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Abstract
Changes in climate intensity and frequency, including extreme events, heavy and intense 
rainfall, have the greatest impact on water resource management and flood risk manage-
ment. Significant changes in air temperature, precipitation, and humidity are expected in 
future due to climate change. The influence of climate change on flood hazards is sub-
ject to considerable uncertainty that comes from the climate model discrepancies, climate 
bias correction methods, flood frequency distribution, and hydrological model parameters. 
These factors play a crucial role in flood risk planning and extreme event management. 
With the advent of the Coupled Model Inter-comparison Project Phase 6, flood managers 
and water resource planners are interested to know how changes in catchment flood risk are 
expected to alter relative to previous assessments. We examine catchment-based projected 
changes in flood quantiles and extreme high flow events for Awash catchments. Concep-
tual hydrological models (HBV, SMART, NAM and HYMOD), three downscaling tech-
niques (EQM, DQM, and SQF), and an ensemble of hydrological parameter sets were used 
to examine changes in peak flood magnitude and frequency under climate change in the 
mid and end of the century. The result shows that projected annual extreme precipitation 
and flood quantiles could increase substantially in the next several decades in the selected 
catchments. The associated uncertainty in future flood hazards was quantified using aggre-
gated variance decomposition and confirms that climate change is the dominant factor in 
Akaki (C2) and Awash Hombole (C5) catchments, whereas in Awash Bello (C4) and Kela 
(C3) catchments bias correction types is dominate, and Awash Kuntura (C1) both climate 
models and bias correction methods are essential factors. For the peak flow quantiles, cli-
mate models and hydrologic models are two main sources of uncertainty (31% and 18%, 
respectively). In contrast, the role of hydrological parameters to the aggregated uncertainty 
of changes in peak flow hazard variable is relatively small (5%), whereas the flood fre-
quency contribution is much higher than the hydrologic model parameters. These results 
provide useful knowledge for policy-relevant flood indices, water resources and flood risk 
control and for studies related to uncertainty associated with peak flood magnitude and 
frequency.
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1  Introduction

In the coming decades, climate change will likely become a primary problem affecting 
hydrological regimes and flood hazard conditions. According to the IPCC report, sig-
nificant changes in atmospheric temperature, precipitation, humidity, and circulation are 
expected, resulting in increased extreme events, including floods, droughts, heatwaves, 
heavy rainfall, and more intense cyclones (Knutti and Sedláček 2013; IPPC 2013). Accord-
ing to Serdeczny et al. (2016) and Rojas et al. (2013), flood frequency will be increased due 
to climate change and will have a massive socio-economic impacts. Serdeczny et al. (2016) 
stated that there have been climate-linked changes in the magnitude, frequency and timing 
of flood characteristics in different regions of Africa. The autumn and winter flood are sig-
nificantly increasing due to a large positive change in rainfall intensity and frequent during 
the autumn and winter seasons. In contrast, the decline in peak floods are due to decreasing 
future precipitation and increasing evapotranspiration (Coulibaly et al. 2020; Thober et al. 
2018; Balke and Nilsson 2019; Blöschl et al. 2019). The understanding of catchment-scale 
flood hazard projections requires a chain of linked concepts and comprehensive frame-
work. Therefore, developing a comprehensive cascade modeling that considers these prin-
cipal components of climate change and hydrologic modeling framework is crucial.

Assessing the impact of climate change on local hydrological extremes is difficult, 
mainly due to the uncertainty in propagating information from a global coarse resolu-
tion model to the local scale. Meresa and Romanowicz (2017) studied the critical uncer-
tainty embedded (hydrological parameter uncertainty (HBV), climate models (RCP), and 
distribution parameter uncertainty (Generalize Extreme Value (GEV)) in the projection 
of hydrological extremes and addressed that local-scale impact study is highly prone to 
climate models chain error. Joseph et al. (2018) also considered hydrological parameters 
(VIC) and climate models (RCP) uncertainty assessment in seasonal flow projections. 
Soriano et  al. (2019) evaluated the uncertainty of bias correction methods on flood fre-
quency and found that the climate model’s bias correction is significant and brought sig-
nificant change in the magnitude of flood design values. Feng and Beighley (2020) also 
identified the uncertainties from both climate forcings and hydrologic model components 
as well as associated parameterization. They compared the contribution of climate mod-
els, hydrological model structure and hydrological parameters using the seasonal flow indi-
ces as hydrological indicators. For the changes in seasonal mean flow, hydrologic models 
and climate models are two main uncertainty contributors. In contrast, the role of hydro-
logic parameters is not significant in seasonal flow and high flow (Meresa et  al. 2021). 
The uncertainty in future climate flood hazard assessment arises from the uncertainties in 
the different component elements of the modeling chain used to calculate streamflow from 
model-derived estimates of future rainfall. These include uncertainties in the model-esti-
mated parameters of future rainfall and temperature, climate downscaling approaches for 
calibrating meteorological conditions at a particular basin, the structure and parameters of 
the hydrological model of streamflow, and the flood frequency model used to assess flood 
recurrence periods (Bastola et al. 2011; Charles et al. 2019; Meresa 2020; Lawrence 2020; 
Meresa et al. 2021). Therefore, it is crucial to estimate and understand the complex and 
uncertain impact and challenging to identify the primary sources of uncertainty in future 
hazard estimation.

In the other hand, different climate projects (SRES, CORDEX, CMIP) have employed 
different ensembles of regional climate model (RCMs) and global climate models (RCMs) 
with different atmosphere-land modules to derive a wide range of possible future climate 
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conditions. Therefore, the locally projected hydrological extremes are highly dependent on 
the spread (or range) of forcing conditions from the ensemble of the RCM/GCM estimates 
employed in the local impact study area (Woldemeskel et al. 2014; Meresa and Romanow-
icz 2017; Hattermann et al. 2018; Charles et al. 2019; Meresa 2020; Lawrence 2020). The 
information from the spreads of multiple GCMs is considered as a band of impact uncer-
tainty and quantified using the variance of the climate models (Meresa and Romanowicz 
2017; Lawrence 2020). Bias correction methods of GCMs output are also essential and 
significantly impact the projected hydrological extremes magnitude and direction (Pierce 
et al. 2015; Hattermann et al. 2018; Charles et al. 2019). Similarly, the biases correction 
of GCMs output was applied on a grid commensurate with daily climate model output. 
Nowadays, many researchers have been used and addressed the importance of climate bias 
correction methods (Kay et al. 2009; Saini et al. 2015; Soriano et al. 2019). Quantile map-
ping, empirical mapping, simple statistical transformation, and joint probability are the 
most popular and widely applied for climate model bias correction and related to observed 
climate time series. These techniques will reduce the original climate model variability 
and outliers and prepare for forcing hydrological models. From the above study, the major 
source of uncertainty in climate projection is explained by selecting bias correction meth-
ods and the spread of selected GCMs. Furthermore, uncertainty is also introduced through 
the structure and parameterization of hydrological models. Hydrological models translate 
the meteorological conditions of rainfall and temperature into predicted stream flows using 
parameterizations of varying complexity, which must be calibrated with measurement 
databases. Different hydrological models may show varying skill levels in simulating dif-
ferent kinds of flow regime, and this is important for assessing future climate-linked flood 
extremes (for e.g., Pechlivanidis et al. 2017; Joseph et al. 2018; Her et al. 2019). Of which, 
many of the studies attempt to address the uncertainty of the hydrological parameters in 
climate change impact study using GLUE (Beven and Binley 1992), multi-objective func-
tion optimization approach (Dakhlaoui et  al. 2017; Zhang et  al. 2019), Bayesian Model 
Averaging (Beigi et  al. 2019). This implies that on top of the spread of climate models 
and bias correction methods, the hydrological parameter uncertainty using GLUE is also 
important in climate change impact on hydrological extremes. In addition to these sources 
of uncertainty, the flood frequency associated uncertainty is also important. Collet et  al. 
(2017), Kay et al. (2009), Meresa and Romanowicz (2017), Lawrence (2020) found that 
the flood frequency distribution models are highly dependent on the distribution of extreme 
floods, the number of events, and the size and shape of the catchment. This shows that a 
significant effort has been made to evaluate climate change impacts on extreme hydrol-
ogy, mostly focusing on identifying trends in extreme low flow and high flow magnitude 
with their associated uncertainty estimation. However, there is little attention to uncer-
tainty and impact estimation in projected peak flood magnitude and frequency. This study 
applies comprehensive uncertainty and impact estimation of climate change on flood haz-
ard approach.

