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Abstract
A framework for a IoT-based local landslide early warning system (Lo-LEWS) has been 
proposed. Monitoring, modelling, forecasting and warning represent the main phases of 
the proposed framework. In this study, the first two phases have been applied to capture the 
hydrological behaviour of a natural unsaturated slope located adjacent to a railway track in 
Eastern Norway. The slope is monitored and the stability is kept under frequent observa-
tion, due to its steepness and the presence of the railway lines at the toe. The commercial 
software GeoStudio SEEP was used to create and calibrate a model able to replicate the 
in situ monitored volumetric water content (VWC) and pore water pressure (PWP) regime. 
The simulations conducted were divided into two main series: one with an initial calibra-
tion of the VWC profile (C) and another with no calibration (NC). The simulations have 
been validated using Taylor diagrams, which graphically summarize how closely a pattern 
(or a set of patterns) matches observations. The results show that a preliminary calibration 
for matching the in situ VWC, as well as considering climate conditions and vegetation, are 
crucial aspects to model the response of the studied unsaturated slope. A sensitivity analy-
sis on the hydraulic conductivity and the permeability anisotropy ratio contributed to bet-
ter define the input data and to improve the best-fit model result. The effectiveness of the 
best simulation, in back-calculating VWC, was tested for 3 different time periods: 6-month, 
1-year, 1.25-year. The results show that the hydrological model can adequately represent 
the real monitored conditions up to a 1-year period, a recalibration is needed afterward. In 
addition, a slope stability analysis with GeoStudio SLOPE for the 1-year period was cou-
pled to the hydrological model. Finally, the calculated safety factor (FS), the temperature, 
the precipitation, the VWC and PWP monitored were used as input dataset for a supervised 
machine learning algorithm. A random forest model highlighted the importance of the 
monitored VWC for forecasting the FS. The findings presented in this paper can be seen as 
a first step towards an Internet of Things (IoT)-based real-time slope stability analysis that 
can be employed as Lo-LEWS.
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1 Introduction

Water infiltration into soil is one of the main triggering factors of slope instability. It may 
result in water content increase, matric suction reduction and, consequently, shear strength 
decrease, which may induce slope failure (Anderson and Sitar 1995; Alonso et al. 1995; 
Li et al. 2005a; Lu et al. 2010). The infiltration into the soil is mostly affected by the soil 
hydraulic characteristics (Ng and Shi 1998; Rahimi et  al. 2010; Shuin et  al. 2012; Hou 
et al. 2021) and the permeability of soil–bedrock interface, if present (Greco et al. 2017). 
The evaporation of water from the ground surface is another process that affects water infil-
tration, increasing soil suction. When modelling the hydrological processes of unsaturated 
slopes, however, evaporation is often neglected or rarely considered, to avoid unpredict-
ability in the transient seepage analysis (Ng et  al. 2008; Li et  al. 2005a; Fredlund et  al. 
2012) and, in slope stability problems variables other than rainfall are seldom included. In 
addition, when vegetation is present, the transpiration due to roots uptake must be included 
into the evapotranspiration flux. Experimental studies conducted on the hydraulic response 
of pyroclastic ashy soils on evapotranspiration and rainfall infiltration (Rianna et al. 2014; 
Pagano et al. 2014) outlined that neglecting vegetation can lead to incorrect estimation of 
the pore-water pressure regime over long time periods. In fact, some authors started to 
evaluate hydrological responses of these soils by also considering the presence of vegeta-
tion (Chirico et al. 2013; Comegna et al. 2013; McGuire et al. 2016; Pagano et al. 2019; 
Capobianco et al. 2020), which may play an important role in stabilizing slopes. Prone-to-
failure slopes, especially if located in vulnerable areas, need proper monitoring. Intelligent 
solutions for landslide mitigation (Capobianco et al. 2022), monitoring and early warning 
can help to safeguard society and infrastructure from climate-induced geohazards.

This study proposes a four-phase approach to set up a local landslide early warning sys-
tem (Lo-LEWS, Piciullo et al. 2018) at slope scale with the Internet of Things (IoT). This 
paper focuses on the first two phases of the proposed approach, i.e. real-time monitoring 
and modelling of the slope behaviour, with some preliminary analyses on the conditions 
leading to failure, specifically, on the most relevant hydrological variables that influence 
the factor of safety (FS).

The methodology proposed in this study is applied to a monitored unsaturated steep 
slope in Norway that is threating a double railway line in Eidsvoll municipality. In the lit-
erature, there are several contributions on the response of partially saturated soils in natural 
slopes to rainfall. Examples can be found for volcanic soils in Italy (Casagli et al. 2006; 
Cascini et al. 2010De Vita et al. 2012), residual soils in Hong Kong and Singapore (Ng 
and Pang 2000; Li et al. 2005b; Rahardjo et al. 2005; Rahimi et al. 2011), silty sand and 
silty clay in India (Sarma et al. 2015), flysch materials in Croatia (Peranić et al. 2019), and 
in bluffs in Washington area, USA (Godt and McKenna 2008). However, few studies on 
monitored partially saturated slopes in Norway are available in the literature (Krzeminska 
et al. 2019; Capobianco et al. 2021; Oguz et al. 2022). The slope under investigation has 
been monitored since 2016 and has been included as a pilot study within the Centre for 
Research-based Innovation (CRI) Klima2050 (http:// www. klima 2050. no/). The importance 
of considering climate drivers and vegetations has been defined comparing the results of 
different simulations with in situ measurements using Taylor diagrams. Then, the best sim-
ulation has been considered for a sensitivity analysis of the saturated horizontal hydrau-
lic conductivity (kx) and of the ratio between vertical and horizontal hydraulic conductiv-
ity (ky/kx). Anisotropy has been taken into account since considering a slope made up of 
homogeneous material has a strong limitation on modelling real case studies (Yeh and Tsai 

http://www.klima2050.no/


3379Natural Hazards (2022) 114:3377–3407 

1 3

2018). In addition, the effectiveness of the best hydrological model was tested for differ-
ent time spans: 6-month, 1 year, 1.25-year. A stability analysis was carried out to assess 
the variation of the FS with time. Finally, a machine learning random forest algorithm has 
been applied to predict the FS from the monitored hydrological variables. The importance 
of every variable in predicting the FS has been also defined. In the literature, machine 
learning algorithms are often used to predict landslides at a regional scale (Liu et al. 2020; 
Ng et al. 2021) and seldom at a slope scale.

So far, no deformations have been recorded at the slope location. However, as landslides 
are likely to become more frequent with climate change (Gariano and Guzzetti 2016), and 
future climate in the Nordic region is forecasted to be wetter and more erratic (Hanssen-
Bauer et al. 2017), the need and use of a IoT-based monitoring and early warning for situ-
ational awareness of slope stability are becoming urgent (Oguz et al. 2022). The possibility 
to have all the monitored data collected by means of a data logger and stored in real time 
into a cloud system, which can directly feed the machine learning algorithms to forecast in 
advance a possible instability and to warn the infrastructure owner, is the final aim of this 
pilot study in Eidsvoll, Norway.

