the data. Therefore, according to the idea of entropy, the amount and quality of the information in 
the process determine the accuracy and reliability of the decision-making. In the process of identi-
fying weights, a larger difference in the values of a factor means a more significant amount of infor-
mation, which represents that the factor deserves a higher weight (Liu and Lin, 2019; Yan et al. 
2021). Conversely, a smaller difference means less information, representing a lower weight. The 
method has been widely applied to analyse problems in the city system (Shen et al. 2016; Huang 
et al. 2018; Yan et al. 2021). The specific steps are as follows (Li et al. 2020; Yan et al. 2021):

Step 1. Establishment of a data matrix.

Assume that there are m research objects and n factors so that the data matrix can be 
expressed as:

(2)Y =

⎡
⎢⎢⎢⎣

y11 y12 ⋯ y1n
y21 y22 ⋯ y2n
⋮ ⋮ ⋱ ⋮

ym1 ym2 ⋯ ymn

⎤⎥⎥⎥⎦

Table 1   Correspondence between tone operators, fuzzy scale values and membership values

Tone operator Fuzzy scale 
value

Membership 
value

Tone operator Fuzzy scale 
value

Membership value

As well 0.500 1.000 Fully 0.800 0.250
0.525 0.905 0.825 0.212

A little 0.550 0.818 Highly 0.850 0.176
0.575 0.739 0.875 0.143

Slightly 0.600 0.667 Completely 0.900 0.111
0.625 0.600 0.925 0.081

Relatively 0.650 0.538 Extremely 0.950 0.053
0.675 0.481 0.975 0.026

Obviously 0.700 0.429 Unmatched 1.000 0.000
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where yij represents the data value of the j - th factor in the i - th research object.
Step 2. Normalization of all data.

The evaluation factors are divided into positive factors and negative factors. For 
those positive factors, a larger value indicates a better performance. The normalized 
value can be calculated as follows:

For those negative factors, a smaller value indicates a better performance. The nor-
malized value can be calculated as follows:

where min(yj) and max(yj) are the minimum value and maximum value for the factor j.
Step 3. Calculation of the entropy weight.

As for the evaluation matrix after normalization, firstly, the contribution value of 
each factor in each object should be calculated as follows:

Then, based on contribution values, the entropy value for each factor can be calcu-
lated as follows:

Finally, the entropy weight of each factor can be calculated as follows:

2.3 � Cloud model

As an important communication tool, natural language contains too many uncertainties 
in human’s daily life, such as “good-looking”, “excellent”, and other words. Different 
people have different opinions on this type of expression. Therefore, to describe this 
type of language more clearly, the cloud model was proposed to realize the transforma-
tion between qualitative concepts and quantitative values (Xie et al. 2021). The cloud 
model has been widely used to evaluate natural disasters and city systems (Xie et al. 
2021, Wang et  al. 2021, Zhou et  al. 2021a). This study briefly introduces the defini-
tion, digital characteristics, and cloud generator of the cloud model.

(3)y�
ij
=

yij −min(yj)

max(yj) −min(yj)

(4)y�
ij
=

max(yj) − yij

max(yj) −min(yj)

(5)pij =
y�
ij∑m

i=1
y�ij

(6)ej = −
1

lnm

∑m

i=1
pij ln pij

(7)
�j =

1 − ej

n −
n∑
j=1

ej
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2.3.1 � Definition of cloud model

Assuming that U is a quantitative domain represented by exact values, and C is a qualita-
tive concept on U. x, the quantitative value is a random implementation of the qualita-
tive concept C, and x ∈ U . A random number �(x) is the membership degree of C in x, 
and �(x) ∈ [0, 1] , with a stable tendency, that is, �(x) ∶ U → [0, 1] , ∀x ∈ U , x → �(x) . The 
distribution of x on the domain U is called cloud, and the random number �(x) represents 
certainties of C in x.

2.3.2 � Digital characteristics of cloud model

The digital characteristics of the cloud reflect the quantitative characteristics of the qualita-
tive concept. Therefore, the characteristics of the concept expressed by the cloud model 
can be reflected by the digital characteristics of the cloud, namely expectation, entropy, and 
hyper-entropy, which can be expressed as C(Ex,En,He).

Expectation ( Ex ): the most representative point of the qualitative in domain is the cen-
tral value.

