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Abstract
In this study, we present the first findings of the potential utility of miniaturized light 
and detection ranging (LiDAR) scanners mounted on unmanned aerial vehicles (UAVs) 
for improving urban flood modelling and assessments at the local scale. This is done by 
generating ultra-high spatial resolution digital terrain models (DTMs) featuring buildings 
and urban microtopographic structures that may affect floodwater pathways (DTMbs). 
The accuracy and level of detail of the flooded areas, simulated by a hydrologic screening 
model (Arc-Malstrøm), were vastly improved when DTMbs of 0.3 m resolution represent-
ing three urban sites surveyed by a UAV-LiDAR in Accra, Ghana, were used to supple-
ment a 10 m resolution DTM covering the region’s entire catchment area. The generation 
of DTMbs necessitated the effective classification of UAV-LiDAR point clouds using a 
morphological and a triangulated irregular network method for hilly and flat landscapes, 
respectively. The UAV-LiDAR data enabled the identification of archways, boundary walls 
and bridges that were critical when predicting precise run-off courses that could not be 
projected using the coarser DTM only. Variations in a stream’s geometry due to a one-year 
time gap between the satellite-based and UAV-LiDAR data sets were also observed. The 
application of the coarser DTM produced an overestimate of water flows equal to 15% for 
sloping terrain and up to 62.5% for flat areas when compared to the respective run-offs 
simulated from the DTMbs. The application of UAV-LiDAR may enhance the effective-
ness of urban planning by projecting precisely the locations, extents and run-offs of flooded 
areas in dynamic urban settings.

Keywords  LiDAR · UAV · Urban flooding · Arc-Malstrøm · Point cloud classification · 
Ghana

 *	 Katerina Trepekli 
	 atr@ign.ku.dk

1	 Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster 
Volgade 10, 1350 Copenhagen, Denmark

2	 Department of Computer Sciences, University of Copenhagen, Universitetsparken 1, 
2100 Copenhagen, Denmark

3	 Institute for Scientific & Technological Information, Council for Scientific & Industrial Research, 
Cantonments, P.O. Box CT‑2211, Accra, Ghana

http://orcid.org/0000-0002-9040-4409
http://crossmark.crossref.org/dialog/?doi=10.1007/s11069-022-05308-9&domain=pdf


424	 Natural Hazards (2022) 113:423–451

1 3

1  Introduction

Climate variability will result in the occurrence of natural disasters that would go beyond 
our current socio-economic planning capacities if they extended to more intense and fre-
quent hazards like floods (IPCC 2012; EU Directive 2007; Hoegh-Guldberg et al. 2018). 
Population growth, ageing infrastructure and alterations in land cover resulting from 
unplanned urbanization are all significant factors with greater flood damage potential 
(NOAA 2020).

For effective proactive management, technological developments of remote sensing 
observations and hydrological models may facilitate rapid flood forecasting maps aiming 
at predicting storm water consequences days in advance of the actual flooding, as well as 
identifying high-risk areas and flooding extents. However, precise flooding predictions may 
be hindered when using digital elevation models (DEMs) in hydrological models from out-
dated satellite data or data at spatial resolutions that are too coarse to identify local obsta-
cles affecting flooding propagation.

Many hydrological studies rely solely on publicly available coarse-resolution, satellite-
based DEMs (Kulp and Strauss 2019) in the form of digital terrain models (DTMs) repre-
senting the bare earth (e.g. ASTER GDEM, Nikolakopoulos et al. 2006) or digital surface 
models (DSMs) referring to surface elevations, including natural and man-made objects 
(e.g. STRM, Hensley et  al. 2001). DTMs with spatial resolutions coarser than 6 m usu-
ally lead to predicted flooded areas that are unrealistically large (Wang and Zheng 2005; 
Cook and Merwade 2009). The application of coarse-resolution DSMs may also introduce 
even more inaccuracies in flood hazard modelling because metre-wide ground features 
can create a critical difference in simulated flooding (Leitão et al. 2016). Misrepresenta-
tions of bridges, tunnels or continuous walls in DEMs may result in biased estimates of the 
direction and amount of water flow by neglecting their important downstream effects on 
urban water resources (Sampson et al. 2012; Becek 2014). Thus, to generate more realistic 
surface pathways, fine-resolution DTMs (< 1 m) featuring buildings and urban microtopo-
graphic structures critical to water flow (hereafter DTMb) are required.

The application of light and detection ranging (LiDAR) technology may address this 
challenge by generating spatial 3D information in the form of point cloud data and extract-
ing DTMbs of considerably finer resolution and higher vertical accuracy compared to 
spaceborne DEMs (Jain et al. 2018). Airborne-based LiDAR or imagery data sets are not 
available country- or region-wide. Also, such data are limited, especially in developing 
countries, and deployments of piloted aircraft surveys cannot always be commissioned at 
short notice (Brazier et al. 2016; Zhang and Crawford 2020). Alternatively, mobile and ter-
restrial LiDAR systems have been utilized to improve the vertical accuracy of topographic 
feature representation in DSMs as compared to those acquired by airborne systems (Turner 
et  al. 2013; Brasington et  al. 2012). However, the limited field of view of ground-based 
LiDAR may produce a variety of artefacts in floodwater depth grids (Fewtrell et al. 2011).

In the absence of high-quality topographic data and increased human vulnerability to 
flooding, the implementation of drone-borne LiDAR to generate fine-resolution DTMbs 
that supplement coarser DEMs could be particularly useful for precise urban planning 
where optimum strategies for flood protection must be site-specific (EEA 2013) and flood 
simulations should be kept up to date with dynamic urban growth (Perera et al. 2020).