2  Framework for a IoT‑based stability analysis as local landslide early 
warning system (Lo‑LEWS)

Rainfall-induced landslide is usually triggered by a combination of wet antecedent condi-
tions followed by one or more days of relatively intense rainfall (Baum et al. 2005). The 
transient reduction of suction during infiltration and, thus, increment of soil water content, 
can be used to identify periods when moisture conditions and rainfall concur to trigger 
landslides in unsaturated slopes (Godt et al. 2009). Identifying the conditions that may lead 
to the potential failure of a slope can help defining threshold values for landslide early 
warning purposes (Piciullo et al. 2020).

In this regard, Fig. 1 proposes a framework for the definition of a IoT-based slope stabil-
ity analysis and Lo-LEWS (Piciullo et al. 2018). The framework is based on the following 
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Fig. 1  Conceptualization of the phases for a IoT-based slope stability analysis and warning at a slope scale
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four phases: monitoring, modelling, forecasting and warning. The monitoring phase is nec-
essary to provide real-time or near-real-time input data to both the modelling and forecast-
ing phases. The monitored data, specifically hydrological (i.e., pore water pressure regime, 
soil water content) and climate data (i.e. daily and hourly rainfall, snowmelt, air tempera-
ture, relative humidity, wind speed), are used as input parameters for the hydrological mod-
elling together with soil properties. These latter are usually obtained by laboratory or field 
tests.

In the hydrological modelling, the climate data can be input as water flux boundary 
conditions. The water flux can be either extremely simplified, i.e., an entering water flux 
simulating the rainfall infiltration, or it can include additional factors, such as plant evapo-
transpiration, interception, and runoff. When evapotranspiration is included, additional cli-
mate variables are needed, together with vegetation properties, as discussed more in detail 
in Sect.  4.5. The calibration of the hydrological model consists in fine-tuning the initial 
hydraulic conditions to fit as much as possible the measured data. The validation consists 
in comparing predicted (by the model) and observed (by in  situ monitoring) hydrologi-
cal data to define the best simulation that fits the in situ conditions, for a given period of 
analysis.

Then, the best simulation obtained with the modelling is used for slope stability analy-
sis. The slope stability modelling results are used as dataset, together with the monitored 
variable and predicted climate variables, for training machine learning algorithms. In the 
forecasting phase, forecasted values of precipitation, temperature, snowmelting can be 
used as input data for trained machine learning algorithms, with the aim of predicting 
time frames where slope instabilities are likely to occur. When predefined thresholds are 
exceeded or FS values less than 1 are computed, warning protocols and emergency plans 
need to be activated.

3  Monitoring of an unsaturated slope in Norway

3.1  Case study and hydrological monitoring instruments

The study area is located in the municipality of Eidsvoll, Norway (60°19′23.376", 
11°14′44.646"). The slope under analysis is 25–30 m high, with an inclination of about 45° 
in the upper part. As part of an InterCity railway project in Eastern Norway, an additional 
railway track is being constructed next to an already existing railway line at its toe. So 
far, the slope has not shown any deformations; however, it represents a threat to both the 
existing and the proposed new railway lines. In addition, its location is right at the eastern 
side of a cultural heritage area, with an old church from the twelfth century and its grave-
yard, which makes impossible the realization of physical slope stability measures on top of 
the slope. For the above-described reasons, the slope has been instrumented with several 
sensors.

Volumetric water content (VWC) and pore-water pressure (PWP) sensors were 
installed in late spring/early summer of 2016 to monitor the hydrological conditions. 
Delta-T SM150T has been used as sensor type for measuring both VWC and tempera-
ture with an accuracy, respectively, of ± 3% and ± 0.5  °C. The sensors use an electro-
magnetic field to measure the dielectric permittivity of the surrounding medium. The 
SM150T sensor is engineered to withstand long-term burial. Two general soil calibra-
tions were available: organic and mineral. The calibration for mineral soils has been 
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used since it can characterize predominantly sand, silt and clay. The sensors are con-
nected to the GP2 data logger to provide long-term moisture and temperature data.

Geotech PVT electronic piezometer with logging memory is used to measure posi-
tive and negative PWP. It operates without the need of additional battery, logging box 
or any kind of permanently installed external equipment—just two wires are visible on 
the surface. The piezometer has a high-precision laser-trimmed ceramic sensor, and it is 
suitable for long-term installations. The output from the piezometer is digital and is not 
affected by cable length. At each measurement, the user gets the serial number of the 
gauge, the pore pressure, temperature, date and time. Currently, the piezometers need to 
be read manually.

The slope has been schematized with the following layering: a sand/silt layer of circa 
6 m, a smaller layer of clayey silt material (about 3 m thick), a firm marine clay layer to 
large depths (Fig. 2).

In the top part of the sand/silt layer, Delta-T SM150T sensors are installed for the 
combined measurement of VWC and ground temperature. The installation depths are, 
respectively, 0.1-, 0.5-, 1-, 2-, 4-and 6-m. In addition, Geotech electronic piezometers 
have been installed, from the top of the slope (circa 171 m a.s.l.), respectively, at 6-, 9-, 
15- and 23-m depths. The two deepest piezometers (15 and 23 m) are located within the 
clay layer (Fig. 2). The piezometer sensor at 9-m depth is in a transition zone between 
silt and clay layers, while the uppermost piezometer, 6-m depth, is installed in the silt 
layer. Two more piezometers are installed at the toe of the slope (circa 144 m a.s.l.) at 
5- and 12-m depths.

Figure 2 shows the position of the sensors in a slope cross section. The VWC and 
PWP sensors are monitored in real time with 1-h frequency. Readings are collected 
online through Deltalink-cloud software (see Sect. 3.2 for more details).
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3.2  IoT‑based monitoring system

The data acquisition system used at the Eidsvoll site is based on the Delta-T GP2 Data 
Logger and Delta-T 3G-DLC-BX1/SP solar-powered 3G/2G Modem Gateway box. The 
GP2 is a versatile and rugged 12-channel data logger, ready-made for outdoor installation, 
and can log most sensor types and accepts voltage, resistance, current, potentiometer, coun-
ter, frequency, and digital state inputs. The GP2’s analog inputs can be fully customized. 
Each channel can have its own input type and recording parameters. DeltaLINK software 
gives the user control over reading frequency, thresholds, and units and provides statistical 
recording options for average, minimum, maximum, standard deviation and more. At the 
Eidsvoll site, the SDI-12 protocol is used to interface the DeltaLINK with sensors, which is 
a standard communication protocol used in a wide range of environmental, agricultural and 
industrial applications. The data logger includes 4 MB of flash memory to enable storage 
of up to 2.5 million readings.