This investigation has therefore been structured to evaluate the CMIP6 climate data set 
to assess hydrological extreme conditions at selected catchments in the Awash basin of 
Ethiopia. The location is a particularly effective test site with a large historical meteoro-
logical and hydrological data archive and is of particular interest because of large extremes. 
This includes to (i) Compare different bias correction techniques for climate change impact 
assessment, (ii) Estimate the hydrological structure and parameter uncertainly, (iii) Esti-
mate the impact and uncertainty of climate change and bias correction approach on flood 
projections, and (iv) Identify the source of uncertainty associated with projected flood 
hazards.
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2 � Study area and hydro‑climate datasets

Five sub-catchments were selected for climate change impact assessment. These are located 
in different geographical and hydro-climatic regimes (Table 1 and Fig. 1) and inside the 
Awash basin study area. Awash_K (@U/S of Koka), Akaki (@ Aba S.), Kela (@ Welen), 
Awash_B (@ Bello), and Awash_H (@ Melka H) catchments are most representative for 
flood hazard estimation under varying climate conditions. The drainage area of the selected 
catchments ranges from 67.5  km2 for Welen to 7093.9  km2 for U/S of Koka. The eleva-
tion of these catchments varies from 1602 m (@ U/S of koka) to 2300 m (@ Melka H). 
The historical records of daily precipitation, temperature, and streamflow data were taken 
from the Ethiopian meteorological and hydrological institute for the period 1981–2010. 
The selected stations are located inside the Awash basin study area. The highest observed 
flow rates from the daily time series for the basins ranges from 82  m3/s (@ Welen) to 
884 m3/s (@ U/S of Koka), which is proportional to the catchment area. Simultaneously, 
the annual maximum precipitation (or the 95% of annual precipitation) is not proportional 
to the catchment area and annual maximum flow (or 95% of annual flow). The high mean 
of surface runoff is directly related to the high coefficient of variance in river flow (e.g., 
U/S of Koka).

3 � Modeling and numerical experiments

The impacts and uncertainty of projected flood hazard for selected Awash catchments were 
examined using a new climate dataset (CMIP6), three bias correction techniques (statistical 
quantile factor (SQF), distribution quantile mapping (DQM), and empirical quantile map-
ping (EQM)), four hydrological models (HBV, SMART, NAM and HYMOD) with GLUE 
(generalize likelihood uncertainty estimation)—Monte Carlos simulation of 30,000 hydro-
logical parameter sets and general extreme value (GEV)) (Fig. 2). In this study, four stages 
of numerical modeling experiments have been performed. The investigation started by 
selecting natural and/or semi-natural catchments and then extracting, correcting, and evalu-
ating new climate datasets (CMIP6) using the three statistical techniques. A sampling of 

Table 1   Statistical description of the selected gauged stations

Code C1 C2 C3 C4 C5

River/lake Awash_K Akaki Kela Awash_B Awash_H
Gauge at site at/Nr U/S of Koka Aba S Welen Bello Melka H
Latitude [degree] 8.4 8.75 9.0 8.85 8.38
Longitude [degree] 39.02 38.72 38.27 38.42 38.78
Catchment Area [km2] 7093.9 1475.8 67.5 2568.75 7656
Elevation [m] 1602 1994 2129 2060 2300
5% of river flow value [m3/s] 0.78 0.03 0.06 0.05 0.01
95% of river flow value [m3/s] 154.43 5.86 43.02 63.76 33.29
Mean flow[m3/s] 41.69 1.33 8.14 25.16 8.23
Mean precipitation [mm] 3.16 2.37 2.73 2.59 2.37
Annual max precipitation [mm] 132.6 120.9 89.2 67.3 77.9
Base flow index [-] 0.65 0.02 0.16 0.49 0.09
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30,000 hydrological parameters set using Monte Carlo simulation (MCS) for hydrological 
parameter uncertainty band estimation using GLUE (Beven and Binley 1992), simulation 
of flood hazard projections using HBV, SMART, NAM and HYMOD conceptual hydro-
logical models for hydrological model structure and parameter impact analysis. Finally, 
generalized extreme value (GEV), log normal (LNOR), Pearson-III (PEAR-II) was applied 
to estimate the extreme flood hazard magnitude and frequency (Fig. 2).

3.1 � Coupled model intercomparison project phase 6 (CMIP6)

CMIP6 is a new climate dataset project (https://​pcmdi.​llnl.​gov/​CMIP6/) which was 
released by a collaborative effort of different climate research institutes to advance climate 
change knowledge and applicability. Precipitation and air temperature daily time series 
were extracted from the CMIP6 simulation datasets (https://​esgf-​node.​llnl.​gov/​search/​
cmip6/). The climate models output covers 1971–2100 time period and provides global 
scale spatial resolution, ranging from 50 to 250 km. The three shared socioeconomic path-
ways (SSP) scenarios used in CMIP6 are SSP126 (lower level), SSP370 (middle level), 
and SSP585 (high level). In this study, 12 climate models and three CMIP6 scenarios 
(SSP126, SSP370, SSP585) were used to evaluate the projected flood hazard’s impact and 
uncertainty in the selected Awash catchments (see Table S1 for climate model name and 
model details). The catchment centroid points were bracketed by four grid points of the 
coarse resolution GCMS, and the air temperature and precipitation from these points were 
extracted for further analysis. The climate models listed in Table S1 are all global mod-
els with 50-250 km resolutions. The CORDEX project has a fine resolution than CMIP6 
and is assumed to simulate better than coarse resolution climate datasets. However, these 
GCMs can capture the variability and seasonality of precipitation and temperature better 
than those with high resolution (Almazroui 2019).

Fig. 1   Location of the selected case study. The red dots are the main hydrological stations chosen in this 
study

https://pcmdi.llnl.gov/CMIP6/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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3.2 � Climate projections—bias correction techniques

Global and regional climate models (GCM/RCMs) are essential for enlightening our under-
standing of annual, seasonal, and daily precipitation and air temperature characteristics. 
Climate model predictions differ from each other because of differences in the way fluxes 
are parameterized and as well as the underlying grid structure. This gives rise to biases in 
their outputs (GiorgiI and Gao 2018; Krinner and Flanner 2018), making it challenging to 
develop accurate and reliable climate information. It has long been recognized that climate 
model bias must be corrected or ‘calibrated’ before use in other applications like the hydro-
logical extremes projections (e.g., Ehret et al. 2012; Teng et al. 2012; Meresa and Romano-
wicz 2017; Osuch et al. 2017) in hydrology and water resources. However, minimizing the 
bias in climate model output is still a big challenge. There is a problem finding/developing 
a robust climate bias correction technique that reduces the biases between the observed and 
simulated climate data in the historical period. Previous studies have had mixed success in 
the application of different bias correction methods for precipitation (including intensity 
and wet days) and temperature data. For instance, Teutschbein and Seibert (2013), Yang 
et  al. (2010) showed the distribution mapping based on theoretical distributions outper-
forms other bias correction methods in their result. Similarly, Berg et al. (2012), Chen et al. 
(2013) showed that theoretical distribution mapping performs similar to, or only margin-
ally better than, empirical quantile mapping or other statistical methods. Contrary, Gud-
mundsson et  al. (2012), Gutjahr and Heinemann (2013), Lafon et  al. (2013) show that 
empirical quantile mapping demonstrates higher skill than theoretical distribution mapping 
in systematically correcting RCM precipitation. In this study, we used three climate bias 
techniques to correct the raw climate output and examine the contribution of bias correc-
tion methods to the flood hazard magnitude and frequency.