Entropy ( En ): the measurement of the degree of uncertainty of qualitative concepts and 
representative of the probability and ambiguity of qualitative concepts, which can symbol-
ize the degree of dispersion of the qualitative concept and reflect the qualitative concept 
cloud drop’s value range the domain.

Hyper-entropy ( He ): the measurement of the uncertainty of entropy, that is, the entropy 
of entropy, representing the degree of dispersion of all cloud droplets.

2.3.3 � Cloud generator of cloud model

A cloud generator is an important tool to realize the conversion between the digital char-
acteristics of the cloud and the cloud drop and between the qualitative concept and the 
quantitative value. According to the different generation conditions, the cloud generator is 
divided into three categories: forward, reverse, and conditional. And conditional cloud gen-
erator can be divided into X-condition and Y-condition cloud generators. This study mainly 
uses the forward and X-condition cloud generators in the subsequent empirical analysis 
process, explaining the forward and the X-condition cloud generator.

The forward cloud generator is a mapping from qualitative concepts to quantitative val-
ues. When the cloud’s digital characteristics are known, inputting digital characteristics 
and the number of cloud droplets, the coordinates of each cloud droplet in the number 
domain, and the degree of certainty that each cloud droplet represents a concept, are out-
putted, as is shown in Fig. 1.

The algorithm of the forward cloud generator is as follows (Wang et al. 2021):

Fig. 1   Forward cloud generator Ex

En

He

CG ( ),i iDrop x µ
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(a)	 an average random number E′

ni
 is generated with En as the expectation and He2 as the 

standard deviation, that is, E′

ni
= NORM

(
En,He

2
)
.

(b)	 an average random number xi is generated with Ex as the expectation and E′2

ni
 as the 

standard deviation, that is, xi = NORM
(
En, E

�2
ni

)
.

(c)	 The membership is calculated by �i = e
−
(xi−Ex)

2

2E
�2

ni .
(d)	 drop

(
xi,�i

)
 generated is a cloud drop in the domain, and xi is the value after transform-

ing from qualitative concept, and �i is the value of the membership of xi.
(e)	 Repeat steps a) to e) until N cloud droplets are produced.

The X-condition cloud generator is a cloud generator in which all cloud droplets are 
finally distributed on the vertical line of the cloud by setting the condition in the domain. 
That is x = x0 when the digital characteristics of the cloud are known, as shown in Fig. 2.

The algorithm of the X-condition is as follows:

(a)	 an average random number E′

ni
 is generated with En as the expectation and He2 as the 

standard deviation, that is, E′

ni
= NORM

(
En,He

2
)
.

(b)	 The membership is calculated by �i=e
−
(x0−Ex)

2

2Eni
�2 .

(c)	 Generate cloud drops corresponding to a specific value xo , that is, drop
(
x0,�i

)
.

3 � Development of resilience assessment model

3.1 � Selection resilience factors of metro stations

Currently, there is no uniform standard for the dimensional classification of resilience. 
For the metro system, Liu et al. (2020b) constructed an evaluation index system contain-
ing defence, recovery and adaptive to assess the waterlogging disaster resilience capabil-
ity. Lyu et al. (2020) conducted an inundation risk assessment of the metro system from 
hazard, exposure and vulnerability dimensions. Xu and Chopra (2022) proposed a four-
stage resilience cycle, including preparedness, robustness, recoverability and adaptation, 
to develop resilience analysis. In other related fields, such as urban resilience and trans-
portation resilience, Chen et al. (2020) put forward that urban resilience should be consid-
ered from dimensions of resistance, adaptability and recovery. Hoterová and Chovančíková 
(2021) pointed out that robustness, recoverability and adaptability were the critical ele-
ments of resilience in the transportation infrastructure system.

Therefore, this study defines resilience as resistance, recovery, and adaptation. So, 
in this study, factors affecting the resilience of metro stations under rainstorm disasters 

Fig. 2   X-condition cloud genera-
tor Ex

En

He

CG ( ),i iDrop x µ

0x x=
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from dimensions of resistance, recovery, and adaptation are selected. Based on the 
review of the existing literature involving resilience indicators (Lyu et al. 2018, 2019a, 
2020; Wu et al. 2020; Wang et al. 2019; Quan et al. 2011; Zhu et al. 2018), resilience 
factors under the three dimensions are identified.