At the case site, the GP2 data logger and the modem gateway are enclosed in separate 
cabinets, both sharing power supply from the Delta-T 2G-DLC-BX1-SP. Initially the GP2 
only used internal batteries as its power source, but to reduce the need for frequent visits, 
reduced hours for replacing batteries, to reduce the chance for losing data, the system was 
then upgraded with the Delta-T 3G-DLC-BX1/SP solar-powered 3G/2G Modem Gateway 
solution. This consists of a FTX0009 2G modem gateway, 30-W solar panel, solar regula-
tor, and a 10-Ah lead acid battery. Due to problems with power outages, as a consequence 
of low-light conditions during the Norwegian winter months, the included solar power bat-
tery was upgraded to a 12-V 200Ah AGM solar power battery and was installed in a third 
separate container.

Currently, the data logger is configured to measure and store data from the sensors every 
hour and transmit this data to the Delta-T Cloud API every 6 h. The data acquisition tim-
ing and the transmission frequency can be increased to up to 5 min. The complete updated 
dataset is available both graphically and for downloading from the Delta-T Cloud service.

3.3  Monitoring data

PWP and VWC monitoring started in May 2016, and the data are shown in Fig. 3a, b. The 
soil temperature is also monitored at each depth (Fig. 3c). The measurements were pro-
cessed to remove unreliable values (i.e., VWC < 0%), due to either maintenance or contact 
problems. About the piezometers installed from the top of the slope, although there is a 
lack of PWP data at 6-m depth, between February 2017 and March 2019 (Fig. 3a), it is pos-
sible to observe that the PWP values at 9-, 15- and 23-m depths, remained almost constant, 
after the first month of stabilization due to the installation. The PWP measurements indi-
cate that the water table is circa 7 m deep from the surface, with negative values of about 
-10 kPa measured at 6-m depth. From October 2019, a PWP increase is observed, until a 
peak of about 6 kPa is reached around April, after which the PWP decreases again with the 
beginning of the summer season. The fluctuation of the PWP from 10 to 6 kPa indicates 
that the water table changes seasonally from 7 m depth in spring–summer to 5.5–6 m in 
fall–winter. The two piezometers installed from the toe of the slope at 5- and 12-m depths 
have monitored data only until September 2017, because they were removed due construc-
tion works related to the railway line. They showed a water table located at circa 2 m depth 
from the toe of slope.
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The VWC is influenced by both freezing and snow melting periods. Freezing periods 
can be easily detected by the soil temperature reaching values below 0  °C, while snow 
melting is typical occurring in spring. Temperature and precipitation values are shown 
in Fig.  3c, where precipitation accounts for both daily rainfall and daily snowmelt (see 
Sect. 4.5 for details). Drops in logged VWC due to pore water transformed into ice were 
observed at shallow depths (0.1 m and 0.5 m) each year at the beginning of the winter. It 
is worth mentioning that the low VWC values recorded in periods with temperature below 
zero do not realistically represent the in situ soil VWC. At the beginning of the spring, with 
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exception of 2019–2020, peaks of VWC due to snowmelt were recorded at shallow depths 
(Fig. 3b). Smaller peaks can be observed also at 1-m depth, where the water infiltration, 
due to snowmelt, arrives with a delay, providing a small shift of the VWC trend. VWC 
values at larger depths show a rather constant behaviour, except at 6-m depth, where an 
initial drop was recorded at the beginning of the monitored period and an increase around 
December 2019.

4  Hydrological and slope stability modelling

4.1  Numerical modelling

The commercial software GeoStudio (GEO-SLOPE International, Ltd. 2012a; b) was used 
to perform the hydrological modelling and the slope stability analysis. Two modules of 
the software were used, namely SEEP/W (analysis of unsaturated groundwater flow) and 
SLOPE/W (slope stability computation), to define a reliable model able to represent the 
in situ conditions. The 2D finite element module SEEP/W was used to analyse the tran-
sient seepage and obtain PWP and VWC variations in the soil. The governing equation in 
SEEP/W is Richards’ equation (Richards 1931), which describes two-dimensional flow in 
unsaturated soils, as shown in Eq. (1)

where x and y are spatial coordinates; θ is the volumetric water content; h is the hydrau-
lic head; kx and ky are a function of θ and represent the hydraulic conductivities in the x and 
y directions, respectively; Q is water flux; and t is time.

The SEEP/W transient analysis was saved every 24 h and used as input in the form of 
a pore-water pressure distribution for the slope stability analysis. The SLOPE/W module 
was used to perform slope stability analysis using the limit equilibrium method (LEM) and 
calculation of the safety factor assuming the rotational failure model proposed by Morgen-
stern and Price (1965). Examples of numerical modelling coupling transient seepage and 
slope stability analyses are available in the literature, to assess rainfall infiltration effects on 
riverbank stability (Duong et al. 2019; Capobianco et al. 2021) and on a residual soil (Hey-
erdahl et al. 2018; Peranić et al. 2019).

4.2  Calibration and validation procedures of the volumetric water content (VWC)

The analyses with SEEP/W were carried out starting from June 2019. At the beginning of 
the selected period of analysis, the VWC in the soil was inevitably influenced by anteced-
ent precipitation conditions and evapotranspiration processes. With the SEEP/W software, 
it is not possible to manually assign a customized VWC profile before starting the simula-
tion. To overcome this issue, a prelaminar calibration procedure has been carried out. It 
consisted in fitting the measured VWC profile with the modelled one, acting on the input 
water flux (see Sect.  4.5). The calibration procedure was performed before starting the 
simulations. For validation purposes, the results of SEEP/W simulations were compared 
to the observed data for the whole period of analysis. A comparison of the back-analysed 
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monitored variables obtained with and without this preliminary calibration is provided in 
Sect. 5.1.

The agreement between in situ measured VWC (i.e., observations) and modelled VWC 
(i.e., predictions) was evaluated considering an approach used for satellite-based soil mois-
ture products (Albergel et al. 2012; Liu et al. 2018) and global climate models. Taylor dia-
grams (Taylor 2001) were used to describe the statistical relationship between predicted 
and observed data. The correlation coefficient (R, Eq. 2), the normalized standard devia-
tion (SDV, Eq. 3) and the centred root-mean-square difference (RMSD, Eq. 4) were used 
to quantify the agreement between the VWC predicted by different simulations and the 
measured ones. The bias was also calculated and included in the diagram (Eq. 5). Taylor 
diagrams were finally used to compare the different predictions with the observation, using 
a single graph per each monitored depth.