Previous studies have pointed out the potential for predicting urban flooding at 
the local scale using unmanned aerial vehicle (UAV) imagery (Coveney and Rob-
erts 2017) and the structure from motion (SfM) technique (Westoby et  al. 2012). For 
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instance, Schumann et  al. (2019) and Izumida et  al. (2017) documented the utility of 
DSMs obtained by UAV imagery as a supplement to airborne LiDAR data sets for quan-
tifying topographic alterations along floodplains. Yalcin (2019) used UAV imagery to 
derive fine-resolution DSMs for improving the performance of a hydraulic model in the 
absence of flood records. However, digital photogrammetry is often challenged by prob-
lems with feature definitions due to surface smoothing and difficulties when tuning the 
image matching algorithms in the SfM method (Priestnall et  al. 2000). The precision 
of DTMs derived from UAV imagery depends strongly on the surface characteristics, 
with the largest errors occurring over dense vegetation masking the ground (Govedarica 
et al. 2018). This is because the SfM approach cannot create sufficient terrain points in 
these areas, and since high vegetation must be removed from the terrain analysis, the 
remaining gaps hinder the surface reconstruction (Hashemi-Beni et al. 2018). Compared 
to UAV photogrammetry, the point clouds generated by LiDAR scanners may facilitate 
the generation of more detailed information related to terrain under densely vegetated 
areas (Jakovljevic et  al. 2019) and to microtopographic features because LiDARs can 
penetrate vegetation and directly provide a canopy’s 3D structure.

A recent study tested the applicability of 1  m resolution DSM produced by UAV-
LiDAR for simulating flood in a flat urban area (Li et  al. 2021). The classification of 
the surveyed area into buildings, roads, terrain, woodland and grassland to generate the 
1 m resolution DSM was not based on processing the retrieved UAV-LiDAR data but 
rather on utilizing UAV imagery where the land-use segments were produced from the 
maximum likelihood classification method in ArcGIS (Esri Inc. 2020). One of the main 
challenges in deriving DTMbs for flood modelling applications from airborne, mobile 
or UAV-LiDAR point cloud data is their classification into terrain, vegetation, buildings 
and potentially important urban objects during floods, like elevated roads, bridges and 
boundary walls. Numerous filtering algorithms have been suggested for the classifica-
tion of point clouds, such as the morphologically based (Zhang et al. 2003), slope-based 
(Vosselman 2000), triangular irregular networks (TIN) (Axelsson 2000) or neural net-
works (Jakovljevic et  al. 2019), but there is no single method of classification that is 
applicable to all landscape types (Abdullah et al. 2012; Zhang et al. 2013).

UAV-based LiDAR technology can combine: (i) the flexibility of conducting spa-
tially continuous, frequent, non-laborious, cost-effective surveys of near-surface remote 
sensing, especially in areas made inaccessible by hazardous environments; (ii) the gen-
eration of topographical data at finer spatial resolutions and ad hoc-based needs, as 
compared to airborne LiDAR scanners or satellite/airborne imagery; and iii) the greater 
ability to penetrate vegetated surfaces compared to UAV imagery. To the authors’ 
knowledge, the potential utility of UAV-LiDAR systems in urban flood modelling to 
identify local areas of high risk at centimetre resolution has not been reported.

Here, we hypothesize that fine-resolution elevation data sets from LiDAR using 
drones as a platform can increase the accuracy of flooding estimates at local scales in 
Accra, Ghana. The rapidly expanding coastal metropolitan is exposed to great flood risk 
during the seasonal rains (Ansah et  al. 2020). Urban planning is not able to regulate 
settling fully to the point where local flooding can be avoided, highlighting the need to 
improve predicts of local flooding in order to deploy early flood control measures. To 
test our hypothesis, we initially evaluated the effectiveness of two conceptually differ-
ent filtering algorithms to process point cloud data acquired from UAV-LiDAR surveys 
and produce precise DTMbs of three flood-prone urban locations. We then applied a 
hydrologic screening model to assess storm water-induced run-off volumes and identify 
the areas of high flood risk. The inputs to the hydrologic screening model were: (i) a 
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10 m satellite-based DTM; and (ii) 0.3 m resolution DTMbs generated by UAV-LiDAR 
surveys.

2 � Materials and methods

2.1 � Description of the method

The major components of the project were as follows:

	 (i)	 Generation of precise DTMbs at 0.3 m resolution in three urban sites of Accra 
by applying morphological-based and TIN-based algorithms to segment the point 
clouds derived from the UAV-LiDAR into ground, vegetation, buildings, and man-
made features which may have a substantial effect on flood propagation.

	 (ii)	 Quantification of the upstream run-off entering the UAV-surveyed sites from the 
surroundings by applying the Arc-Malstrøm hydrologic screening method (Balstrøm 
and Crawford 2018) at the full catchment scale using a 10 m DTM purchased from 
Airbus TM in the absence of publicly available DTMs at semi-low resolutions.

	 (iii)	 Detection of the location, extent and depth of local landscape depressions (hereafter 
named bluespots) within the three sites using the fine-resolution DTMbs as input to 
the hydrologic model and taking into account the pre-estimated upstream run-offs.

	 (iv)	 Comparison of flood modelling results in terms of their potential to identify the 
extents and depths of bluespots and predict accumulated run-offs using the semi-
low-resolution DTM and the fine-resolution LiDAR-generated DTMbs.

To ensure accurate representation of finer-scale topographic features by the UAV-
LiDAR system, randomly selected urban features within the flood-prone test areas were 
field-surveyed by measuring their dimensions. To assess the precision of projected flooded 
areas locally, an extensive field campaign documenting local flooding hot spots and the 
height of boundary walls raised to protect premises against the worst flood events were col-
lected and accompanied by statements from local informants.

2.2 � Study area

During the last century, Ghana has been challenged by severe flooding affecting more than 
3.5 million people and costing 567 human lives (EM-DAT 2015). From 2015 to 2018, 
extreme rainfall events concurrent with the peak of the rainy season in the coastal met-
ropolitan caused 164 deaths, and more than 43,000 people were displaced by damage to 
properties (Ansah et al. 2020; Marrengane and Croese 2020). It can be reasonably antici-
pated that the citizens of Accra will experience an increase in the frequency of urban 
flooding due to the projected increase in precipitation patterns if global warming is kept to 
1.5 °C (Klutse et al. 2018), the rapid ongoing urbanization and the absence of mitigation 
strategies against climate extremes in general (Møller-Jensen et al. 2020).