Resistance can be considered as the ability to resist or defend against damage from 
waterlogging caused by extremely heavy rainfall through the metro system’s engineer-
ing facilities and the metro station’s external environment. The engineering facilities 
and external environment have direct and indirect impacts on the metro’s drainage 
capacity under rainstorms, further affecting the resilience of the metro system. There-
fore, six factors type of exit (X1), the step height of exit (X2), drainage capacity of 
metro station (X3), the elevation of metro station (X4), slope of metro station (X5) and 
municipal drainage capacity (X6) are selected in the dimension of resistance.

The recovery process usually contains two scopes, i.e., reorganizing and maximiz-
ing the use of internal assets and importing external resources (Xu and Chopra, 2022). 
This research mainly considers external resources, e.g., external rescue from the cen-
tral government, neighbouring provinces or the international community (Chen et  al. 
2020). Therefore, recovery in this research is defined as the ability to rescue the metro 
system and help it return to its original state after waterlogging caused by extremely 
heavy rainfall from a social perspective. Considering that population, economy and 
infrastructure are the main elements in the socioeconomic system, eight factors gross 
domestic product (X7), Per capital disposable income of urban residents (X8), general 
public budgetary expenditure (X9), investment in fixed assets (X10), resident popula-
tion (X11), employment of on-post urban non-private units (X12), medical, technical 
personnel (X13) and the number of health care institutions (X14) are proposed in the 
dimension of recovery.

Adaptation is the objective ability of that relative department of the metro system to 
adapt to the rainstorm disaster in terms of emergency equipment and emergency plans 
when facing waterlogging caused by extremely heavy rainfall. Therefore, six factors com-
pleteness of pre-disaster system plans (X15), completeness of emergency plans in disas-
ters (X16), completeness of post-disaster learning programs (X17), integrity of monitoring 
and warning equipment (X18), the integrity of emergency supplies and equipment (X19) 
and integrity of disaster assessment equipment (X20) are selected in the dimension of 
adaptation.

The total 20 factors are shown in Table 2.

3.2 � Construction Resilience Assessment Model Based on Cloud Model

Based on the above methods and factors, an assessment resilience model of metro stations 
is constructed, as shown in Fig. 3.

From Fig.  3, the assessment of the resilience of metro stations mainly involves four 
steps:

(1)	 Through scoring by experts and collecting objective data, the evaluation data of factors 
from dimensions of resistance, recovery and adaptation can be obtained to form the 
data matrix of resilience assessment.

(2)	 Based on the data matrix, all weights can be calculated using the binary comparison 
and entropy weight methods to form the weight matrix.
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(3)	 Based on the concept and connotation of the cloud model, the digital characteristics 
of the cloud and the theoretical basis of the cloud generator, the steps of calculation of 
the membership matrix of factors can be carried out as follows:

(a)	 A comment set contains five levels which are low level (I), lower level (II), 
medium level (III), higher level (IV) and high level (V), which are raised to 
evaluate the resilience of the metro stations.

(b)	 According to the level division of the comment set, this model identifies the level 
interval and digital characteristics of factors based on the data matrix. Taking a 
positive factor as an example, the maximum and minimum values are taken as the 
Ex of the level of V and I, respectively. The middle values of the level intervals 
are taken as the Ex of the level of II, III, and IV. Moreover, 1/2.355 times the level 
interval distance is proposed as the En, and a practical value of 0.1 is taken as the 
He.

(c)	 Input the data matrix into an X-condition generator. The membership matrix can 
be obtained from all the factors.

Table 2   Factors affecting Metro resilience under rainstorms

Target Dimension Factor Unit Direction

Metro resilience Resistance Type of exit (X1) –  + 
The step height of exit (X2) –  + 
Drainage capacity of the metro station (X3) –  + 
Elevation of metro station (X4) –  + 
The slope of the metro station (X5) –  + 
Municipal drainage capacity (X6) –  + 

Recovery Gross domestic product (X7) 10,000 CNY  + 
Per capital disposable income of urban resi-

dents (X8)
CNY  + 

General public budgetary expenditure (X9) 10,000 CNY  + 
Investment in fixed assets (X10) 10,000CNY  + 
Resident population (X11) 10,000 persons -
Employment of on-post urban non-private 

units (X12)
10,000 persons  + 

Medical, technical personnel (X13) Person  + 
Number of health care institutions (X14) Unit  + 

Adaptation Completeness of pre-disaster system plans 
(X15)

–  + 

Completeness of emergency plans in disasters 
(X16)

–  + 

Completeness of post-disaster learning pro-
grams (X17)

–  + 

Integrity of monitoring and warning equipment 
(X18)

–  + 

Integrity of emergency supplies and equipment 
(X19)

–  + 

Integrity of disaster assessment equipment 
(X20)

–  + 
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(4)	 By multiplying the weight matrix and the membership matrix, the membership values 
of the five levels from the view of an object can be calculated to assess the resilience 
of the metro system under a rainstorm, referring to the comment set.