The R, SDV, centred RMSD are related by the following normalized formula:

The construction of the diagram is based on the similarity of the above equation and the 
law of cosines (Taylor 2001):

4.3  Soil physical and mechanical properties

Grain size distribution analyses have been carried out for several representative samples 
taken at different depths (Heyerdahl et al. 2018). The results have been interpreted identi-
fying the following three layers, from the top: a 6-m unsaturated sandy silt, followed by a 
3-m layer of clayey silt, in partially saturated condition, laying on top of a firm marine clay 
extending to large depth (Table 1). Natural gravimetric water content values were measured 
on samples taken at different depths. More than one sample was taken from each layer; 
thus, in Table 1, the range of water content is indicated for each soil type.
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Material properties were obtained: by triaxial tests for layer 1 (Heyerdahl et al. 2018) and 
layer 3 (NGI report 20160131‐02‐R); by literature (Statens Vegvesen 2018; Melchiorre and 
Frattini 2012) for layer 2. The material properties of the layers are summarized in Table 2. To 
be conservative, the unsaturated shear strength angle ( �b ), representing shear strength increase 
due to the matric suction (Fredlund and Rahardjo 1993), was considered equal to ��∕2 , and 
no additional unsaturated strength was considered as a function of the VWC (Vanapalli et al. 
1996). The extended Mohr–Coulomb failure envelope (Fredlund et  al. 1978) was used to 
define the shear strength criteria as shown in Eq. (7):

where � is the shear stress on the failure plane at failure; c′ is the intercept of the "extended" 
Mohr–Coulomb failure envelope on the shear stress axis when the net normal stress and 
the matric suction at failure are equal to zero, also referred as the "effective cohesion";  
(

� − ua
)

 is the net normal stress at failure; �′ is the angle of internal friction associated 
with the net normal stress state variable;

(

ua − uw
)

 is the matric suction at failure and �b the 
angle represents shear strength increase due to the matric suction.

4.4  Soil water retention curves

The experimental soil water retention curves (SWRCs) of the unsaturated layers of the slope 
were obtained through pressure plate testing (Lin and Cerato 2012; Heyerdahl et  al. 2018) 
performed at NGI labs. The van Genuchten (1980) SWRC equation was used to calculate the 
water content as function of the matric suction as follows:

(7)� = c� +
(

� − ua
)

tan� +
(

ua − uw
)

tan�b

(8)� = �r +
�s − �r

[

1 +
(

�

�

)n]m

Table 1  Slope layers and conditions

Layer Soil type Elevation (m) Layer 
thickness 
(m)

Range of natural gravi-
metric water content
(%)

Saturated water 
content (measured 
in lab)
(%)

1 Sandy silt 171–164 6 12–20 45
2 Clayey silt 164–161 3 24–29 45
3 Firm marine clay 161–130 > 30 > 29% –

Table 2  Soil properties for slope 
stability analysis in SLOPE/W

Layer Unit weight 
γtot
(kN/m3)

Cohesion 
c′

(kPa)

Friction angle 
�� = 2 ∗ �b

(°)

Failure envelope

1 18 8 36 Mohr–Coulomb
2 18 8 32
3 20 10 32
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where � is the actual soil water content  (m3/m3);  �r the residual water content  (m3/m3); 
�s the saturated water content  (m3/m3); � the matric suction (kPa); � is a scaling factor 
(kPa); n and m = (1–1/n) are fit parameters of the model related to the shape of the curve.

The hydraulic conductivity was calculated as follows:

where kw is the actual hydraulic conductivity (m/s) and ks is the saturated hydraulic 
conductivity.

Figure 4 shows the soil water retention curves for the drying phase obtained interpo-
lating the results of the pressure plate tests. Batch1, Batch2 and Batch3 between 1.5 and 
6 m could be considered to have comparatively equal retention properties, while Batch 4 at 
6–7 m was different. The curves obtained for Batch1 and Batch4 have been considered in 
the following analyses, respectively, for layer 1 and layer 2.

(9)kw = ks

[

1 −
(

�� (n−1)
)

(1 + (��n)−m)
]2

(

((1 + ��n))
m

2
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Fig. 4  Soil water retention curves for the drying phase obtained interpolating the results of the pressure 
plate tests. a for sand silt layer from 0 to 6-m depth; b for clayey silt layer from 6 to 7-m depth
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In Table 3, the van Genuchten best-fit parameters � , n and m are shown, together with 
the saturated hydraulic conductivity (ksat) taken from Heyerdahl et al. (2018). The saturated 
hydraulic conductivity for layer 1 was measured with the constant head method on undis-
turbed specimens in the conventional triaxial apparatus. The values for Layer 2 and Layer 
3 have been assumed considering laboratory tests carried out on similar soils in the area.

It is important to specify that tests for the determination of the SWRCs during the 
absorption phase cannot be performed with the pressure plate apparatus; thus, the hyster-
esis in the soil retention behaviour was not taken in consideration, although it is generally 
recommended to use the wetting curve, for better characterization of unsaturated flow con-
ditions leading to slope failure (Ebel et al. 2008; Chen et al. 2017).

4.5  Modelling set‑up

The slope geometry modelled is shown in Fig. 5. Initial total head values were assumed, 
respectively, on the left and on the right boundaries, of 163 m and 142 m. The total head 
values were defined considering the 4 piezometers installed on top of the slope and 2 other 
piezometers at the toe of the slope (Fig. 2). Daily precipitation (rainfall and snowmelt) data 
were used to define the flux boundary conditions along the slope surface in the SEEP/W 
program. To discretize the domain, quadrilateral and triangular elements of about 1-m res-
olution were used (Fig. 4), with a total of 2460 elements and 2566 nodes.

The measured initial VWC profile, at the time 0 of the analysis (i.e., 04 June 2019), 
showed a nonlinear trend (Fig. 6), because, in general, shallowest layers are more prone 
to wetting and drying cycles determined by short-term rainfall, evaporation and evapo-
transpiration, which would slightly affect deeper layers (Comegna et al. 2016a, b; Capo-
bianco et al. 2020). The VWC profile shows an increasing trend from 4-m depth towards 
the surface and a saturated conditions below 6  m (Fig.  6). In this regard, two series of 
simulations starting from different VWC initial conditions (IC) were considered: (i) non-
calibrated (NC), with a linear trend of negative pressure head up to 5-m depth (Model_NC 
in Fig. 6), and (ii) calibrated (C), with a VWC profile resulting from a preliminary hydro-
logical adjustment (Model_NC in Fig.  6). The calibrated VWC profile was obtained by 
applying an initial condition of steady-state analysis with a constant surface unit flux equal 
to the recorded monthly rainfall of the antecedent month (180 mm).