The satellite-based DTM covered the major 29,690 ha drainage basin for the Greater 
Accra Metropolitan Area and 57 other minor drainage basins with outlets into the Gulf of 
Guinea covering an additional 16,650 ha (Fig. 1).

From 19 to 27 August 2019, aerial surveys using a UAV-LiDAR system were con-
ducted in three local communities of Accra: (1) the Santa Maria area, a partially planned, 
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consolidated and densely populated settlement (2106 persons per km2) with lots of infor-
mal developments consisting of many un-engineered link roads and without properly con-
structed storm water drains (Oteng-Ababio et  al. 2021). Flooding has been reported in 
key sections of roads close to a main road. The landscape includes a steep hill near the 
low-lying urban area; (2) The University of Ghana Campus (hereafter Legon Hall), located 
approximately 15 km northeast of the centre of Accra, characterized as a very flat terrain 
accommodating more than 40,000 people; and (3) the Okponglo flat area located in the 
city centre and close to Accra Sports Stadium (Fig. 2). The UAV-LiDAR surveys covered 
16.7 ha at Santa Maria, 14.7 ha at Legon Hall and 25.3 ha at Okponglo.

2.3 � Instrumentation

Point cloud data were acquired using a UAV-LiDAR system (LiDARSWISS, CH) onboard 
a Matrice 600 Pro octocopter. The LiDAR system includes an inertial navigation system 
(INS) that fuses data from an inertial measurement unit (OxTS micro-electro-mechanical 
systems) and GPS data received by a Global Navigation Satellite System (GNSS) antenna, 
a beam LiDAR scanner (Quanergy M8), a SONY R10-C camera with 16 mm lens, and 
an integrated data storage unit. The laser scanner’s horizontal field of view (FOV) is 360 
degrees, and the vertical FOV is equal to 20 degrees. The heading accuracy of the laser 
scanner is 0.10 degrees, and the pitch/roll accuracy is equal to 0.05 degrees with an overall 
accuracy (RMSE) of less than 0.03 m. A Trimble Real-Time Kinematic GNSS Base Station 
was also used to provide additional overhead communication with the INS (approximate 

Fig. 1   Drainage basins for the Greater Accra Metropolitan Area identified from Airbus’s DTM. The main 
drainage basin (light blue) covers an area of 29,690  ha. The Euclidean distance from its northernmost 
region at Aburi to the pour point in the Gulf of Guinea is approximately 35.4 km



428	 Natural Hazards (2022) 113:423–451

1 3

cost 8,000 USD). The positional accuracy of the GPS receiver was 0.05 m horizontally and 
0.03 m vertically. The UAV point cloud data sets were in LAS format and georeferenced 
to UTM WGS84 zone 30 N with a resulting mean point density equal to 60 points/m2. The 
UAV flights with the LiDAR scanner and the digital camera onboard the drone were per-
formed 60 m above ground with a flight speed of 5 m/s, and 80% forward overlap and 65% 
side overlap specifications. At Okponglo, the LiDAR data set’s point spacing was 0.08 m, 
and the point density was 142.86 samples/m2. The acquired point clouds representing the 
Santa Maria and Legon Hall sites had a point spacing equal to 0.05 m, and their average 
point densities were 471.14 and 235.17 samples/m2, respectively.

2.4 � Processing point cloud data to generate DTMbs using the UAV‑LiDAR

In this study, we assessed the effectiveness of two filtering approaches to classify the 
acquired point cloud data representing the hilly site of Santa Maria and the low-lying area 
of Okponglo (Fig.  3) using: (i) a combination of two morphological-based filters (MM) 
introduced by Chang et  al. (2008) and Zhang et  al. (2003); and (ii) the TIN algorithm. 
The point clouds representing the Legon Hall site were not tested since the surveyed area 
has a similar topography to Okponglo’s and includes only a few buildings. The evaluation 
procedure was based on a comparison of the percentage of points grouped into different 
classes with the respective point clouds, manually classified through visual inspection of 
the derived surfaces, and with recourse to aerial imagery of the sites. Manual filtering had 
previously been employed to evaluate automated filter performance, as filtering errors are 

Fig. 2   Southern part of the drainage basins covering the Greater Accra Metropolitan Area and locations of 
the studied areas at Santa Maria (red point), Okponglo (orange point) and Legon Hall (green point)
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often easy to interpret with the naked eye, and urban features are relatively easy to classify 
over small areas (Hutton and Brazier 2012; Sithole and Vosselman 2004).

To detect ground points, the MM filters were applied to each data set to initially remove 
non-ground points. The remaining points are compared with a modelled 3D curved surface 
within a series of grids using a multi-scale curvature algorithm. The parameterization of 
the morphological filters included alteration of the values for the size of the area where 
points are compared to their neighbours (bin size), as well as deviations of the allowed 

Fig. 3   Point cloud data derived by UAV-LiDAR, showing the areas of a Santa Maria, b Okponglo and c 
Legon Hall
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height change from the local averaged minimum, at which points are removed from the 
ground classification to model a curved ground surface. The classification of buildings and 
trees was based on a morphological-based algorithm that relies on the points’ relationship 
to a best-fit planar surface within each bin of the LiDAR data (Blue Marble Geographics 
2020). The required minimum height above the ground for a potential building or high veg-
etation point was set to 1.7 m in order to include continuous boundary walls and exclude 
other objects like bushes and cars. Bridges were detected following the segmentation 
method introduced by Sithole and Vosselman (2006). The TIN refinement algorithm was 
applied to the LiDAR data set to perform a comparative classification of the point cloud 
using Rapidlasso’s LAStools software. The search step size that defines the average build-
ing size and the maximal standard deviation for planar patches (i.e. building planarity and 
tree ruggedness) were tested to optimize the number of ground, building and tree points.

After the classification of non-ground points, objects like trees and bridges were 
removed to avoid water flow blocking in the storm water simulations. The remaining points 
were interpolated using the inverse distance weighting method (Shepard 1968) in order to 
rasterize the point clouds at 0.3 m resolution (DTMbs).