Climate models uncertainty

Global Scale

Catchment scale                         

Greenhouse gas emission scenarios

Bias correction uncertainty
Hydrological Parameter uncertainty: GLUE

Flood hazard changes and aggregated uncertainty

Hydrological model 
calibration

Flood frequency: GEV, LNOR, PEAR-III

Observed preci and temp

Hydrological model calibration: HBV,
SMART, NAM, HYMOD

Fig. 2   Research flow chart to estimate projections of flood hazard and identify associated uncertainty
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3.2.1 � Statistical quantile factor (SQF)

This study proposed a new bias correction technique to compare with the commonly used 
methods (DQM and EQM). The statistical quantile factor change technique (SQM) of 
bias correction is a direct and straightforward precipitation correction, considered a sim-
ple error transfer from the historical to a future period. This involves correcting the future 
daily precipitation ( Pfut,corr ) by multiplying the sum of average ratio and reciprocal ratio of 
observed precipitation ( Pobs ) and reference precipitation simulation ( Pref, raw ) to the pre-
diction of raw climate model precipitation ( Pfur, raw ). By contrast, future air temperature is 
corrected ( Tfut,corr ) with an additive/subtractive constant applied to the raw climate output 
( Tfur, raw ) and minimum difference of the raw ( Tref, raw ) and observed ( Tobs ) air temperature 
in the reference period.

3.2.2 � Distribution quantile mapping (DQM)

Distribution quantile mapping is a parameter bias correction technique that depends on 
the type of distribution fitted to observed and simulated climate data (Piani et al. 2010). 
This distribution-based approach can be single or double distribution quantile mapping (S/
DQM) or other distributions. The excess number of dry days, drizzles and wet days were 
considered and properly corrected in this method. For every N year, the zero precipitation 
is removed, and the single Gamma distribution is fitted to the upper 75% of daily precipi-
tation. In contrast, the double Gamma distribution fitted to both upper and lower parts of 
75% of the daily precipitation.

where Pcorr and Tcorr stand the bias-corrected daily precipitation and temperature, respec-
tively. Likewise, Praw and Traw represent raw climate output, daily precipitation, and air 
temperature, respectively. The raw climate output inverse cumulative density (CDF) is 
symbolized by Fdg and Fdn for precipitation and temperature, respectively. The dn and dg 
subscripts stand for the normal (for temperature) and Gamma (for precipitation) distribu-
tions. The Gamma (for precipitation) distributions have two parameters, shape and scale 
parameters are symbolized by α and β, and the normal (for temperature) distribution stand-
ard deviation and mean are symbolized by σ and µ, respectively.

3.2.3 � Empirical quantile mapping

Unlike the distribution mapping approach, the empirical quantile mapping is based on a 
paired-wise comparison between empirical cumulative density function (ecdf) of observed 
and simulated precipitation at the reference period. This is purely empirical and directly 

(1)Pfut,corr =
Pfur, raw

2
∗

[
Pobs

Pref, raw

+
Pref,raw

Pobs

]

(2)Tfut,corr = Tfur, raw +min
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)
, ± 2.2

)

(3)Pcorr = F−1
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(
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(
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)
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(
Fdn

(
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matching the observed histogram to the future period. The future precipitation and tempera-
ture are corrected using the inverse of ecdf ( ecdf−1 ) and fitted ecdf

3.3 � Bias correction performance evaluation

The performance of the selected statistical bias correction technique was evaluated using 
four statistical measures: correlation coefficient (RR), mean absolute error (MAE), root mean 
square error (RMSE), percent of bias (PBIAS), and maximum precipitation weighting root 
means square error (PWRMSE). These statistical measures were applied to daily rainfall and 
temperature time series of climate model output. The time series-based evaluation was per-
formed by comparing the capacity of each approach to generate precipitation and temperature.

where Ps is observed precipitation at a given station, Pc is corrected precipitation, N num-
ber of observations.

3.4 � Hydrological modeling

Many hydrological models have been developed to understand hydrological processes on 
local and global spatial scales. There are vast ranges of hydrological model types; most 
of the hydrological models have considered physical mechanism and empirical equations 
to describe the catchment processes. The hydrological parameter set is one type of uncer-
tainty source in extreme hydrological modeling.  Precipitation-runoff models are often 
made up of a series of equations that describe a simplified description of hydrological pro-
cesses at the small to large catchment scale. Lumped models treat the catchment process as 
a single unit (Keith 2001), with all variables being averaged over it at a given time scale. 
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This study looks at three different hydrological models with various structures. Each model 
gets forcings of catchment average precipitation and potential evapotranspiration input time 
series data at daily time-steps. At daily intervals, the models estimate actual evapotranspi-
ration, change in stored water in various components, including the slow and quick runoff.

3.4.1 � Hydrologiska Byråns Vattenbalansavdelning (HBV)

The HBV (Bergström 1976) is widely applied in different hydro-climate conditions of the 
world (Meresa and Gatachew 2019; Meresa et  al. 2017; Her et  al. 2019). The model is 
mainly designed to simulate streamflow using precipitation, temperature, and evapotran-
spiration (estimated using Hamon 1964) climate variables. It is a daily lumped concep-
tual hydrological model with fourteen parameters and applied in many parts of the world 
(Meresa et al. 2017; Meresa and Gatachew 2019). In this study, HBV was used with eleven 
hydrological parameters (Table S2). HBV model structure has three consecutive stores: one 
related to the surface, the second associated with the saturated soil layer, and the other to 
the unsaturated routing store. Daily precipitation and daily evapotranspiration (estimated 
using Hamon 1964) are the primary climate variable that are used as inputs to the model. 
The detailed information about the model is described in Bergström (1976). The upper 
and lower limits of the three hydrological models are listed in Table  S2. The details of 
these hydrological models, including their physical meaning and description of each model 
parameter, are explained Bergström (1976).

3.4.2 � Nedbr‑Afstrmnings‑model (NAM)

The NAM (Nielsen and Hansen 1973) is widely used all over the globe. It has been used 
to estimate the direct and runoff and investigate the contributions of groundwater and sur-
face water to streamflow in catchments (O’Brien et al. 2013). The NAM model structure 
applied in this study has two main storage reservoirs for soil moisture accounting, includ-
ing runoff routing and reservoirs, to characterize four hydrological process pathways. The 
model has eight parameters to govern the moisture content in both storages representing 
the surface runoff, soil and groundwater storages, and three parameters conveying to the 
runoff routing components (Table S2).

3.4.3 � Soil moisture analysis rainfall tool (SMART) model

The SMART model (Mockler et al. 2016, 2014) was created as a hydrological model for 
water quality simulations. Individual contributions to hydrological flow paths are high-
lighted in the model. The model has ten parameters to control the precipitation-runoff pro-
cess at a catchment scale (Table S2). Following the approach of SMARG and its predeces-
sors, SMART simulates hydrological flows utilizing conceptual soil moisture accounting 
equations based on a number of soil moisture layers. The depths of these soil moisture 
layers vary based on the characteristics of the watershed, and they represent average condi-
tions across the catchment. The four conceptual flow paths’ numerical procedures involve 
a total of ten parameters, four of which are related to flow routing. The model, like the 
SMARG, comprises six equal-depth soil layers and six soil moisture accounting parame-
ters (Table S2). Because drain flow can be an important conduit for nutrients in agricultural 
catchments (e.g., Madison et al. 2014), it is included as a separate flow path in the model. 
It is related to soil moisture surplus and the drain parameter (S), fluctuating between 0 and 
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1. The soil outflow coefficient is used to determine interflow, a mix of soil moisture excess 
and outflow from the soil layers (D). Individual outflow equations also related to the out-
flow coefficient (D) parameter, and used to compute shallow and deep groundwater at each 
subsurface layer.