For each series, a total of three simulations were carried out, respectively, considering 
different boundary conditions: (1) precipitation (R), (2) precipitation and evaporation (CL), 
and (3) precipitation and evapotranspiration due to vegetation (VE). To assess the evapo-
ration flux, SEEP/W module uses by default the Penman–Monteith equation (Allen et al. 
1998). For the cases with climate boundary conditions (CL and VE), a set of climate varia-
bles (i.e., air temperature, relative humidity, wind speed and solar radiation) were provided 

Table 3  van Genuchten best-fit 
parameters for SWRC and 
saturated permeability

m = (1–1/n)
� , scaling factor; θs, saturated water content; θr, residual water content; 
ksat, saturated hydraulic conductivity

Layer n
(–)

m
(–)

α
(kPa)

θs θr ksat
(m/s)

1 1.9 0.474 5.92 0.45 0.03 2.4E−06
2 1.76 0.432 8.47 0.45 0.03 1.0E−07
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to feed the Penman–Monteith equation to determine the evaporation flux. The climate vari-
ables used for modelling were taken from the closest meteorological station, located about 
11 km north from the slope. The precipitation (rainfall and snowmelt) dataset was obtained 
from the daily gridded raster file on the Norwegian website senorge.no (http:// www. senor 
ge. no), evaluated combining weather stations and radar measurements. SeNorge provides 
high-resolution fields of daily total precipitation for applications requiring long-term data-
sets at regional or national level. The dataset constitutes a valuable meteorological input for 
snow and hydrological simulations; it is updated daily and presented on a high-resolution 

Fig. 5  Slope geometry with mesh distributions, boundary conditions and regions used in the model

Fig. 6  Initial VWC profiles: 
measured to date 03 June 2019 
(continuous blue line), modelled 
non-calibrated (NC) and mod-
elled calibrated (C)
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1 km grid (Lussana et al. 2018). Snowmelt is estimated by the Snow map model (Saloranta 
2012).

Furthermore, additional information related to the vegetation was also needed to deter-
mine the evapotranspiration flux. An overview of the effects of vegetation on the hydrau-
lic modelling and the Penman–Monteith equation using SEEP/W was provided in a recent 
study (Capobianco et  al. 2021). Specifically, the following values for the vegetation fea-
tures were used. The leaf area index (LAI), defined as the projected area of leaves over 
a unit of land, was set equal to 1.5 for the period May–September) and equal to 0 for the 
autumn and winter period (October–April). The Plant Moisture limit (PML) was set equal 
to suggested default value from SEEP/W manual (Geoslope 2012). An arbitrary value of 
1 m was selected for the root depth (RD), and the normalized root density (NRD) was con-
sidered to have a negative linear trend. Finally, the soil cover fraction (SCF), representing 
the percentage of soil covered by the canopy, was a proportional function of the LAI (for 
LAI = 0, SCF = 0; for LAI = 1.5, SCF = 1), and the vegetation height, equal to 3 m, is an 
average between bushes and tree heights present along the slope. Vegetation may change 
the soil water retention capability of the root-permeated soil (Scholl et al. 2014; Ng et al. 
2016; Leung et al. 2018; Foresta et al. 2019; Capobianco et al. 2020); however, there still 
is an open debate on whether the presence of roots reduces or increases the soil water con-
ductivity. Similarly, frost action and drying can be important for infiltration in shallow lay-
ers due to shrinkage/cracking and soil heave. Since these aspects go beyond the scope of 
this work, the same hydraulic properties of the unsaturated layers were adopted in all simu-
lated cases (Table 3), including those with vegetation. The variables needed for each simu-
lation are listed in Table 4.

5  Results and discussion

5.1  Preliminary correlation between predicted and observed VWC

The predicted VWC calculated with the SEEP/W module was compared to the observed 
values (i.e., in situ measurements) for a 6-month period (i.e., June 2019–December 2019), 
considering all the 6 measured depths. A common and simple approach to compare pre-
dicted and observed data is to regress predicted and observed values and compare slope 
and intercept parameters against the 1:1 bisector line that represents the perfect correlation 
between the two variables. The disposition of the variables is important because, although 
the correlation value is the same, the intercept and the slope of each regression differ 
and, in turn, may change the result of the model evaluation (Piñeiro et  al. 2008). Pairs 
of observed–predicted VWC values were, respectively, plotted in the y-axis and x-axis for 
each of the 6 sensor depths. Figure 7 shows the pairs of observed–predicted VWC for the 
6 simulated cases on a daily basis, with on the left side the non-calibrated series, and on 
the right side, the calibrated ones (see Table 4). For almost all the depths, the non-cali-
brated data series (Fig.  7a–c) are more scattered, whereas for the calibrated simulations 
(Fig.  7d–f), the values are less spread and closer to the 1:1 line. At 2- and 4-m depths, 
the discrepancy between observed and predicted data is visible as the points are spread 
horizontally.

The simulations were conservative at almost all depths (apart from 6-m depth), since the 
predicted VWC points are mostly all located either on the 1:1 line or below it (Fig. 7). This 
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means that the predicted VWC values are generally higher than the observed values. This 
discrepancy can be justified by the SWRCs used to perform the analyses, since the curves 
are calculated for the drying phase based on drying tests. For soils with hysteretic behav-
iour, for the same values of suction, the corresponding VWC in the drying path is higher 
than the one in the wetting path (Childs and Collis-George 1950; Croney and Coleman 
1954; Millington and Quirk 1959; Kunze et al. 1968; Hogarth et al. 1988; Pham et al. 2005; 
Maqsoud et al. 2006; Nuth and Laloui 2008; Malaya and Sreedeep 2012, Sorbino and Nic-
otera 2013; Rianna et al. 2019; Capparelli and Spolverino 2020; Comegna et al. 2021). It 
is also worth mentioning that the SWRCs were obtained in laboratory, while experimental 
in situ tests can give different results even though are more difficult to perform. In fact, the 
impact of soil structure on water retention curves and hydraulic conductivity in the field, 
compared to small core samples, has been recognized in previous studies (Mirus 2015; 
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Fig. 7  Regression between observed (y-axis) and predicted (x-axis) VWC values and comparison against 
the 1:1 line (perfect correspondence) for the following simulated cases a NC_R, b NC_CL, c NC_Cl-VE, d 
C_R, e C_Cl, and f C_CL_VE
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Fatichi et  al. 2020). In addition, the variability of hydraulic parameters for a field-based 
SWRC is also smaller compared to a laboratory-based or texture-based SWRC (Thomas 
et al. 2018). Finally, another limitation of the modelling software is that it can only simu-
late homogeneous layers, while it has been observed in Heyerdahl et al. (2018) that soil 
layers 1 (0–6 m) and 2 (6–9 m) are not completely homogeneous, as the proportions of silt, 
sand and clay are not constant with depth. This is also confirmed by the SWRC experimen-
tal points measured in laboratory for the first layer (i.e., Batch3, Fig. 4a). Few measured 
pairs of VWC-suction values obtained from Batch 3 are not as consistent as the points 
obtained for Batch1 and Batch2.