2.5 � Processing for generating satellite‑based DTM

A DTM and a DSM with a grid spacing of 10 m were acquired from Airbus Defence and 
Space on 9 May 2018. These elevation models are generated using stereo-pair images 
derived by the spaceborne radar TerraSAR-X (Airbus 2017). Raw DSMs are initially gen-
erated using radargrammetry techniques based on matching homologous points from two 
images covering the same area. In order to reduce the influence of SAR-specific effects 
such as shadow or foreshortening, raw DSMs from both orbit directions are processed and 
merged. Voids smaller than eight pixels are interpolated, while larger voids and artefacts 
are filled with ancillary DSM data. For reasons of hydrological consistency, permanent 
water bodies are extracted, rivers and paved runways are flattened with monotonic flow 
to a consistent elevation, while shorelines and embankments are corrected according to 
the morphology of the surface as illustrated by the satellite-based images. The DTM is 
produced by removing the obstructions above the ground from the DSM. The voids from 
removing small single buildings or trees are smoothed out, while voids and artefacts in the 
terrain model due to the removal of larger features are interpolated. The quality control 
consisted of statistical assessments of the absolute and relative errors of the DEMs. The 
absolute accuracy describing all the random or systematic errors of a single point with 
respect to the horizontal and vertical datum used is expected to be within a 5 to 10 m range. 
The absolute horizontal accuracy of the DEMs is derived from the horizontal accuracy of 
the corresponding orthorectified radar image. The relative error, expressed as linear error at 
a 90% probability level based on the difference between processed DEMs of the same area 
using different acquisitions and overlapping stereo pairs, is expected to be less than 5 m.

The DTM was hydrologically corrected further using 343 digitized polylines where 
river underpasses or bridges along infrastructure were detected by visual inspections of 
Esri Basemaps. After correcting the downstream parts of the Odaw River along the indus-
trial area of downtown Accra (5°34′04.3"N 0°13′03.5"W), it was observed that the river’s 
levels had been overestimated due to an accumulation of approximately 1 million m3 of 
sand, debris and largely plastic waste materials along the river and at major underpasses at 
the date of acquisition.
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2.6 � Hydrologic screening method

Two- or three-dimensional hydraulic models update flood propagation through time 
steps, but their computational complexity can be proportional to the resolution desired 
(Noh et al. 2018). The storm water screening method (Arc-Malstrøm) used in this study 
assumes Hortonian flow conditions and is based on a representation of the surface 
grouped into bluespots, their contributing local watersheds, detection of the bluespots’ 
pour points and the streams that connect them when spilling over. When transferred to 
a hierarchical 1D hydrologic network, a fast-tracing operation is enabled to model the 
propagation of a rain event in a fast and efficient manner regardless of the resolution of 
the elevation model (Balstrøm and Crawford 2018). By considering a specific uniform 
rainfall event for the entire drainage basin, a run-off volume is calculated for each local 
watershed (RainVolume) that enters a bluespot. If a bluespot’s capacity is reached, it 
produces a SpillOverOut volume at its pour point and creates a downstream water flow 
path (Fig. 4). If a bluespot receives water from other upstream bluespots, these spillo-
vers are used as SpillOverIn volumes to estimate the local bluespots’ water balances. 
Accumulated downstream spillover volumes can be derived from the individual blues-
pots’ local water balances for a specific rain event of, say, 60 mm in such a hierarchical 
(topological) set-up.

The Arc-Malstrøm model was initially implemented on the entire 10  m resolution 
satellite-based Airbus DTM covering the entire drainage basin and considering uni-
form precipitation scenarios ranging from 20 to 150  mm. Then, the fine-resolution 
DTMbs were applied to the screening model to simulate the flood within the UAV-
surveyed areas at the local scale. In the latter case, we used the run-off volumes that 
can be propagated within each watershed for different precipitation scenarios and the 
water load entering each site (SpillOverIn) from the surrounding upstream bluespots 
(SpillOverOut).

Identified bluespots shallower than 0.2 m and smaller than 1 m3 were excluded from 
the flood simulations in order to eliminate puddles along infrastructure and preserve 
deeper and more voluminous bluespots. The screening model was applied using ArcGIS 
Pro 2.7.0 (Esri Inc. 2020).

Fig. 4   Illustration of a cross section of a bluespot and the corresponding hydrological attributes that can 
be derived by the Arc-Malstrøm model: Bluespot’s contributing watershed area (m2), maximum depth (m), 
extent (m2), capacity (m3), or the bluespot’s volume below its pour-point level, and the water loads (m3) that 
enter (SpillOverIn) and exit (SpillOverOut) a bluespot for a given a uniform rain event. The SpillOverOut is 
calculated by the formula: SpillOverOut = SpillOverIn + RainVolume – capacity (m3)
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3 � Results

3.1 � Classification of point cloud data

For the low-lying flat area at Okponglo, the MM approach had a better overall performance 
compared to the TIN, but almost one-third of the point clouds that should have represented 
buildings remained unclassified (Table 1). On the other hand, the TIN approach was more 
effective in classifying the building points using a step size equal to 25 m and a building 
planarity equal to 0.1.

The optimal parameterization set for the MM approach that led to a more accurate 
ground classification consisted of a minimum height above the local average minimum ele-
vation at which points were considered as non-ground equal to 0.3 m and a bin size equal 
to 0.5  m. The optimal RMSE from the best-fit local plane that building points must lie 
within was 0.2 m, with the respective minimum vegetation distance being equal to 0.3 m. 
For the ground classification based on the TIN approach, the 5 m step size was found to 
be more effective (50.27%) compared to the 25 m cell size (47.44%), but the TIN method 
could not identify any vegetation points (Table 1). Noticeably, the choice of an optimal step 
size was critical when reducing the number of faulty rejected ground points (Type I errors) 
and the number of faulty accepted non-ground points (Type II errors). The smaller window 
size preserved the terrain details, but large building features were not filtered completely, 
leading to high Type II errors. The larger window removed large objects effectively, but the 
terrain details were overlooked, leading to high Type I errors.