3.4.4 � HYdrologic MODel (HYMOD)

The HYMOD is a conceptual model that is lumped the hydrological cycle components 
together (Boyle 2000; Sun et  al. 2010). The rainfall excess and two parallel sets of lin-
ear tanks are the two fundamental components of this scheme. It was decided to use a 
modified version of the model. The model now includes a snow module based on degree 
days. The degree-day factor DD, the precipitation/degree-day relation (Dew), and the 
threshold temperature are the three factors that control the melting storage. The maximum 
storage capacity (Cmax) and the degree of geographic variability of soil moisture capac-
ity within the watershed determine soil moisture content. Excess water from the soil zone 
flows into quick-flow tanks and groundwater based on a partitioning factor that divides the 
flow between fast and slow reservoirs (v1 and v2). The water is dispersed into three linear 
reservoirs in series, one for the quick runoff component and one for groundwater flow in 
parallel with the other flows. The residence times Rs and Rq are used to classify reservoirs 
(Table S2).

3.5 � Hydrological model parameter selection and evaluation

There are different ways of parameter sampling from the upper and lower boundary of 
hydrological parameters, which depend on the computing times and number of parameters 
in a specific hydrological model. Beven and Binley (2014) stated that there is no fixed 
threshold in parameter sampling that varies from ten thousand to a hundred thousand 
parameter sets. In this study, 30,000 parameter sets were generated from three hydrologi-
cal model parameters range (Table S2). Characteristics for high flow and low flows have 
different and need two parallel calibration techniques (Meresa and Romanowicze 2017). 
Meresa and Romanowicze (2017) stated that the NSE likelihood function is relatively use-
ful for high flow simulation due to the interest in peak flow and LogNSE for low flow. This 
study used the NSE, LogNSE, and KGE objective functions to simulate high flow regimes 
and evaluated against observed streamflow. Based on the model performance, 2000 sets of 
hydrological model simulations were selected as behavioral conditions.

where Qo, t and Qm, t is the observed and simulated flow at time t, Qo is the mean observed 
flow, and j is the length of the jth time series.
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Where Qobs and Qsim are the observed and simulated flows, σobs and σsim are, respec-
tively, the standard deviation of the observed and simulated flows. The best values of each 
objective function were selected for hydrological model structure and parameter uncer-
tainty analyses.

The hydrological model runs using the entire space of hydrological parameters com-
bination and evaluated using goodness-of-fit criterion (Beven 2007). Assume likelihood 
function H (X) to separate the non-behavioral and behavioral simulations produced by dif-
ferent variables X, such as input data, hydrological model parameters, hydrological model 
structures, and extreme frequency models. Every ith values of the variable X has its own 
one likelihood measure at time t. The ensemble of each variable Xi (i = 1…m) provides the 
multi-likelihood measure values H (Xi). The generalized likelihood uncertainty estimation 
(GLUE) function is shown in Eq. (12). The std/variance of residual σ2e value is the error in 
the estimated results affected by the model parameters/input data/hydrological model type/
extreme frequency distribution models. If the estimated value of σ2e is near equal to the 
estimated maximum likelihood or equal to the std/variance of the observation data σ2o, the 
likelihood measure H (X) is equal to zero, which indicates extremely high uncertainty.

In this study, GLUE approach was used to estimate the uncertainty associated with 
hydrological parameters.

3.6 � Flood frequency analysis

Extreme frequency analysis is crucial to understand the probability of reoccurrence of flood 
events at different return periods. This information plays an essential role in flood control and 
water resource planning. However, high flow frequency mainly depends on the frequency 
distribution model type and number of distribution parameters. Depending on the environ-
mental and climatic background, many distributions are deployed in various countries by 
many researchers to estimate the frequencies of high flow. For example, the Log-Pearson III 
distribution model is popular in the USA and Australia for infrastructure design (Griffis and 
Stedinger 2007), GEV and PEAR-III in Europe (Refsgaard et al. 2013) and Africa (Meresa 
and Gatachew 2019), and Wakeby and Log-Normal distribution types have been frequently 
used in Asian countries (Chen et al. 2012). However, one or two statistical distribution models 
may not capture the entire temporal and spatial variability of hydrological extremes. There-
fore, the most commonly used distribution type (GEV) was applied for flood hazard frequency 
and magnitude curve development. The distribution was fitted to peak flow to understand the 
hydrological flood in the selected Awash catchments. In Eq. (13), the probability density func-
tion (PDF) is presented and has three parameters.

(11c)KGE = 1 −

√
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�2
O
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where α is scale parameter, β shape parameter and k location parameter.

3.7 � Uncertainty decomposition and estimation

In this study, three main variables, climate models, bias correction techniques, and hydrologi-
cal parameters, were used to identify the relative uncertainty contribution on the total flood 
hazard magnitude. Unlike additive or multiplicative uncertainty estimation methods, ANOVA 
can decompose the aggregated source of uncertainty into individuals’ and their interac-
tion using specific extreme flow indices (Meresa and Romanowicz 2017). Three sources of 
uncertainty in flood hazard projections drive from climate models, bias correction methods, 
and hydrological parameters were estimated using the variances decomposition approach 
(ANOVA). In this study, n-way of ANOVA was used to distinguish the main variable effects 
and their interaction effect on the aggregated extreme frequency indices.

where SSCM is the sum of the standard error of the climate models, SSBC is the sum of the 
standard error of the bias correction methods, SSHP sum of the standard of the hydrological 
parameters, SSCMBC is sum standard error of combined effect of climate models and bias 
correction methods, SSBCHP sum standard error of combined impact of climate bias correc-
tion methods and hydrological parameters.

4 � Results

4.1 � Evaluation and validation of different climate bias correction techniques

The annual and seasonal maximum precipitation time series of 12 GCMs was evaluated 
and validated against observed extreme precipitation in the time interval 1981–2010, 
which is the reference period of this study. Four statistical matrices (RR, MAE, PBIAS, 
RMSE) were used to measure the accuracy of the annual and seasonal maximum pre-
cipitation time series of 12 GCMs in reproducing the daily seasonal and annual maxi-
mum time series of observed precipitation. The correlation coefficient (RR), mean 
average error (MAE), percentage of bias (PBIAS), and maximum precipitation weight-
ing root mean square error (PWRMSE) performance measure criterion were used to 
evaluate the 12 GCMs output with respect to the observed annual maximum precipita-
tion. The results obtained for five locations in Awash basin are given in Fig. 3. Overall, 
the selected stations showed lower medium, and MAE, PWRMSE, and PBIAS values, 
respectively, indicating that the reliability and accuracy of the GCMs precipitation in 
reproducing observed seasonal and annual precipitation is high. The statistical matrix 
values were found different for different climate models. The MAE values vary in the 
ranges of 0.1–20 for annual maximum precipitation, PBIAS values range − 40 to 30, 
PWRMSE values range 0–0.1, and RR − 0.25 to 0.55 in all the selected catchments. 
Relatively, the bias correction methods performed better in C1 and C3.