5.2  Validation of the hydrogeological model with Taylor diagrams

The comparison between observed and predicted VWC patterns was quantified in terms of 
correlation (R, Eq. 2), standard deviations ratio (SDV, Eq. 3), centred root-mean-square dif-
ference (RMSD, Eq. 4) and bias (Eq. 5). R coefficient (Eq. 2), SDV (Eq. 3) RMSD (Eq. 4) 
and bias (Eq. 5). These parameters were calculated for each couple of predicted–observed 
VWC datasets. The results were plotted (Fig. 8) in the Taylor diagrams (Taylor 2001).

Each diagram plots the comparison between predicted and observed VWC values at dif-
ferent soil depths (0.1, 0.5, 1, 2, 4, 6 m). Every diamond is representative of a simulation 
case from Table 4 and is plotted in the diagram as a function of the calculated ’R’ coeffi-
cient (black curves), SDV (blue curves) and RMSD (green curves); the diamond colour is 
representative of the bias. The position of each diamond on the plot quantifies how closely 
that model’s VWC patterns match the observations. Ideally, a good model would have rela-
tively high correlation, low RMS errors (Taylor 2001) and SDV around 1. Furthermore, the 
darker is the diamond colour, the lower is the bias in predicting the VWC values.

Series-wise, it is possible to confirm that the best simulations are those that belong to 
the C-series, where an initial calibration of the VWC was performed. At almost all depths, 
the C-series were closer to the observed in situ VWC values and trends.

Figure 8 shows that the simulation C_CL_VE generally agrees better than the other sim-
ulations with the observations at almost all depths. C_CL_VE shows a better agreement 
with the observed VWC at 0.1 and 0.5 m, despite the bigger variability of data observed 
at the shallowest layers, mostly due to the short response to atmospheric drivers. On the 
contrary, the simulation C_CL_VE was less able to model the VWC at 2 m. Even though at 
2 m (Fig. 8d) there is a fairly high correlation (0,77), SDV and RMSD were high (respec-
tively 9,7 and 9,5), and the bias was about 6%. This indicates less agreement between the 
predicted and observed values. However, it is important to underline that none of the simu-
lations can correctly model the VWC at 2-m depth. At 4-m depth (Fig. 8e), the C_CL_VE 
simulation showed a good agreement with the observed data, with a bias circa 6%. At 6-m 
depth (Fig. 8f), high correlation (0,97) and low bias, but high SDV (3,5) indicates that the 
model was able to reasonably predict the trend and the values, but with bigger variations 
of the predicted values compared to the measured ones. In summary, these results show 
that for modelling in  situ VWC it is important to carry out an initial calibration and to 
perform the analyses considering both vegetation and climatic variables. Climate variables 
and vegetation can significantly influence the hydrological behaviour of unsaturated slopes. 
For example, temperature can change the VWC of the shallowest layers from one season to 
another, while roots can improve the permeability of the rhizosphere, thus promoting lat-
eral diversion of rainwater and acting like a natural lateral drainage (Balzano et al. 2019).
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Furthermore, the preliminary validation process was useful to prove that the SEEP/W 
modelling, specifically simulation C_CL_VE, was better than the others to back analyse 
the hydrogeological conditions within the slope at almost all depths. Possibility to further 
improve the match between observed and predicted hydrological variables (i.e. VWC and 
PWP) trends and values are described in the following section.
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5.3  Sensitivity analysis of the hydraulic conductivity for the best‑fit model (C_CL_
VE)

As a second step of the validation process, a sensitivity analysis of the hydraulic conduc-
tivity has been performed. The sensitivity of different model outputs and the importance 
of each layer within the model have been described in the following. Specifically, the 
saturated hydraulic conductivity and the permeability anisotropy ratio ( k�

y
∕k�

x
 ) have been 

varied. Generally, the saturated hydraulic conductivity is assumed to be the same in both 
directions in engineering practice; however, this does not account for possible inhomoge-
neities in the soil texture that are often found in situ (Wang et al. 2018; Hong et al. 2019).

Simulation C_CL_VE is the best one, resulting from the previous preliminary valida-
tion, in back-calculating the observed VWC and it has been considered, herein, for the sen-
sitivity analysis. In order to improve the reliability of the model, the results of the different 
simulations, described in this section, have been compared not only with VWC but also 
with PWP measurements. The list of simulations carried out is provided in Table 5. As a 
reference for comparing the observed data with the predictions, the PWP and VWC sensors 
at 6-m depth only have been considered. The reason is because these sensors are located 

Table 5  List of simulations carried out varying the saturated horizontal hydraulic conductivity and the per-
meability anisotropy ratio

C_CL_VE _id k�
y
∕k�

x
 ratio kx,sat

Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3

0 1 1 1 2.4E−06 5.00E−07 5.00E−10
1 1 1 1 5E−06 1.00E−07 5.00E−10
2 1 1 1 2.4E−06 5.00E−07 5.00E−10
3 2 1 1 5E−06 1.00E−07 5.00E−10
4 2 2 1 5E−06 1.00E−07 5.00E−10
5 2 1 1 5E−06 3.00E−07 5.00E−10
6 2 1 1 5E−06 5.00E−07 5.00E−10
7 2 1 1 5E−06 8.00E−07 5.00E−10
8 2 1 1 5E−06 7.00E−07 5.00E−10
9 2 2 1 5E−06 7.00E−07 5.00E−10
10 2 0.5 1 5E−06 7.00E−07 5.00E−10
11 1 1 1 5E−06 5.00E−07 5.00E−10
12 2.5 1 1 5.00E−06 5.00E−07 5.00E−10
13 1.5 1 1 5.00E−06 5.00E−07 5.00E−10
14 3 1 2 5.00E−06 5.00E−07 5.00E−10
15 2 0.5 1 5.00E−06 5.00E−07 5.00E−10
16 2 0.25 2 5.00E−06 5.00E−07 5.00E−10
17 2 1 1 5.00E−06 5.00E−07 5.00E−10
18 2 2 1 5.00E−06 5.00E−07 5.00E−10
19 2.5 0.5 1 5.00E−06 5.00E−07 5.00E−09
20 2.5 1.5 1 5.00E−06 5.00E−07 5.00E−10
21 2.5 1 1 5.00E−06 5.00E−07 5.00E−10
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in the fluctuation zone of the water table and are showing more long-term variations com-
pared to other depths.

Figure  9 summarizes the main findings of the sensitivity analysis. Figure  9a, c and 
Fig. 9b, d show, respectively, how changing the hydraulic conductivity and the ratio influ-
ences the model result. Specifically, Fig. 9a,c shows that increasing the hydraulic conduc-
tivity of layer 1, from 2.4E−06 m/s (C_CL_VE_0) to 5E−06 m/s (C_CL_VE_1), a faster 
infiltration process and earlier VWC and PWP responses are observed. This change influ-
ences the VWC within layer 1; C_CL_VE_1 has lower VWC values at all depth except 
at 6-m, i.e., the interface with layer 2. This second layer has a lower hydraulic conduc-
tivity that leads to water accumulation at the interface. For this reason, the VWC at 6-m 
depth increases. The same consideration can be done for the PWP, which increases at 6-m 
depths. In general, this change shows a better correspondence between observed and pre-
dicted VWC and PWP.