For the Santa Maria site, where the physical landscape is generally undulating, inter-
spersed in most parts with plains and gentle slopes compared to the flat area at the Okpon-
glo, the classification of point clouds was optimized using the TIN model tuned to a 5 m 
step size, a building planarity equal to 0.2 and a value of tree ruggedness equal to 0.4. 
The ground classification’s performance using the MM was improved by increasing the 

Table 1   Percentage of classified points and the resulting elevation range between manually classified data 
sets compared to the respective classified point clouds after the application of the TIN method and a combi-
nation of the slope-based and morphological-based algorithm (MM)

Site Okponglo Santa Maria

Method TIN MM References TIN MM References

Ground (%) 47.44 56.25 59.47 39.2 38.37 41.47 49.85
Min elevation (m) 71.57 71.57 71.97 41.47 58 40.25
Max elevation (m) 83.27 79.82 79.70 52.69 58.51
Building/ walls (%) 20.96 12.13 25.40 21.95 34.13 43.08 54.9 50.15
Min elevation (m) 75.10 83.27 73.28 73.07 43.94 39.88
Max elevation (m) 83.27 83.34 57.37 58.51
High vegetation (%) 18.21 15.13 16.03 0.65 43.17 13.11
Min elevation (m) 73.28 73.00 43.30 54.68 42.22
Max elevation (m) 83.27 83.34 58.51 53.23
Unclassified (%) 31.59 13.32 27.91 22.06 41.8
Min elevation (m) 71.93 41.8 58.50
Max elevation (m) 83.27 58.51
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minimum height change from the local mean value to 0.5 m and by decreasing the bin size 
to 0.25 m, allowing for more low vegetation points to be removed.

By comparing the filtering methods’ performance in these distinctly different urban 
areas, it was found that the TIN approach could effectively identify the ground points of the 
hilly site, while the morphological-based method produced more competitive outputs in the 
simulated flat terrain. The resulting DTMb of Santa Maria was based on the TIN classifica-
tion (Fig. 15), while the DTMbs of the flat sites at Okponglo and Legon Hall were gener-
ated using the MM segmentation method (Figs. 16, 17).

3.2 � Flood simulations using UAV‑LiDAR DTMbs and semi‑low‑resolution elevation 
models

With the Arc-Malstrøm screening tool, the locations, extents and contributing watershed 
areas for the local bluespots were derived for the whole urban area using the Airbus 10 m 
DTM and visualized in a GIS environment for the three surveyed sites (Fig. 5). For each 
bluespot, the water depths and the accumulated water flow of the local contributing water-
shed area were derived assuming a 30  mm rainfall scenario (Table  2), and all detected 

Fig. 5   Illustration of the bluespots, contributing streams and the bluespots’ local contributing watersheds as 
simulated using the Airbus 10 m digital terrain model (DTM) and taking into account different uniform rain 
events for the districts of: a) Santa Maria, b) Okponglo and c) Legon Hall. The orange dashed lines repre-
sent the area surveyed by the UAV system

Table 2   Comparison of hydrological attributes after the application of the flood model at the local scale 
using the DTMb generated by the UAV-LiDAR and at the urban scale using the satellite-based DTM for 
watersheds of the Santa Maria (S), Okponglo (O) and Legon Hall (L) sites

Watershed ID Flood modelling at the local scale Flood modelling at the urban scale Difference (%) 
in water flow

Water flow (m3) Maximum 
(mean) depth 
(m)

Water flow (m3) Maximum 
(mean) depth 
(m)

S1 1211 1.63 (0.75) 1434 0.2 18.42
S2 51,522 7.59 (1.00) 58,770 1.67 14.07
S3 123,814 4.36 (1.16) 139,555 0.6 12.71
O1 128 4.7 (0.91) 208 0.58 62.5
O2 30,020 8.94 (2.44) 35,359 1.55 17.78
L1 182 12.6 (2.26) 282 1.86 54.94
L2 218 3.44 (0.63) 243 0.21 11.47



434	 Natural Hazards (2022) 113:423–451

1 3

bluespots at the three sites were predicted to be filled and producing spillovers even after 
a 30  mm rain event. Interactive maps illustrating the bluespots’ extent, depth, capacity, 
local watershed, stream network and run-off volumes for the drainage basins covering the 
Greater Accra Metropolitan Area are available online from the Climaccess  Flood Risk 
Webmap Portal (2020).

The comparison of bluespots generated by the LiDAR-derived and satellite-based eleva-
tion models pointed out differences in their locations and extents within all sites. Some of 
the projected bluespots’ locations for the Santa Maria and Okponglo sites were partially 
overlapped using both the semi-low and fine-resolution surface elevation models (Figs. 6, 
7), but a considerable discrepancy between the locations and the extents of the bluespots 
generated from these approaches was visually evident for the Legon Hall site (Fig. 8).

The differences in the derived hydrological attributes in Santa Maria using the satellite-
based DTM vs. the UAV-LiDAR DTMb (Fig. 6, Table 2) could also be traced to alterations 
to the actual topography during the time gap between the UAV-LiDAR campaign and the 
acquisition of Airbus’s DTM (08/2019 and 05/2018, respectively). Although it could be 
argued that the time gap is relatively short for any significant topographical changes, we 
observed an alteration in the stream’s course in the Santa Maria site due to reconstruc-
tion activities for a bridge at the time of the UAV-LiDAR flights, as documented by aerial 
photographs (see also Fig. 14). This area coincided with the simulated bluespot in Fig. 6 
(orange polygon), which has a maximum depth of up to 2 m, probably due to the existence 
of a deep hole at the construction site. At the date, the Airbus DTM was acquired, and an 

Fig. 6   Comparison of bluespot extents at the Santa Maria site as simulated by applying the semi-low-reso-
lution DTM and the fine-resolution DTMb generated by the UAV-LiDAR. The bluespots’ depths for flood 
modelling at the local scale were classified and coloured accordingly. Streams are represented by blue lines, 
watersheds by dashed black lines. Watersheds modelled at the city-wide scale (ID S1, S2 and S3) are repre-
sented by black lines
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immense accumulation of trash was noticed along the large Odaw River, the dislocation 
of concrete elements along the tamed river’s walls and temporary deep holes close to con-
struction sites in Accra city centre. Thus, the amount of water that spills from a stream on 
to adjacent low-lying areas could be influenced by variations in the geometry of channels 
and rivers resulting from human interference.