The climate model biases must correct before using it to force the hydrological models, 
especially because of the nonlinear response of the hydrological model to the precipita-
tion and temperature forcing mechanisms. Figure  4 shows the comparison of three bias 

(14)SST = SSCM + SSBC + SSHP + SSCMBC + SSCMHP + SSBCHP + Error
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Fig. 3   Comparison of three bias correction techniques with observed daily maximum precipitation using a 
statistical matrix. The column represents each catchment using three bias correction methods, and each row 
represents each climate model

Fig. 4   Comparison of seasonal raw and bias corrected daily maximum precipitation simulations from 12 
CMIP6 GCMs for each of our five study catchments. Each column presents results of one bias correction 
method of five catchments. Each row presents a result of three bias correction methods of one catchment. 
In each panel, the dashed black line is the range of bias-corrected 12 GCMs models, red line is the median 
of the corrected 12 GCMs, blue line is the raw median of 12 GCMs, and black line represents the observed 
monthly maximum precipitation
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correction methods on simulation of monthly maximum precipitation average over each 
catchment for the CMIP6 ensemble (color bands, single models shown as a straight line), 
and the observed monthly maximum precipitation is represented by blue straight-line color 
for the period 1981–2010. Overall, the 12 GCMs give a broader spread in the rainy sea-
son and a relatively narrow band of climate models in the dry season. The spread of the 
selected 12 climate model ensemble does not exceed these climate models’ upper and 
lower limit in the reference period. However, the width of these 12 climate models mainly 
depends on the type of bias correction method. DQM and SQF methods are relatively given 
a narrower band/spread than the other, whereas the EQM provided a wide range of climate 
model spreads (Fig. 4). In general, the annual cycle of maximum precipitation shows that 
the uncorrected GCMs have a considerable bias with respect to observed time series. The 
result of the three bias correction techniques is not the same in reproducing the observed 
seasonal maximum precipitation of the selected catchments (Fig. 4). The performance of 
these bias correction techniques in the reference period (1981–2010) is uniform in five 
catchments. Using distribution quantile mapping and empirical interpolation, the corrected 
precipitation range/band of 12 climate models is relatively smaller.

These climate bias correction methods were applied to each GCM in future period 
(2015–2100). The influence of each climate bias correction method on the magnitude 
of change was assessed (Fig.  5). Daily precipitation between 2040 and 2069 (future-
clim2) and 2070–2099 (future-clim3) was compared to the reference period 1981–2010 
(Fig. 5). An increase was simulated in the far and near-future period by all GCMs sce-
narios in terms of annual maximum precipitation. The individual climate models simu-
lated both increase and decrease in annual maximum precipitation. Similarly, changes 
from each bias correction approach show a slight difference in magnitude and direction 
in changing annual precipitation. Generally, these climate change signals are higher for 

Fig. 5   Maximum precipitation change using three bias correction techniques and three scenarios. SQF-
change factor, DGM-quantile mapping using gamma distribution, EQ- empirical quantile using simple 
interpolation. The blue dot stands for SSP126, red for SSP370, and green SSP585
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SSP585 than SSP370 and SSP126 and slightly higher in the C4 and C2 catchments. 
Generally, the changes are smaller in C1 and C4 using DG methods, whereas C2 and 
C3 changes are smaller using EQM and DQM. Interestingly, a linear relationship exists 
between the annual maximum precipitation changes in 2020s and 2050s with propor-
tional magnitude. This indicates that the slope of these changes in 2020s, 2050s, and 
2080s is a positive trend.

Three scenarios have been assembled from 12 CMIP6 climate models (Table  S1), 
constructed for three SSPs. Figure S1 and Table 2 show the projected max air tempera-
ture under each SSP scenario for each of the 12 climate models, together with the mean 
of the ensemble air temperature projected for each SSP. Air temperature is more sta-
ble and consistent with time and space in Ethiopia. The projected air temperature from 
the new climate dataset and new scenarios provides reasonable temperature change, 
increasing by 1.7–3.6 °C and relatively uniform in the selected catchments (Fig. S1 and 
Table 2). However, the spreads of the selected climate models are more extensive in C1 
and C5. Overall, the projected air temperature has a positive slope and continuously 
increasing in the clim1, clim2, and clim3 future period. Overall, the mean daily air tem-
perature and maximum daily air temperature over the baseline condition for the three 
different climate scenarios and two future periods (2050’s and 2080’s) are presented in 
Table 2. It can be seen that the maximum and mean daily air temperature increase from 
the lower to the higher/worst climate scenarios in 2050’s and 2080’s periods.

4.2 � Calibration of the Hydrological models and parameter uncertainty evaluation

An overview of hydrological model calibration performance was provided to assess the 
quality of the sets of robust reference parameters and to check and control that the models 
perform reasonably well in validation and calibration period. The calibration performance 
of the four hydrological model in terms of goodness-of-fit criteria (GOFC) is summarized 
as boxplots according to models and criteria (Figs. 6 and 7). The horizontal line (red lines) 
in the box is the median (0.5) of goodness-of-fit values, and the lower (0.25) and upper 
(0.75) envelopes show the 25th and the 75th percentile values and the lower and upper 
whiskers show the 5th and 95th percentile values, respectively.

Table 2   Overall mean (Mean temp [°C]) and maximum daily temperature (Mean temp [°C]) conditions for 
the reference and the SSP126, SSP370 and SSP585 scenarios in 2050 and 2080 time slices

Station Reference 2050 conditions 2080 conditions

SSP126 SSP370 SSP585 SSP126 SSP370 SSP585

Mean temp [°C] C1 13.37 14.25 21.05 23.55 16 23 28
Max temp [°C] 25.58 26.3 33.15 35.85 30 37 42
Mean temp [°C] C2 13.02 13.75 20.55 26.05 15 22 27
Max temp [°C] 25.19 25.8 32.65 35.35 29 36 41
Mean temp [°C] C3 12.91 14.75 19.05 23.05 17 19 27
Max temp [°C] 25.06 26.8 31.15 35.35 31 33 41
Mean temp [°C] C4 12.57 14.25 21.05 20.05 16 23 21
Max temp [°C] 24.68 26.3 33.15 32.35 30 37 35
Mean temp [°C] C5 13.14 13.75 20.55 23.55 15 22 28
Max temp [°C] 25.32 25.8 32.65 35.85 29 36 42
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An overall analysis of the performance of the models showed that the SMART and 
HBV models are more efficient than the NAM and HYMOD models. The plots’ median 
and upper whisker are lower for HYMOD models than for the NAM, SMART and HBV 
models. The number of runs with at least 60 for GOFC is higher for SMART models than 
for HBV, NAM and HYMOD models. The concept of SMART is more applicable to the 
study catchments investigated, which is probably due to the structure of SMART models, 
which have more routing reservoir instead of none for HYMOD models. The SMART 
models are slightly more effective for performant than the HBV model in the given period. 
This is also confirmed by the number of runs, which is higher for HBV models than for the 
NAM model.

The results of model performance are more distinct for LNSE than for the two other 
GOFC’s because of the lower whisker and median, which is higher than for others (NSE 
and KGE). In the case of KGE, the upper whisker is slightly similar to the two other 
GOFCs. The different versions of the HBV and HYMOD models with two or three param-
eters are almost equivalent in calibration period, despite the different model parameters to 
calibrate the performance criteria. It seems that assimilating the soil reservoir parameter to 
a water holding capacity of the soil is appropriate. It must be due to the fact that the two 
models are not very sensitive to this parameter.