4 � Case study

4.1 � Research objects

Chongqing’s metro system in China is selected as a case study to demonstrate the assess-
ment of the model’s application. The first line of the Chongqing metro system was opened 
for operation on June 18, 2005. As of January 2021, 9 metro lines were opened for opera-
tion, with 369.56 km and 190 stations. Meanwhile, in 2020, the total passenger traffic of 
Chongqing in the metro system reached 1.042 million, with average daily passenger traffic 
of 2.855 million and maximum passenger traffic of 3.872 million. The line network dia-
gram of the Chongqing Metro System is shown in Fig. 4.

Comprehensively considering the number of interchange lines, the passenger flow, and 
the links to other transportation modes, 13 metro stations involving seven districts and 
eight metro lines are selected for further analysis, as shown in Table 3.

4.2 � Research data

The data in this study were mainly acquired from experts’ scores or publicly available 
data. In the dimension of resistance and adaptation, the data of X2, X4 and X5 seem to 
be accessible but private, and others are qualitative and unavailable. In addition, there 
are multiple exits in a certain metro station, and data of different exits are not at the 

Fig. 3   Assessment resilience model of metro stations
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same level, even a huge difference, so determining the uniform criteria is another com-
plex issue. Considering the principles of comprehensive evaluation and issues above, 
three experts are invited to score 1–5 on the 12 factors, and 1–5 represent extremely 

Fig. 4   The line network diagram of the Chongqing metro system

Table 3   Research objects

Station District Line

Nanping Station (A in Fig. 4) Nanan District Line 3
Guanyinqiao Station (B in Fig. 4) Jiangbei District Line 3
Hongqihegou Station (C in Fig. 4) Jiangbei District Line 3, Line 6
Lianglukou Station (D in Fig. 4) Yuzhong District Line 1, Line 3
Jiaochangkou Station (E in Fig. 4) Yuzhong District Line 1, Line 2
Shiyoulu Station (F in Fig. 4) Yuzhong District Line 1
Chongqing North Station South Square (G in Fig. 4) Yubei District Line 3, Line 10, Loop Line
Chongqing North Station North Square (H in Fig. 4) Yubei District Line 4, Line 10
Ranjiaba Station (I in Fig. 4) Yubei District Line 5, Line 6, Loop Line
Xiejiawan Station (J in Fig. 4) Jiulongpo District Loop Line
Shapingba Station (K in Fig. 4) Shapingba District Line 1, Loop Line
Chongqing West Station (L in Fig. 4) Shapingba District Line 5, Loop Line
Beibei Station (M in Fig. 4) Beibei District Line 6
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bad, poor, medium, well, and excellent, respectively, in resistance and adaptation, and 
the profile information of experts are shown in Table 4.

In the dimension of recovery, the public data on all the factors can be obtained from 
Chongqing Statistical Yearbook 2020. Details of the scoring data and public data are 
shown in Appendix A.

4.3 � Calculation results

4.3.1 � Calculation results of weights

According to steps (1) and (2) in the assessment model, the weights of factors in the dimen-
sion of resistance and adaptation are calculated by using an ordered binary comparison 
combining experts’ suggestions and the weights of factors in the recovery dimension by 
using the entropy weight method as shown in Table 5.

From Table  5, dimensions of resistance, recovery and adaptation account for 1/3, 
respectively. In the dimension of resistance, the type of exit stands first. The drainage 
capacity of the metro station and municipal drainage capacity is located at the end, with 
values of 0.068 and 0.050. Moreover, the value of the other three factors is 0.055, lying in a 
position of medium importance. In the dimension of recovery, the average weight of eight 
factors is 0.042, and the maximum weight and minimum weight belong to investment in 
fixed assets and gross domestic product, respectively, whose values are 0.061 and 0.025. 
As for the other six factors, the weights of per capital disposable income of urban residents 
and the number of health care institutions are higher than the average weight. The weights 
of the other four factors are lower than the average weight. Among six factors in the dimen-
sion of adaptation, the weight of completeness of pre-disaster system plans and monitoring 
and warning equipment integrity is 0.048. The weight of the other four factors is 0.059.