The flood map generated by the fine-resolution DTMb for Okponglo revealed the extent 
of filled bluespots that would occur along one major road and a secondary one in a 30 mm 
rain event, with a maximum bluespot depth reaching levels of 0.6 m and 1.6 m, respectively 
(Fig. 7). The aquaplaning locations that would pose risks to vehicle transportation during 
floods were also detected from the coarser DTM, but the extents of the modelled bluespots 
were larger. The detailed flood modelling pointed out specific buildings that could be sur-
rounded by highly elevated precipitation run-offs. For instance, the bluespots coloured in 
red in Fig. 7 were considerably deep and narrow, and the resulting run-off volumes may 
have severe impacts on the existing infrastructure surrounded by these bluespots. This pat-
tern was not captured by the flood modelling at the city-wide scale.

At the Legon Hall site, pathways underneath arch buildings could be identified in the 
LiDAR point clouds (Fig. 9). If those archways were misrepresented as continuous struc-
tures in the DTMb due to the low density of point clouds or top-view imagery, the pro-
jected stream network would be diverted, and the bluespots’ locations and extents would 
change significantly (Fig.  10a) without maintaining the accuracy of the flood modelling 
(Fig. 10b).

Fig. 7   Comparison of bluespot extents at the Okponglo site as simulated by applying the semi-low-reso-
lution DTM and the fine-resolution DTMb generated by the UAV-LiDAR. The bluespots’ depths for flood 
modelling at the local scale were classified and coloured accordingly. Streams are represented by blue lines, 
watersheds by dashed black lines. Watersheds modelled at the city-wide scale (ID O1, O2) are represented 
by black lines



436	 Natural Hazards (2022) 113:423–451

1 3

Fig. 8   Comparison of bluespot extents at the Legon Hall site as simulated by applying the semi-low-reso-
lution DTM and the fine-resolution DTMb generated by the UAV-LiDAR. The bluespots’ depths for flood 
modelling at the local scale were classified and coloured accordingly. Streams are represented by blue lines, 
watersheds by dashed black lines. Watersheds modelled at the city-wide scale (ID L1, L2) are represented 
by black lines

Fig. 9   Extracted point clouds representing archways, trees and concrete fences
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3.3 � Comparison of water balance attributes simulated at the urban and local scales

To assess quantitatively the effect of using finer resolution topography on the estimated 
water balance, the final downstream water flow calculated from the storm water simula-
tion at the urban scale was compared with the respective total run-off simulated locally 
within the selected watersheds illustrated in Figs. 6, 7 and 8. Overall, the flood simula-
tions at all sites produced shallower bluespots and larger downstream water volumes 
(27.41%) using the semi-low-resolution DTM (Table 2). Most likely this is an effect of 
the smoothing out of the Airbus’ DTM’s elevation values applied to remove artefacts 
from the DTM after subtracting above-ground objects (vegetation and buildings) from 
the acquired DSM in spite of the fact that the buildings should ideally have been kept 
to represent a DTMb in order to model the precipitation run-off around them more pre-
cisely. Under these conditions, the bluespots’ capacities may be underestimated, causing 
more precipitation to be converted into surface run-off instead of being trapped within 
the bluespots. For example, the downstream water flow that spills over out of the sur-
veyed area of Santa Maria was relatively overestimated by 12.71% due to a combination 
of underestimating the capacity and depth of the bluespot within ID S3 (Figs. 5, 6) and 
overestimating the run-off entering its watershed (i.e. the spillover vs. the downstream 
bluespot within ID S2).

The urban-scaled downstream water flows at the flat sites of Okponglo and Legon Hall 
were considerably overestimated compared to the respective water volumes simulated at 
the local scale using the DTMbs by 62.5% and 55% for the first-order bluespots of the O1 
and L1 watersheds, respectively. Similarly, Colby and Dobson (2010) stated that the flood 
simulations in a low-relief plain were more sensitive to the coarsening of LiDAR-derived 
DTMs compared to a hilly landscape.

Fig. 10   Digital terrain models featuring building information and excluding vegetation (DTMb) with simu-
lated streams and bluespots after: a misrepresentation of archways as buildings; and b preserving archways 
to the DTMb
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3.4 � Quantitative and qualitative validation of the hydrological modelling 
at the local scale

Structural information for 30 randomly selected buildings, boundary walls, bridges and 
containers (Fig 18), extracted from the UAV-LiDAR point clouds, were closely cor-
related with field-based measurements giving the lengths and widths of the selected 
sample structures (R2 = 0.998, RMSE = 0.74  cm). Randomly selected point cloud data 
representing bridges and underpasses had correct courses when compared to the actual 
situation documented by aerial photographs justifying the accuracy of the UAV-LiDAR 
point cloud data (e.g. Fig. 11).

The ground truth points labelled 8, 10, 12 and 16 in Fig. 6 consisted of wall heights 
equal to 50, 100, 92 and 85 cm, respectively. In the flood simulations, these ground truth 
points were located within bluespots with predicted maximum depths ranging from 51 
to 125 cm (Fig. 12).

Flood simulations at the local scale obtained by using fine-resolution floodplain 
topographic data indicated that some houses are located critically within some blues-
pots (Fig. 13). The qualitative testimony confirmed that floodwater regularly affects the 
infrastructure in this area (ground truth points 0, 3 and 6 in Fig.  6) due to spillover 
from a stream that was clearly outlined as an elongated bluespot. In the riparian buffer 
zone along the stream, extensive housing development built on or located in proximity 
to waterways effectively narrows the channel and impedes the free flow of water. The 
stream receives water from numerous small streams at uphill locations north and north-
west of the studied site and merging into a low-lying valley (ground truth points 7, 8, 
9 and 10). This valley contains many bluespots, and it was also highlighted as a noto-
riously flood-prone location by municipal officials. Field observations revealed visible 
evidence of road erosion caused by surface run-off in uphill areas, which provides an 
indication of the water volumes being carried downslope (example in Fig. 14b).