Increasing the hydraulic conductivity of layer 2, from 1E−07  m/s (C_CL_VE_0) to 
5E−07  m/s (C_CL_VE_2), shows a reduced peak and a smoothed trend (Fig.  9a, c) of 
both VWC and PWP values. (The curves are less steep and the initial PWP is closer to the 
observed one.) The change in layer 2 influences only the deepest VWC sensor, located at 
6-m, at the interface between layers 1 and 2. A simulation increasing the hydraulic con-
ductivity of both layer 1 and layer 2 (i.e. C_CL_VE_11 in Fig.  9a, c), has been carried 
out, obtaining VWC and PWP trends between C_CL_VE_1 and C_CL_VE_2. The VWC 
curve obtained shows a good match with the observed one (Fig. 9a). The observed and pre-
dicted PWP curves have a similar shape, but the predicted one seems to be shifted in time 
(Fig. 9c).
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The best simulation obtained varying the hydraulic conductivity of each layer (C_CL_
VE_11) has been considered for parametric analysis of the permeability anisotropy ratio. 
Increasing the permeability anisotropy ratio of layer 1 from 1 to 2.5 (C_CL_VE_12) varies 
the infiltration response to climate drivers and vegetation. The similarity between predicted 
and observed PWP increases (Fig.  9d), but the predicted VWC overestimates the actual 
VWC values (Fig. 9b). A better agreement for the VWC is observed by reducing the ratio 
to 1.5 (C_CL_VE_13). However, the best simulation able to adequately represent both 
VWC and PWP trends is obtained considering a ratio of 2 (C_CL_VE_17).

Changing the ratio of layer 2 and layer 3 does not show any variations in the different 
simulations for the PWP and the VWC within layer 1. Moreover, soft marine clays do 
not show relevant permeability anisotropy as showed also by Leroueil et al. (1990) and 
Hong et al. (2019).

Figures 10 and 11 compare, respectively, the predicted VWC and PWP of the best 
simulation (C_CL_VE_17) with the observed data at different depths.

5.4  Effectiveness of the hydrogeological model with time

The previous section shows that the simulation C_CL_VE_17, including a preliminary cal-
ibration, climate drivers and vegetation, is able to replicate the monitored in situ PWP and 
VWC conditions. This section aims to assess the effectiveness of the hydrological model 
C_CL_VE_17 of back-calculating the VWC throughout the year. The observed VWC has 
been compared with the predicted data at 0.1-, 0.5-, 1-, 6-m depths. The other two depths 
(i.e., 2- and 4-m) have been excluded from the comparison since the model was not able to 
replicate the VWC values and trends at these depths.

Three different time spans have been considered for comparison: a 6-month period 
(6M), June 2019–December 2019; a 12-month period (1Y), June 2019–June 2020; and 
a 14-month period (1.25Y), June 2019–August 2020. Figure  12 shows the comparison 

Fig. 10  Comparison between the best simulation prediction (orange line) and the observed VWC (OBSV, 
blue line) at different depths: 0.1, 0.5, 1, 2, 4, 6 m
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between the predicted VWC variables (simulation C_CL_VE_17) with the in situ measure-
ments for the three different time spans using Taylor diagrams.

The analysis shows that, for 0.1, 0.5, 1-m depths, the 6M comparison has a high R 
(> 0.75), a SDV of circa 1, the lowest RSMD among the other time spans and the bias 
always lower than 7% (Fig. 12). For the 6-m depth, the 6M comparison shows a high R 
(> 0.85), with a low bias (circa 1%) but a high SDV (5.4) and, consequently a high RSMD 
(Fig. 12). The reason lies on the flat trend showed by the measured VWC in the 6M time 
span (see Fig. 10), with an almost constant VWC value in time. On the contrary, the simu-
lation C_CL_VE_17 shows an increase of the VWC slightly before (i.e. from November) 
the one observed for the measured data (i.e., from December). Consequently, the SDV is 
high (5.4) even though the observed and predicted VWC are both low, respectively, 0.25 
for the measured data and 1.3 for the modelled one.

Analysing the 1Y comparison, it emerges that, apart from 0.1-m depth, the performance 
of the model to predict the in  situ condition is still good. In general, at all depths, R is 
higher than 0.78, SDV is around 1 and bias lower than 5% (Fig. 12), except at 0.1-m depth, 
where R decreases to 0.5, SDV is lower than 1 and bias is circa 5%. This can be justified by 
the freezing cycles during the winter experienced by the soil at shallow depths (see Fig. 3), 
when the sensor is reading very low values of VWC (see Sect. 3.3).

After these considerations, the simulation C_CL_VE_17 for the time span 1Y can be 
still considered to satisfactorily replicate the VWC at all depths. The results show that for 
this case study a recalibration of the numerical modelling is not necessary for up to 1 year. 
However, a recalibration after 6M could be recommended.

Fig. 11  Comparison between the best simulation prediction (orange line) and the observed PWP (OBSV, 
blue line) at different depths: 6, 9, 15, 23 m
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5.5  Machine learning preliminary analysis for factor of safety forecasting

A machine learning analysis has been carried out to predict the FS from the modelled 1Y 
VWC. The VWC values are the variables measured in real time on the slope. For this rea-
son, the possibility to predict the FS from VWC would be very important for the imple-
mentation of a real-time slope stability analysis as a Lo-LEWS for the slope. The FS values 
have been obtained from the coupled analysis of SEEP and Slope (GEOSLOPE Interna-
tional Ltd.) for C_CL_VE_17.

A supervised, regression machine learning analysis has been carried out using a random 
forest machine learning model. The analysis is supervised because the data are known. The 
VWC at all depths, air temperature, precipitation, PWP at 6-m depth are named features, 
while the FS are the targets. In the training phase, the random forest model receives both 
the features and the targets, and it learns how to predict the FS given the features. The data-
set with features and targets has been randomly split into training (75%) and testing sets 
(25%). The days with missing monitoring data have been excluded from the analyses. No 
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anomalous values have been found in the dataset. In the training phase, relations between 
feature and target values are defined. In the testing one, the model predicts the FS.

A baseline computing the train targets average has been evaluated. A baseline is a 
method that uses heuristics, simple summary statistics or randomness, to create predic-
tions for a dataset. The baseline’s accuracy has been calculated (98.32%). It represents the 
reference value to compare the machine learning algorithm performance with. Moreover, 
to quantify the usefulness of all the input features used in the random forest model, the 
relative importance has been calculated. The importance describes how much a particular 
feature improves the prediction.