The HBV, SMART, NAM and HYMOD hydrological parameter sets with a sample 
size of 30,000 were generated through uniform distributions. The 30,000 results from the 
Monte Carlo simulation are flagged with the NSE threshold criteria and carried forward to 
estimate future streamflow. GLUE-based parameter uncertainty approach was adopted to 
simulate a possible ensemble of daily streamflow, and NSE objective function was applied 
to separate the behavior and non-behavior simulations. In this study, the runoff simulation 
ensemble with likelihood value larger than 0.5 NSE threshold value was selected. The like-
lihood value less than the NSE threshold value of the model parameter sets is considered 
as non-behavioral. Figure 7 shows the seasonal maximum flow simulation results from best 
parameter (behavioral) sets, including observations in 1981–2010 period and confidence 
interval of 5% and 95% of the streamflow simulations. It indicated that the maximum sea-
sonal simulation falls mostly between the 5% and 95% confidence bands, except in the C4 
catchment. Almost in all the catchments, the upper 95% confidence interval band is mostly 
exposed to extreme seasonal peak flows. Overall, 83% of the observed maximum flow time 

Fig. 6   Summary of GOFC values across the five catchments for the calibration of the four rainfall-runoff 
models for the modeling periods according to the goodness-of-fit criteria
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series falls under the shaded area confidence interval and has a wide range of NSE values 
(0.3–0.75), and it is promising to use for climate change impact study.

4.3 � Projected hydrological flow: performance of hydrological models 
under different bias correction approach

The long-term internal variability and projected flow dynamics from the period 1981–2100 
at the given five stations are shown in Fig. S2. The x-axis is time in the year extending out 
to 2100, and the y-axis is the seasonal value of projected flow. It is clearly seen that the 
main rainy/peak flow season is covered by a yellow color, which is mainly June, July, and 
August. The flow during flood seasons has increased noticeably for each station since 2010. 
Relatively, there is a strong increasing trend in seasonal and annual flow in C1 than in C2. 
Overall, considering the daily projected flow time series shows that the peak flow increased 
for the coming three periods (2010–2039, 2040–69, and 2070–2099). This increase appears 
to be more significant during the summer and early spring season, with a mean peak flow 
increasing from 60 to 70 m3/s and during summer, with a mean flow increasing from 85 to 
100 m3/s at C3. Also, projected flows seem to be smoothed during late autumn and early 
summer periods, with a mean flow of about 35 m3/s. In contrast, the future conditions show 
an inevitable variability from about 25 m3/s in May to 55 m3/s in October (Fig. S2).

The changes in flow simulations forced using three bias correction procedures for cli-
mate variables have been compared and presented in Fig. 8. Overall, it observed positive 
changes in annual maximum flow using DQM, EQM, and SQF, while the magnitude of 
annual maximum flow changes is not the same. However, these are not uniform across the 
selected catchments, bias correction methods, and climate scenarios. Relatively, distribu-
tion-based bias correction models give smaller changes in the annual maximum flow time 

Fig. 7   The multi-model ensemble of monthly maximum flow simulation using best HBV (first column), 
SMART(second column) NAM (third column) and HYMOD(fourth column) parameter sets selected based 
on best NSE value range in the reference period at each catchment
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series. This indicates that wet day frequency correction is significant in understanding the 
future maximum flow projections. Mainly, annual maximum flow changes using EQM give 
a higher spread range and uncertainty. Boldly observed that annual maximum flow changes 
have smaller uncertainty (size of the box plot) in SSP370 and higher in SSP126 (Fig. 8). 
Therefore, correcting the wet days and intensity of precipitation may significantly change 
the change magnitude and direction and minimize uncertainty. The annual maximum flow 
changes are smaller in the C1 and C3 catchments and higher in C5 catchment.

4.4 � Flood hazard projections under varying climate conditions

Best fitted to annual maximum flow was selected for each station and climate model, and 
the best distribution was selected based on Akaike information criteria (AIC) (Table 3). 
Across the selected catchments and climate models, GEV, Gamma, Pearson type III, and 
Weibull distribution are the most dominant distribution types (Table  3). The projected 
annual maximum flow series has different distribution characteristics, resulting from dif-
ferent flood hazard magnitude and risk level. Of which, the three most dominant and best-
fitted distribution models have similar probability density functions (PDF).

Using the most dominant PDF model (GEV), the flood quantile changes due to climate 
change have been evaluated. Figure  9 shows flood quantile changes in climate1 clim2 
clim3 with respect to the reference period, estimated using an ensemble of 12 GCMs and 
three bias correction methods. The ensemble average of 12 climate models within three 
scenarios assessed (SSP126, SSP370, and SSP585) and three bias correction methods in 
five catchments shows a significant increase in flood quantile magnitudes and frequency 
in future (Fig.  9). The changes of flood quantiles are mostly consistent with changes in 
maxima flow, but it does not mean that the magnitude of changes and directions are the 

Fig. 8   River flow change in clim1 (2010–2039), clim2 (2040–2069), and clim3 (2071–2100) with respect 
to the reference period (1981–2010). Each box plot represents the spread of twelve climate models listed 
in Table S1 with median 0.5 and 0.25 and 0.75 quantiles. Each column stands for each scenario (the first 
column for SSP126, the second column for SSP370, and the third column for SSP585). Each column rep-
resents each catchment (first column C1, second column C2, third column C3, fourth column C4, and the 
last column for C5). The red box at the top of the box plot in the right side indicates extreme outlier points
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same. The future flood quantile changes are not the same in space and bias correction 
methods, and the frequency of the larger return period flood increases to higher than once 
in 20 years. The smallest changes are observed in C1 using EQM, C4 using SQF, C5 using 
DQM, and C3 using EQM. Relatively, the methods are consistent in C2 and C3 in provid-
ing information about flood quantile changes in future. Simultaneously, the flood quantile 

Table 3   Best fitted frequency distribution models to simulated peak flow using 12 GCMs and four hydro-
logical models (SMART, NAM, HBV and HYMOD). Each frequency model is represented by number: 
Pearson-III distribution by 1, GEV by 2, Gamma by 3, Weibull by 4, Nakegami by 5, lognormal by 6, 
Loglogistic by 7 and Inverse Gaussian by 8

SMART HBV NAM HYMOD
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Observed 1 2 2 3 5 3 3 2 3 4 2 2 3 4 4 3 2 3 3 3
ACCESS-
CM2

1 2 2 2 1 1 2 2 2 1 2 2 2 1 1 1 2 2 2 2

BCC-CSM 2 5 1 7 8 5 5 3 5 7 3 4 5 2 6 4 4 1 1 5
CESM2 2 5 5 2 4 3 4 5 3 4 4 4 4 3 4 8 4 4 4 4
EC-Earth 6 1 7 8 2 4 3 5 2 4 2 5 1 5 3 4 5 5 5 5
GFDL 2 2 6 2 1 2 2 4 3 2 3 3 3 2 1 2 3 2 3 2
HadGEM 3 5 2 2 2 3 4 3 2 2 8 3 2 2 3 3 2 3 3 3
MICRO6 5 6 1 6 2 4 5 3 1 3 4 2 3 4 3 4 4 3 3 4
MPIESM_HR 4 2 4 7 4 4 3 4 5 5 3 4 5 5 4 1 4 4 4 3
MPIESM2 4 1 7 8 3 4 2 2 6 5 1 5 6 1 3 3 4 5 2 5
NESM3 1 7 5 4 6 4 5 5 5 5 4 1 5 5 5 5 5 5 5 5
NorESM_LM 2 2 3 3 2 2 2 3 3 2 2 3 3 2 2 2 2 3 2 2
UKESM_LL 8 5 2 4 6 7 6 4 4 5 5 4 4 1 6 6 5 4 5 5

Fig. 9   Changes in peak flow quantiles using three bias correction techniques and GEV frequency distribu-
tion model (at 10-, 30- and 50-years return period) using four hydrological model (HBV, SMART, NAM 
and HYMOD) at each catchment
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changes are significant at different return periods with different hydroclimatic simulations. 
For example, C1 catchment has a change range from 0 to 100%, but using the DQM, the 
changes range from 0 to 170%. Similarly, in C5 catchment 0–100% using DQM.