4.3.2 � Calculation results of resilience level

After calculating the weights, based on step (3) in the assessment model, the comment 
set of resilience, the level interval and digital characteristics of factors are carried out. 
Taking positive factors, including the type of exit from the dimension of resistance, the 
gross domestic product from the dimension of recovery, completeness of pre-disaster sys-
tem plans from the dimension of adaptation, and negative factor resident population from 
recovery as the example, the digital characteristics can be calculated, as shown in Table 6.

Table 4   Profile information of experts

Expert Occupation Education Work experience Employer

A Station manager Master’s degree 9 years Chongqing Rail Transit 
(Group) Co., Ltd., Chong-
qing, China

B Station operator Bachelor’s degree 8 years Chongqing Rail Transit 
(Group) Co., Ltd., Chong-
qing, China

C Professor Doctoral degree 12 years Chongqing University, China
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From Table  6, the digital characteristics of the type of exit and completeness of 
pre-disaster system plans can be expressed as I (1.000, 0.425, 0.100), II (2.000, 0.425, 
0.100), III (3.000, 0.425, 0.100), IV (4.000, 0.425, 0.100), V (5.000, 0.425, 0.100). The 
digital characteristics of the gross domestic product can be represented as I (524,980, 
1,906,311, 0.100), II (5,014,343, 1,906,311, 0.100), III (9,503,706, 1,906,311, 0.100), 
IV (13,993,068, 1,906,311, 0.100), V (18,482,431, 1,906,311, 0.100), and the one of the 
resident population can be expressed as I (168.350, 15.902, 0.100), II (130.900, 15.902, 
0.100), III (93.450, 15.902, 0.100), IV (56.000, 15.902, 0.100), V (18.550, 15.902, 
0.100).

According to the digital characteristics, the normal cloud diagram of the type of exit, 
gross domestic product, completeness of pre-disaster system plans and negative factor resi-
dent population can be drawn out using matlab2017, shown in Fig. 5.

Based on the X-condition cloud generator, taking Nanping Station as the example, the 
membership results of all the factors in the Nanping Station can be calculated using mat-
lab2017, shown in Table 7. The specific algorithm procedures are shown in Appendix B.

From Table 7, among all the factors, the type of exit takes the maximum membership 
value of 0.7012 in level V, so the type of exit belongs to level V of resilience. Similarly, per 
capital disposable income of urban residents, the completeness of post-disaster learning 
programs, and the integrity of emergency supplies and equipment belong to the resilience 
level V of resilience. Furthermore, the step height of the exit, the slope of the metro sta-
tion, the completeness of pre-disaster system plans, the completeness of emergency plans 
in disasters, the integrity of monitoring and warning equipment and the integrity of disaster 
assessment equipment belong to the level IV of resilience. The metro station’s drainage 
capacity, the metro station’s elevation, gross domestic product, general public budgetary 

Table 5   Weights of factors Dimension Weight Code of factor Weight

Resistance 1/3 X1 0.068
X2 0.055
X3 0.050
X4 0.055
X5 0.055
X6 0.050

Recovery 1/3 X7 0.025
X8 0.042
X9 0.031
X10 0.061
X11 0.039
X12 0.040
X13 0.038
X14 0.056

Adaptation 1/3 X15 0.048
X16 0.059
X17 0.059
X18 0.048
X19 0.059
X20 0.059
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expenditure, and resident population belong to the level III of resilience. The rest of the 
factors belong to the level II of resilience, which means a lower level of resilience.

According to step (4) in the assessment model, the membership values of the five levels 
of all the stations can be calculated by multiplying the weight matrix and the membership 
matrix. The specific membership results of all the stations are shown in Table 8.