Fig. 11   Profile view of the downstream parts of a small bridge in point cloud format collected by the UAV-
LiDAR and aerial view of the bridge, both collected for validating the accuracy of the point cloud
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Fig. 12   Ground photographs corresponding to the ground truth points 12 and 16 in Fig. 6, where the height 
of the boundary walls was measured to indicate the water levels during flooding

Fig. 13   A 3D view of the DTMb for the Santa Maria area surveyed by the UAV-LiDAR, showing the ter-
rain, buildings and concrete walls. Local bluespots (polygons) and streams (lines) were simulated locally
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4 � Discussion

In this study, we have assessed the utility of UAV-LiDAR systems for simulating urban 
flooding locally in the absence of fine-grained topographic data by using the generated 
DTMbs as inputs into a hydrological screening model without cutting off the links between 
the flood flows inside and outside these boundaries. The presented method led to increased 
accuracy of the flood model predictions within Accra’s three local watersheds (Figs. 6; 7, 
Fig.  8, Table 2), showing a good degree of correspondence with physical indications of 
water levels (Sect. 3.4). We expect that DEMs with fine resolutions will be provided world-
wide in the years to come and argue that our results demonstrate the great value of more 
detailed data for assessing and managing urban flood risks.

The observed differences between the locations and the extents of the bluespots gen-
erated from the coarse DTM and the fine DTMbs could be attributed to underestimating 
the mean terrain height for each satellite-based 10 m pixel covering each surveyed area. 
This would consequently lead to the flooded areas’ extents being overestimated. The 
DEMs originally produced by Airbus or publicly available satellite-based instruments (e.g. 
SRTM) represent the elevation of upper surfaces and not bare earth terrain. Thus, they are 
prone to large error with a positive bias when used to represent terrain elevations after veg-
etation smoothing or hydrological corrections, and this is commonly observed in densely 
vegetated and in densely populated areas (LaLonde et  al. 2010; Shortridge and Messina 
2011; Becek et al. 2014). Over- or underestimates of flow modelling may result from sub-
stantial errors in the vertical elevations (Bates 2012), but the adaptation of elevation mod-
els representing bare earth, without including man-made features (i.e. Airbus’ DTM), may 

Fig. 14   a Aerial photograph capturing a location where a flood-prone bridge is enlarged, causing a bluespot 
with a considerable depth; and b  evidence of erosion in a partial drain due to spillover from uphill areas
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also lead to biases in stream geometries. The DTMbs produced by the UAV-LiDAR was 
able to detect bridges and pathways underneath arch buildings that affected the floodwater 
dynamics around urban features (Fig. 9). Similar structures can be detected using ground-
view images combined with airborne LiDAR, but not necessarily using UAV photogram-
metry (Meesuk et al. 2015).

DEM production and choice involves making trade-offs between accuracy, spatial cov-
erage, cost and grid size, as well as the way they are prepared and/or corrected (Jarihani 
et  al. 2015). Evidently, the precision of terrain characteristics that can be produced by 
highly dense point clouds, such as those obtained by UAV-LiDAR systems, is critical in 
making adequate predictions of flooded areas, particularly when the interest is focused on 
localized flow conditions and inundations in flood-prone areas (Zazo et al. 2015). Accra is 
a city with high potential for flood damage due to its urban development practices, rapid 
expansion and the increased frequency of heavy rainfalls, as well as its lack of topographic 
information. Airborne-based LiDAR data sets are currently not available, and the imple-
mentation of publicly available spaceborne DEMs (e.g. ASTER GDEM, STRM) with 
approximately 30 m resolution and low accuracy (Ali et  al. 2015) would simply tend to 
increase the uncertainty of both hazard and vulnerability models (Yan et al. 2013). In addi-
tion, the footprints of buildings and other man-made urban features from the Open Street 
Map or from  the Open Buildings Data set containing locations and building footprints 
across the African continent are not sufficient (e.g. Figs. 15, 16, 17) to be used as an alter-
native data set for generating DTMbs by integrating them with semi-resolution DTMs.

However, miniaturized LiDAR onboard drones can provide a cost-effective way of cap-
turing fine-scale spatial data (with a price starting at 40,000 USD) describing the water 
resource status of urban catchments and alterations of river geometry at user-defined time 
steps and at the local scale, the scales at which costly adaptation is usually undertaken. 
Thus, the fine-grained DTMbs may be also relevant in flood forecasting and warning sys-
tems, where repeated and accurate topographic surveys at selected high-risk settlements 
are essential to detect hazards and assess the effectiveness of flood warnings to threatened 
localities (Popescu et  al. 2015; Cools et  al. 2016). Such challenges cannot be met with 
current satellite or airborne LiDAR/imaging survey technologies. For instance, airborne 
surveys using LiDAR can cover large areas offering a viable alternative to satellite-based 
products because they generate finer spatial resolution data with high vertical accuracy, but 
their high cost prohibits their use in many countries (Remondino et al. 2011). Compared 
to UAV imagery, UAV-LiDAR data acquisition is more flexible because the SfM method 
requires surveyed ground control points in order to rectify the DEMs accurately and avoid 
the bowl effect in the generated DEMs (Mazzoleni et al. 2020). However, there are strict 
flight regulations for the use of UAVs in many countries, especially over urban areas, and 
data acquisition is restricted by limited flight times or harsh weather conditions. Further-
more, the choice of a suitable filtering algorithm with optimized parameters may become 
crucial in order to retrieve the correct dimensions of the buildings and the resulting DTMbs 
(Table 1). Ineffective filtering of vegetation from the point clouds has been documented as 
producing floodplain biases, highlighting the significance of evaluating the suitability of 
classification approaches to LiDAR data sets in order to improve the vertical accuracy of 
the elevation models (Cobby et al. 2001; Schumann et al. 2019).

The applicability of UAV-LiDAR systems for flood simulations was based on the 
implementation of a 1-D hydrological screening model that enables a fast and flexible 
set-up to produce descriptive flood maps, which can benefit present-day early warning 
systems and hazard assessments for flooding. The main advantage of the Arc-Malstrøm 
model is the computational efficiency of flood simulations, particularly when dealing with 
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fine-resolution DEMs in a full-scale urban domain (Zhao et  al. 2021). Thus, by initially 
simulating the flooding at the city scale (Fig.  5), the flow interaction of the local UAV-
LiDAR surveyed areas with the outer domain (Figs. 6, 7, 8) could be taken into account, 
but due to 1-D models’ intrinsic neglect of time evolution and conservation of momentum, 
hydrographs or flow velocities could not be generated.