4.5 � Uncertainty estimation and decomposition of associated sources in flood 
hazard estimation

The four sources of uncertainty were estimated based on the one chain principle. The one 
chain uncertainty band quantification started from one climate model that passed through 
three bias correction techniques and four hydrological models with best hydrological 
parameters (Fig. 10). The contribution of each source of uncertainty is not uniform across 
the selected catchments. Each color band represents each source of uncertainty as a rela-
tive range of cascade uncertainty. Spreads of the 12 climate models represent the climate 
models uncertainty band; the spread of four hydrological models for hydrological struc-
ture uncertainty; the hydrological parameter uncertainty is presented by 95% confidence 
interval of selected hydrological parameter sets. The uncertainty due to bias correction 
types is estimated from the spread of three bias correction simulation results are estimated. 
However, the ensemble uncertainty of GCMs is relatively more considerable than the other 
sources. By comparison, hydrological parameter sets do not play a significant role in future 
hazard estimation (Fig. 10). Future flood hazard in C1 catchment is highly sensitive to cli-
mate change and respective bias correction methods, while C2 is more sensitive to hydro-
logical model structures and bias correction methods in flood hazard estimation. Overall, 

Fig. 10   Summary of the additive way of uncertainty contribution analysis result using the direct additive 
method without considering their interaction. The peak flood was estimated at 30 years return period and 
calculated its change with respect to far future period
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from the highest to lowest the sources are arranged as follows: the climate models, hydro-
logical model structure, bias correction procedures and hydrological parameters.

Figure 11 shows only the main sources of uncertainty and their respective bands at spe-
cific return periods and catchments, with considering the main factors’ interdependence 
using ANOVA (Meresa and Gatachew 2019), the contribution of individual sources of 
uncertainty as the main source and their interaction contribution to the flood hazard mag-
nitude and frequency changes in future. The decomposition of source uncertainty from the 
main variables and their interaction were separated based on the variance in flood hazard 
values and calculated out of 100, which means the sum of all sources is 100. Hydrologi-
cal parameter sets on flood hazard projection are not significant and less uncertain in the 
selected catchments. This finding is more related to (Meresa et  al. 2021) conclusion. In 
comparison, the climate change variability shows a significant impact and uncertainty on 
the projection of flood hazards. This may be due to the projected precipitation intensity, 
higher temperature, and time of concentration in the area. On the other side, the contribu-
tion of hydrological parameter sets is not significant in flood hazard estimation due to weak 
role of ground and interflow components in the peak flow (Fig. 11). In general, the climate 
models and hydrological models structure are the main factors in peak flood magnitude and 
frequency projection, Whilst the uncertainty from the hydrological parameter sets is not 
added significant value to the total uncertainty. The share of climate models, bias correc-
tion, and frequency distributions are significant at design flow value estimation at 70 year 
return period. In C1, future flood hazard risk is highly uncertain due to climate model vari-
ability and their respective bias correction methods. By contrast, C2 catchment is more 
sensitive to the frequency distribution and climate model variability.

Fig. 11   Contribution of each source of uncertainty in flood frequency estimation under climate change for 
the five catchments identified as C1 to C5. The three Quantiles estimated at return periods (RT) of 20, 50 
and 70 years (Q20, Q50, Q70) arranged in the x-axis from left to right, respectively. Each color represents 
each source of uncertainty: green is uncertainty from climate models (CC), red from bias correction meth-
ods (BC), orange color from hydrological model structure (HM), pink color from the hydrologic model 
parameter (HP), and the other colors represent the interaction between the main factors
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5 � Discussion

5.1 � Projected hydroclimate using CMIP6 dataset

This study used CMIP6 climate change dataset source to understand the impact and uncer-
tainty in future peak flood hazards. From CMIP6 GCMs, 12 GCMs climate models with 
three climate scenarios (SSP126, SSP370, SSP585) were applied for future hydrological 
extreme simulations. Due to the lack of robust atmospheric-land model interaction, uncor-
rected GCMs are not recommended for extreme hydrological modeling (Meresa et  al. 
2017; Mendez et al. 2020). However, the impact of climate change magnitude also depends 
on the bias correction methods’ principles (Pierce et al. 2015). Three climate bias correc-
tion methods were applied to correct the GCMs output with daily observed air temperature 
and precipitation.

Overall, the distribution-based bias-corrected model fields successfully reproduced the 
observed maximum precipitation, both in terms of the number of wet days and precipita-
tion intensity. This implies that correction of wet days and intensity of GCMs is significant 
and provides a significant role in minimizing uncertainty, whereas the change factor and 
empirical methods give similar results in reproducing the observed daily mean air tempera-
ture. This shows that the interval variability and magnitude of the climate variable signifi-
cantly influences the result of each bias-correction procedures. Due to this reason the bias 
correction to the GCM temperature field was small compared with precipitation.

Moreover, we found that the maximum future temperatures will increase but precipita-
tion may either increase or decrease depending on climate model, climate scenario, hydro-
logical model, bias correction method, future climate period and catchment. At each stage 
and modeling chain, the peak flood magnitude and frequency gives different change magni-
tude. The highest change in annual maximum precipitation was observed in C4 catchment, 
whereas in C5 the changes in the clim2 and clima2 show a non-significant (near to zero) 
magnitude and direction. In C1 catchment, most climate models indicate a positive change, 
but these changes are very small. These changes in precipitation and air temperature are 
consistent with previous findings using RCP-AFRO-CORDEX (Meresa and Gatachew 
2019; Taye et  al. 2015), using MIROC-ESM-CHEM and CSIRO-Mk3-6-0 (Daba et  al. 
2020), and using Statistical Down-Scaling Model, SDSM-CMI5 (Gebrechorkos et  al. 
2020) in Ethiopia. The annual daily maximum precipitation and daily mean air temperature 
projected under SSP126, SSP370, SSP585 shared socioeconomic pathways scenarios sug-
gests that wet conditions could be slightly intensified and increased in C1 and C5. How-
ever, it doesn’t mean that the mean peak flood is much higher the normal condition. In con-
trast, the magnitude of the positive changes in maximum precipitation will be intensified in 
C1 and C2. Similarly, the mean temperature changes of these selected catchments are not 
much different in magnitude and direction. However, SSP126 gives lower changes in pre-
cipitation and temperature magnitude than changes using SSP370 and SSP585.

5.2 � Modeling and projections of hydrological extremes

We examined the impact of the choice of different hydrological model structures with 
respect to reproducing historical extreme flows and the effect of the model structure choice 
on hydrological climate change evaluations. We studied four hydrological models with dif-
ferent number of parameter and routing and storages. The hydrological model with three 
storages and five parameters and six storages with 12 parameters yield equally good results 
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in predicting peak flow in the selected five catchments. Those different model structures 
reproduce historical flow well and the projections of hydrological response under changing 
climate are consistent with meteorological data input patterns.

We compared the feasibility and robustness of four conceptual models widely used in 
Africa and Europe: HBV, SMART, NAM and HYMOD models. The investigation was 
undertaken on five catchments covering the main Awash River basin. The model’s per-
formance were evaluated under three GOFC: KGE, NSE and LogNSE. For the climate 
change impact study, only those obtained with parameters sets giving at least 55% (0.55) 
as the calibration and validation performance were considered. An analysis of valida-
tion and calibration performance showed that SMART model performs better than HBV 
model, regardless the GOFC. The performance of NAM models is somewhat similar, albeit 
slightly higher than that of HYMOD models. The behavior of and validation and calibra-
tion performance of these models differs according to the GOFC criterion considered and 
is different from model to model. A clear relationship was found between validation and 
calibration performance and the hydrological flow regime using four hydrological models 
and three objective functions.