From Table 8, the membership values of Nanping Station are 0.0193, 0.2244, 0.2601, 
0.3599 and 0.2072 in the levels I to V. Due to the maximum value in level IV, the compre-
hensive level of resilience of Nanping Station belongs to the level IV, that is, a higher level 
of resilience. Based on the above, the comprehensive level of resilience of Guanyinqiao 
Station, Lianglukou Station, Shiyoulu Station, Chongqing North Station, North Square, 
Ranjiaba Station, and Xiejiawan Station also belongs to the level IV. The comprehensive 
level of resilience of Hongqihegou Station, Jiaochangkou Station, Chongqing North Sta-
tion South Square, Shapingba Station, Chongqing West Station, and Beibei Station belongs 
to the level III, which represents a medium level of resilience.

4.4 � Discussion

The 13 metro stations above belong to level III and level IV, respectively. It can be con-
cluded that all the stations reach a medium or higher level of resilience. For further analy-
sis of the resilience level of metro stations, this study raises the radar chart to reflect the 
comparison between comprehensive resilience level and resilience level in three dimen-
sions of resistance, recovery and adaptation in all the stations by using origin2017, shown 
in Figs. 6, 7 and 8.

4.4.1 � Resistance level

The comparison between the comprehensive resilience level and resistance level among 13 
metro stations is carried out in Fig. 6.

From Fig. 6, Shiyoulu Station, Ranjiaba Station, and Xiejiawan Station are at the level 
of IV, showing high resistance to rainstorm disasters. Nanping Station, Hongqihegou Sta-
tion, Chongqing North Station South Square, Chongqing North Station North Square, 
Shapingba Station, Chongqing West Station and Beibei Station are at level III of resist-
ance, presenting a moderate level to rainstorm disasters. However, Guanyinqiao Station, 
Lianglukou Station, and Jiaochangkou Station’s resistance levels only reach level II, indi-
cating a limited capacity to withstand rainstorm catastrophes. From the perspective of 
engineering facilities, considering differences in standards for early construction, most 
exits remain open with no step heights in Lianglukou Station and Jiaochangkou Station, 
which significantly contribute to the weak resistance to the rainstorm. In addition, the lack 
of municipal drainage capacity is prominent in the three metro stations, pulling down the 
resistance level. From the perspective of the external environment, given the characteris-
tics of a mountainous city (Liu et al. 2017), the elevation and slope of metro stations vary 
greatly, and Guanyinqiao Station performs worst in the elevation dimension. Furthermore, 
the resistance levels of the 13 metros are all lower than or equal to their overall resilience 
levels, indicating the promotion of space to resilience.

The various circumstances of metro stations should be considered while making rec-
ommendations for resilience improvement in the dimension of resistance. For the estab-
lished stations, the optimization for the stations, for example, adding a roof while the exit 
is open, allocating more drainage facilities for the emergency of flooding in metro stations 
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Fig. 5   Normal cloud diagram

Table 7   Results of membership 
in Nanping station

Level I II III IV V

X1 0.0000 0.0000 0.0036 0.2865 0.7012
X2 0.0000 0.0035 0.2865 0.7050 0.0192
X3 0.0006 0.0827 1.0000 0.0834 0.0006
X4 0.0001 0.0188 0.7023 0.2887 0.0037
X5 0.0000 0.0036 0.2878 0.7048 0.0189
X6 0.2866 0.7037 0.0190 0.0001 0.0000
X7 0.0008 0.3691 0.6410 0.0043 0.0000
X8 0.0000 0.0000 0.0012 0.4276 0.5753
X9 0.0000 0.0048 0.6609 0.3521 0.0007
X10 0.0476 0.9936 0.0810 0.0000 0.0000
X11 0.0000 0.0567 0.9992 0.0687 0.0000
X12 0.0283 0.9512 0.1251 0.0001 0.0000
X13 0.0115 0.8188 0.2268 0.0002 0.0000
X14 0.0076 0.7448 0.2837 0.0004 0.0000
X15 0.0000 0.0006 0.0822 1.0000 0.0822
X16 0.0000 0.0006 0.0833 1.0000 0.0839
X17 0.0000 0.0000 0.0006 0.0837 1.0000
X18 0.0000 0.0037 0.2851 0.7024 0.0191
X19 0.0000 0.0000 0.0006 0.0826 1.0000
X20 0.0000 0.0006 0.0841 1.0000 0.0828
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and increasing the drainage capacity of the ground surface around the metro stations can 
be adopted appropriately (Aoki et al. 2016; Lyu et al. 2019c). In terms of stations under 
construction currently or that have not yet started construction, the resilience assessment of 
metro stations can effectively guide their design work to improve the resilience level from 
the dimension of resistance, such as increasing the step height of exiting stations and using 
more potent drainage systems, etc. (Zhu et al. 2018; Lyu et al. 2018). It is recommended 
that flood awareness be raised to mitigation management, not relying only on flood defence 
structures (Lyu et al. 2020).