As implementation of 2D hydrodynamic models (Roo et al. 2002; Refsgaard et al. 1995, 
Sayama et  al. 2012; Rasmy et  al. 2019) tends to be computationally expensive, a com-
mon practice is to apply DEMs of coarse resolution to large-scale modelling (Fewtrell et al. 
2008). For local-scale flood simulations, sufficiently detailed DTMbs, like those acquired 
by UAV-LiDARs, would reasonably be expected to be handled by 2D–3D hydrodynamic 
models that are capable of managing 0.5 to 1 m resolution DEMs derived by airborne or 
terrestrial LiDAR data (Noh et al. 2018; Shen et al. 2015; Costabile et al. 2021). For exam-
ple, De Sousa and Leitão (2018) simulated flood dynamics at a spatial resolution of 0.5 m 
in a 0.9 km2 semi-urban catchment by merging airborne LiDAR DEM and DEM generated 
by UAV photogrammetry. Data acquisition by UAV-LiDAR on a city-wide scale would be 
demanding in terms of both costs and data processing capacity, but it is realistic at the sub-
catchment scale, where local DTMbs may be complex or rapidly changing.

Hydrodynamic models driven by advances in parallelization technology such as graph-
ics processing units (Xia et  al. 2019), remotely distributed computers (Yu et  al. 2010), 
cloud computing (Glenis et al. 2013) and multi-core central processing units (Neal et al. 
2009) may be more suitable to perform larger-scale flood inundation analyses using DEMs 
of 1 m resolution (Xing et al. 2019; Glenis et al. 2018). Whereas these technologies may 
reduce the computational costs to some extent (Guidolin et al. 2016), 2D or 3D hydrody-
namic models require information related to land-use maps, drainage capacity, infiltration, 
rainfall, tidal level, flood depths, etc. (Glenis et al. 2018), that may not be always available. 
For Accra’s drainage basin, there is an overwhelming scarcity of data related to past flood 
events, soil infiltration rates, drainage systems, groundwater levels and gauging stations 
for rainfall, water levels and streamflow observations. The Sentinel-1 Synthetic Aperture 
Radar (SAR) water body classification method introduced by Google Earth Engine (Copy-
right © geohackweek) was also used to detect flooded areas by comparing 10 m resolution 
SAR data acquired before and after thirteen extreme rain events during 2017–2019 at the 
city scale. This method has so far failed to generate reliable maps of water bodies plausibly 
due to a coarse smoothing out of the SAR imagery, meaning that comparing it with the 
bluespots modelled by the Arc-Malstrøm model for validation purposes is not yet achiev-
able. In the absence of available long-term flood-related observations and the necessity for 
rapid assessments of flood risks, 1D hydrological models such as Arc-Malstrøm may be 
more suitable and sufficiently accurate to identify urban areas with a potential for high 
flood damage from the local to the full catchment scale (Zhao et al. 2021).
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5 � Conclusions

In this study, we have assessed a method for increasing the accuracy of urban flood simula-
tions at the local scale by utilizing UAV-LiDAR technology and a storm water screening 
model. The presented method consisted of point cloud data processing to generate DTMbs 
at fine resolutions and applied the Arc-Malstrøm model at the city wide and local scales in 
order to identify areas potentially at high risk of flood damage.

The accuracy and level of detail of the flooded areas’ extents, depths and run-offs were 
vastly improved when the fine-resolution (0.3 m) DTMbs generated by the UAV-LiDAR 
system were used to supplement a semi-low (10 m)-resolution satellite-based DTM in the 
screening method for three urban sites in Accra.

One of the main advantages of the UAV-LiDAR system was its potential to identify 
urban microtopographic features such as buildings, boundary walls, bridges, vegetation 
and archways. Such features have a substantial influence on floodwater pathways, and their 
misrepresentation in DTMbs could generate inaccurate water depths and flood propagation 
patterns. To improve the vertical accuracy of the DTMbs and, consequently, the precision 
of flood simulations locally, the effectiveness of LiDAR-derived point cloud classification 
should be evaluated first. A morphological approach and a triangulated irregular network 
were found to be more suitable in classifying UAV-LiDAR data sets representing hilly and 
flat landscapes, respectively.

Alterations in stream geometries between the acquisition of satellite data and the experi-
mental campaign were also observed, pointing to the utility of UAV-LiDAR in updating 
DEMs in areas that might have been undergoing topographic alterations since the last col-
lection of elevation data sets from airborne LiDAR or satellite sensors.

When only the semi-low-resolution DTM was considered for flood analysis, the simu-
lated bluespots were represented unrealistically as shallower and with larger extents. The 
respective downstream water flows were overestimated by approximately 15.10% for a hilly 
site and up to 62.5% for flat urban terrains when compared to the run-offs simulated using 
UAV-LiDAR-derived DTMbs.

Flood predictions using the fine-resolution elevation data from UAV-LiDAR instrumen-
tation are proposed as an invaluable resource and supplement to existing airborne or sat-
ellite-based products in producing flood maps. In this paper, we have shown that the finer 
representation of topography and complex urban features from UAV-LiDAR can increase 
the precision of projected flooded areas, thus allowing urban planning to be based on actual 
present-day conditions and securing the most detailed and most cost-effective drainage and 
flood protection in urban settlements at the local scale.

Appendix

See Figs. 15, 16, 17 and 18.
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Fig. 15   DTMb (m) of the Santa Maria Site and building footprint derived from the Open Data Commons 
Open Database (ODbL) v1.0
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Fig. 16   DTMb (m) of the Okponglo Site and building footprint derived from the Open Data Commons 
Open Database (ODbL) v1.0
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Fig. 17   DTMb (m) of the Okponglo Site and building footprint derived from the Open Data Commons 
Open Database (ODbL) v1.0
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trated maps are generated using the structure-from-motion technique and images acquired from a camera 
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