The prediction accuracy is calculated for different combination of features (i.e. moni-
tored variables) used to predict the FS, and it is compared with the baseline accuracy 
(Table 6). Air temperature and precipitation have been considered in all the combinations. 
However, their contribution alone slightly increases the prediction accuracy (98.78%). The 
highest accuracy (99.78%) is obtained considering the PWP at 6-m (Table 6). A similar 
accuracy (99.77%) is reached considering precipitation, air temperature and the VWC at 
0.1-, 0.5-, 1-, 6-m depths. This result highlights the possibility to predict the FS knowing 
the VWC. The VWC is monitored in near real time; thus, they can be used as warning 
parameters in the IoT-based Lo-LEWS. A higher accuracy is reached if considering also 
the PWP at 6-m (99.83%). However, the PWP measures are currently not automatic, and 
manual in situ readings are needed.

Figure 13 shows the importance of the variables considered for predicting the FS with 
combination #6 (Table 6), i.e., considering VWC, precipitation and air temperature. The 
most important variables are (Fig. 13): the VWC at 1-m (0.54), 6-m (0.28) depths and air 
temperature (0.12). The daily precipitation and the VWC at 0.1 and 0.5-m depths show a 
low importance in predicting the FS for the 1Y period. It is interesting to notice that the 
daily temperature has a higher importance compared to the daily precipitation; this finding 
highlights once more the importance of the temperature in controlling the evapotranspi-
ration, the hydrological balance (Scaringi and Loche 2022) and, thus, the stability of an 
unsaturated slope (Bordoni et al. 2015).

Table 6  Comparison between baseline and prediction accuracies for different considering features

Id Features Prediction accuracy
(%)

Increment
(%)

#0 prec., air_t 98.78 0.46
#1 prec., air_t., VWC_0.1 99.33 1.01
#2 prec., air_t., VWC_0.5 99.29 0.97
#3 prec., air_t., VWC_1.0 99.42 1.1
#4 prec., air_t., VWC_6.0 99.3 0.98
#5 prec., air_t., PWP_6.0 99.78 1.46
#6 Prec., air_t., VWC_0.1, 0.5, 1, 6 99.77 1.45
#7 Prec., air_t., VWC_0.1, 0.5, 1,6 PWP6 99.83 1.51
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6  Concluding remarks

This work presents a framework for a IoT-based early warning at a slope scale (i.e. Lo-
LEWS). The paper applies the first two phases of the framework to an unsaturated slope in 
Norway. The monitoring and modelling phases have been described, with emphasis on the 
hydrological model, its effectiveness in time and ML analysis to predict the FS from the 
monitored variables.

Two series of simulations were carried out: one considering an initial calibration of the 
VWC profile (C) and another one where no initial calibration has been conducted (NC). 
For each series, a total of three simulations were performed, respectively, including precip-
itation; precipitation and climate parameters; precipitation, climate parameters and effects 
of vegetation. The paper describes the validation of the different simulations with the 
observed in situ VWC measurements. The comparison carried out using Taylor diagrams 
showed the importance of including a VWC preliminary calibration as well as precipitation 
(rainfall and snowmelt), climate variables and vegetation for back-calculating the hydro-
logical behaviour of the slope. A sensitivity analysis of the hydraulic conductivity and per-
meability anisotropy has been conducted to improve the agreement between predicted and 
observed hydrogeological variables (i.e., VWC and PWP). The sandy silt layer on top of 
the slope showed a permeability anisotropy with an hydraulic conductivity ratio  greater 
than 1, highlighting a higher vertical hydraulic conductivity compared to the horizontal 
one, as also showed by Hong et al. (2019), for sandy soils.

The simulation C_CL_VE_17 was able to adequately reproduce the observed in  situ 
VWC conditions at 0.1-, 0.5- ,1- and 6-m depths. On the contrary, at 2- and 4-m depths, 

Fig. 13  Relative importance of the features used to predict the FS (histograms). The red dashed line repre-
sents the 95% of importance. The green continuous line is the cumulative accuracy
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the model was not able to predict the observed VWC, which maintain a quite flat trend 
with very low VWC values. However, the absolute discrepancy between predicted and 
observed VWC for both depths was not exceeding 5%. The reasons for this discrepancy 
can be ascribed to the possible presence of higher hydraulic conductivity soil lens located 
between 2 and 4 m depth, and the use of drying curves as SWRC. This would explain the 
very low VWC recorded in situ. However, moisture content in a slope is subject to spatial 
variability that a 2D model cannot fully capture (Uhlemann et al. 2017).

The effectiveness of the hydrological model in back-calculating VWC was tested for 3 
different time spans: 6M, 1Y, 1.25Y. The results showed that the accuracy and performance 
of the SEEP/W model decreased with time. The analysis outlines that the C_CL_VE_17 
model was able to replicate the VWC at 4 depths (0.1, 0.5, 1, 6 m) for up to 1Y. Despite 
this finding, the re-calibration period might change from year to year as a function of the 
slope and the environment under investigation. A slope stability analysis has been carried 
coupling the hydrological modelling with a LEM. The calculated FS, the temperature, the 
precipitation and the monitored WVC and PWP have been used as input for a ML analysis. 
The ML analysis has shown the possibility to predict the FS using the monitored VWC. 
This finding is very important since it proved the possibility to use monitored real-time 
data in a Lo-LEWS, with the aim of informing and warning the railway authority of the 
increased probability of having a landslide.

In conclusion, the procedure described in this paper can be seen as a first step towards a 
IoT-based Lo-LEWS. The importance of using monitored data to back-calculate and vali-
date a hydrological model has been highlighted. Moreover, the possibility to use VWC to 
predict the FS has been investigated. However, forecasting and warning phases still need to 
be detailed to operate the IoT-based Lo-LEWS for the studied slope. About the forecasting 
phase, conditions leading to failure (i.e. VWC, PWP, precipitation and temperature values/
thresholds) need to be determined. In the analysis carried out herein, the FS values used 
to train the ML algorithm have always been above one; indeed, no deformation has been 
observed in situ. Additional simulations need to be carried out considering extreme climate 
inputs with the aim of considering climate changes and detecting combinations of variables 
leading to failure (i.e., FS < 1) that can serve as dataset for training machine learning algo-
rithms. Moreover, an automatized procedure to compute the FS considering the monitored 
hydrological variables and the forecasted climate ones need to be implemented. About the 
warning phase, different warning levels as a function of the monitored and forecasted vari-
ables needed to be distinguished, as well as procedures and emergency plans to adopt in 
each level.

Further effort will be also spent to couple VWC measurements with recently installed 
tensiometers in the unsaturated layer. This dataset will provide more information on the 
in  situ wetting–drying cycles of the slope, leading to a better evaluation of the SWRC, 
improving the modelling phase. On top of the slope, a local weather station was installed 
in June 2022, which will allow more accurate measurements of the climate variables (pre-
cipitation, wind speed, air temperature, relative humidity) in the near future, improving the 
monitoring phase.
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