4.4.2 � Recovery level

The recovery level depends on the socioeconomic level of the district where metro stations 
locate. The comparison between comprehensive resilience and recovery levels in 13 metro 
stations is carried out in Fig. 7.

Figure 7 shows Lianglukou Station, Jiaochangkou Station, Shiyoulu Station, Chongqing 
North Station South Square, Chongqing North Station North Square and Ranjiaba Station 
are all at level V, indicating an excellent recovery ability to rainstorm disasters. Guanyin-
qiao Station, Hongqihegou Station, Xiejiawan Station, Shapingba Station, and Chongqing 
West Station present a moderate recovery to rainstorms at level III of recovery. Only Nan-
ping Station and Beibei Station are located in level II, a comparatively lower level rel-
evant to the Districts’ socioeconomic status. In Nanan District, the gross domestic product, 
employment of on-post urban non-private units, and medical and technical personnel all 
perform far below average, while other socioeconomic indices are slightly above average. 
Due to its geographical differences (Wei et al. 2022), Beibei District’s economic and social 
growth has lagged behind that of the other eight districts, negatively impacting its capacity 
for recovery directly.

Population and income have always been key factors that need to be considered for 
metro construction (Chen et al. 2021b) and metro recovery (Chen et al. 2020). Therefore, 
Chongqing should improve urban socioeconomic development following relevant policy 
documents to achieve the sustainable development of metro and even urban systems such 

Table 8   Resilience level of stations

Metro station I II III IV V Level

Nanping Station 0.0193 0.2244 0.2601 0.3599 0.2072 IV
Guanyinqiao Station 0.0283 0.2811 0.2584 0.2863 0.2079 IV
Hongqihegou Station 0.0155 0.2662 0.3328 0.2841 0.1977 III
Lianglukou Station 0.1609 0.286 0.0916 0.2878 0.2575 IV
Jiaochangkou Station 0.1025 0.2179 0.3069 0.2174 0.2502 III
Shiyoulu Station 0.0675 0.199 0.1644 0.3985 0.2577 IV
Chongqing North Station South Square 0.0454 0.145 0.3664 0.2808 0.2421 III
Chongqing North Station North Square 0.0406 0.0714 0.299 0.4173 0.252 IV
Ranjiaba Station 0.046 0.152 0.1745 0.4128 0.278 IV
Xiejiawan Station 0.0062 0.1686 0.2562 0.3637 0.266 IV
Shapingba Station 0.0684 0.1292 0.4025 0.3233 0.1731 III
Chongqing West Station 0.1104 0.1696 0.3476 0.2548 0.1911 III
Beibei Station 0.0476 0.3074 0.3259 0.2638 0.1325 III
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as the implementation of strategic emerging industrial cluster, development of modern 
mountain-based high-efficiency agriculture, construction of 5G essential networks, the 
establishment of talent team, improvement of public emergency ability, etc. (Li et al. 2021; 
Yang et al. 2020; Li et al. 2021; Ruan et al. 2021).

Fig. 6   Comprehensive resilience level and resistance level

Fig. 7   Comparison between comprehensive resilience level and recovery level
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4.4.3 � Adaptation level

The comparison between comprehensive resilience and adaptation levels in 13 metro sta-
tions is carried out in Fig. 8.

As shown in Fig.  8, except for Jiaochangkou Station and Chongqing North Station 
South Square on level III, all the other stations situated on the level IV present decent 
performance in the dimension of adaptation. Additionally, the adaptation levels of the 13 
metro stations are all higher than or equal to their overall resilience levels, confirming sat-
isfactory performance.

For the improvement of adaptation levels, such as drainage capacity and metro depth, 
following the relevant requirements of disaster prevention and control management in the 
whole process (Mercado et al. 2020; Lyu et al. 2020; Wu et al. 2020), should be consid-
ered for emergency plans based on the condition of every station. In terms of emergency 
equipment, departments should implement the availability of emergency equipment such 
as monitoring and warning equipment, emergency materials and equipment, and disaster 
assessment equipment as soon as possible, following relevant management requirements. 
In addition, disaster warning and learning have become indispensable and significant parts 
of disaster management in the information age. Establishing a mechanism containing 
dynamic warning, material allocation, and deep learning linkage will be the direction of 
defending against rainstorms for metro stations (Zhu et al. 2018).

Fig. 8   Comparison between comprehensive resilience level and adaptation level
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5 � Conclusion

The safe operation of the metro system will still be threatened by rainstorm disaster in the future. 
Assessment resilience results of metro stations are imperative for supporting strategy imple-
mentation against the rainstorm disaster. In this study, the ordered binary comparison method, 
entropy weight method, and cloud model have combined to establish an assessment model of 
metro stations’ resilience level. The case study of the Chongqing metro system in China demon-
strates that the assessment model can effectively evaluate the resilience level of metro stations 
and can be used in other infrastructures under natural disasters for resilience assessment. From 
the results of this study, the resilience of metro stations under rainstorms can be evaluated from 
three dimensions of resistance, recovery and adaptation, which represent engineering facilities 
and external environment, national economy and social development, emergency plans and 
emergency equipment, respectively. In addition, a recommendation can be proposed to instruct 
the improvement of the resilience of metro stations through empirical analysis to add value to 
the development of the metro system. Also acknowledged is the need to increase public aware-
ness of the dangers of a rainstorm in order to attain sustainable prevention rather than relying 
solely on the engineering structure, social assistance and emergency preparedness.

The limitations of this research are mainly concluded as follows: (1) The develop-
ment of indicator systems lacks a common standard in the literature of metro resil-
ience to rainstorms currently, and this work has not yet been fully acknowledged for its 
bold exploration of indicator systems. (2) Due to restrictions on data collecting, only 
13 Chongqing metro stations were chosen as research subjects. As a result, the results 
appear to be occasional in several ways. This research team’s further research agenda is 
to explore metro resilience to different disasters and the relationship between disasters 
to effectively realize disaster prevention and mitigation management.

Appendix A: Original data

See Tables 9, 10 and 11.

Table 9   Original data in resistance

Codes of Factors X1 X2 X3 X4 X5 X6

Nanping Station 4 5 5 3 3 5 2 3 4 2 4 4 3 4 4 1 2 2
Guanyinqiao Station 3 4 4 1 3 4 3 3 4 1 2 2 2 2 2 1 2 4
Hongqihegou Station 2 3 4 1 2 3 3 4 4 3 3 3 2 3 3 1 2 3
Lianglukou Station 1 2 2 1 1 2 2 3 3 2 2 2 2 2 2 1 1 2
Jiaochangkou Station 3 4 5 1 1 2 2 2 3 2 3 3 2 3 4 1 2 3
Shiyoulu Station 3 4 4 3 4 4 4 4 4 2 2 2 2 2 2 3 3 3
Chongqing North Station South Square 3 4 4 1 2 3 3 3 4 3 4 4 2 2 3 2 3 3
Chongqing North Station North Square 3 4 4 3 3 3 3 3 3 3 4 4 2 2 3 3 3 4
Ranjiaba Station 3 4 4 2 2 3 4 4 4 3 4 4 2 2 2 2 2 3
Xiejiawan Station 4 4 5 3 3 3 4 5 5 4 5 5 2 2 2 4 4 5
Shapingba Station 1 1 1 3 3 3 4 4 4 3 3 3 3 3 3 2 3 3
Chongqing West Station 3 3 4 3 3 3 3 3 3 2 2 2 1 1 1 1 1 1
Beibei Station 3 3 4 2 3 4 3 3 3 2 2 3 1 2 2 2 2 2
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Appendix B: algorithm procedures

Appendix B: Algorithm Procedures

clc;

clear;

close all;

data = xlsread('data');

m = size(data,2); 

n = 13; 

output = []; 

for j = 1:m

for i = 1:n

x0 = data(i, j); 

Ex = data(23:27,j); 

En = data(28,j); 

M = zeros(1,size(Ex,1));

for k = 1:size(Ex)

[drop] = xcloud(Ex(k),En,0.1,x0,10000);

M(k)= mean(drop(2,:));

end        

output(i,:,j) = M;

end

end

output
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