Robustness analysis also showed SMART models to be more robust than NAM and 
HYMOD models. The hydrologic models are most robust in terms of LogNSE. They seem 
to perform and work better when the same weight is given to all parts of the hydrograph. 
HBV and SMART models are the most robust in terms of NSE for peak flood simulation. 
In terms of KGE, the HBV model is the most robust and HYMOD model shows lower 
KGE values. SMART is the most robust in terms of LogNSE than any other likelihood 
functions. The analysis of the robustness and uncertainty of the models structure accord-
ing to input climatic variations between validation and calibration periods (precipitation 
and PET) showed that it is better to transfer the model parameters from a higher PET and 
a drier period than doing the reverse. A more refined analysis showed that a precipitation 
variation of − 9% to 9% or PET of − 4% to 4% between the calibration and validation period 
causes: a loss of robustness less than 10% for SMART models and 30% for HBV models in 
terms of NSE and KGE; a loss of robustness between 15 and 20% for SMART models in 
terms of LogNSE. Authors such as Coron et al. (2012) and Dakhlaoui et al. (2017), reached 
conclusions comparable to those in this study. Particularly, Coron et al. (2012) found that 
the difference among the hydrological models and between validation and calibration peri-
ods should not exceed 15% for better model parameter transfer results. The sensitivity of 
the model parameters depends on the hydrological processes that predominate in the river 
flow over the calibration period and hydrological model structure. Similarly, the more sen-
sitive the model parameter over a given period, the more likely it is to be the optimal model 
parameter for other periods.

Five catchments have been selected from different hydroclimatic and geographical loca-
tions to investigate the impact of climate change on flood hazard and identify the asso-
ciated uncertainty in the projected flood hazard magnitude and frequency. Three hydro-
logical model was calibrated and validated against the observed streamflow data using 
Nash–Sutcliffe (NSE), LogNSE and KGE objective functions in the period of 1981–1990 
and 1991–2005, respectively. A likelihood value higher than 0.5 indicates a satisfactory 
hydrological simulation zone (indicates how well the hydrological model reproduces the 
extreme high flow) (Bennis and Crobeddu 2007) and promising for further analysis. There-
fore, 0.5 was selected as a threshold in runoff simulation and accepted for future runoff 
simulations. The five catchments have an NSE value ranging from 0.5 to 0.75, LogNSE 
ranging from 0.5 to 0.78, and KGE ranging from 0.5 to 0.71 from the 30,000 parameter 
sets sample. Similarly, other studies also show similar results using HEC-HMS (Roth et al. 
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2018), using SWAT model (Shawul et al. 2019), and using the HBV light model (Bekele 
et al. 2019) in Awash catchments.

Uncorrected and the future corrected precipitation and temperature data from CMIP6 
data sets were used to force four hydrological model and to examine the potential impact 
of climate change on the future flood hazard/peak flow. Overall, the projected high flow 
changes are positive, which is an increase in high flow in the near future (2010–2039), far 
future (2040–2069), very far future (2070–2099) for an ensemble of SSP370. Like the pre-
cipitation changes, the effect of climate bias correction on high flow change is clearly vis-
ible and brought higher changes in magnitude with a large uncertainty band. However, the 
distribution-based quantile mapping techniques relatively produce reasonable changes in 
high flow at the selected sites. The changes are higher using SSP126 and SSP585 climate 
scenarios.

In contrast, the SSP370 gives a smaller band in high flow changes in a near and far 
future period, which is a direct reflection of maximum precipitation change. In the C1 
and C4 catchments, the near future changes, far future, very far future for an ensemble of 
SSP370 shows significant changes with a large uncertainty band, whereas in C2 and C3 
catchments, the changes are not uniform across the bias correction methods, and changes 
are smaller than C1. This is most likely due to increased summer and spring precipita-
tion (Meresa and Gatachew 2019). Similarly, the distribution-based climate bias correction 
gives relatively smaller comparisons with the empirical and linear interpolation methods at 
most of the catchments.

5.3 � Flood hazard frequency and magnitude estimation under climate change

The impact of climate change on flood hazards was assessed through the extreme frequency 
distribution models. Each catchment’s baseline and future flood frequency simulations were 
estimated from 12 climate models (GCMs). Various distribution types are commonly used 
in the US, Europe, and Africa (Kay et al. 2009; Collet et al. 2017; Meresa and Romanowicz 
2017; Meresa and Gatachew 2019; Lawrence 2020). In this study, we fitted a series of fre-
quency distribution models to the annual maximum flow time series and assessed the best 
performing distribution model. The GEV distribution model is commonly used in hydro-
logical extremes analysis and was found to be the best statistical description of the model 
prediction data in this study. It was applied for flood quantile estimation and associated 
impacts. The estimated magnitude of flood quantiles at different return periods using GEV 
frequency distributions is not the same in magnitude and uncertainty band. Each climate 
model at each catchment gives a very wide range of flood quantile values. Overall, smaller 
flood quantiles were observed in C3 catchment, whereas the highest was estimated from C1 
and C4 catchments. The estimated quantiles’ total range is relatively smaller in C3 and C2, 
whereas the highest uncertainty range is estimated on C4 and C1 catchments.

Moreover, the changes of flood quantile values are not the same (significance differ-
ence) across the catchment and type of bias correction methods. In the C2 and C3 catch-
ment, the flood quantiles at different return periods are expected to be larger in the near, 
far, very far future. In comparison, the changes are relatively higher in C1 and C4 catch-
ments and expected to be higher in the very far period. This is mainly due to the magnitude 
and distribution of flood events in the given period (Armstrong et al. 2012; Rao et al. 1972; 
Keast and Ellison 2013).
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5.4 � Uncertainty in flood hazard frequency and magnitude and decomposition

In this study, 12 climate models, three bias correction methods, three hydrological models 
with 30,000 parameter sets, GEV flood frequency model, and three climate scenarios from 
the new dataset (CMIP6) were considered to analyze the impact of future flood hazard in 
the selected five Awash catchments. Using additive uncertainty aggregation, each compo-
nent of these analyses is integrated into one framework that contains information from each 
part. Climate models are highly uncertain in characterizing the future climate variables. In 
the last decades, various studies stated that RCP and SRES data are very weak in reproduc-
ing the historical climate extremes (Fowler et al. 2007; Kingston et al. 2011; Saini et al. 
2015; Meresa and Romanowicz 2017). This uncertainty is may be due to the structure, 
parametrization, and spatial resolution of the GCMs. Using multiple models in climate 
change impact analysis would lead to an improved understanding of the uncertainty asso-
ciated with climate models. It is essential in flood risk magnate and water resource man-
agement. Similarly, in this study, multiple climate models from the new data set CMIP6 
(shared socio-economic pathway scenarios) were evaluated for flood hazard projection in 
Awash basin. The spread/discrepancy of climate models’ impact is significant. There are 
also important uncertainties component which is associated with the climate bias correc-
tion methods. The catchment-scale characteristics are not the same as the GCMs spatial 
and temporal characteristics; therefore, it is important to use highly relevant climate bias 
correction techniques to understand the uncertainty and minimize. Three bias correction 
methods were used to correct the GCMs output at catchment scale. These methods were 
effectively corrected in the historical period and then adopt the parameters for future cli-
mate corrections. There are few studies related to bias correction methods uncertainty and 
flood frequency (Kay et al. 2009; Saini et al. 2015; Soriano et al. 2019). They found that 
the climate bias correction could alter the magnitude of flood hazard. This study also con-
firmed this study using three climate bias correction methods and GCMs from CMIP6 in 
Ethiopia’s selected catchment. We find that the uncertainty source due to wet days and 
intensities of precipitation has a significant impact on the flood hazard magnitude (e.g., C4 
catchment).

The hydrological model structure and parameters represent hydrological process. The 
hydrological parameters control the flow from single droplet of rain to the deep catchment 
percolation. In this study, more sensitive parameter sets of HBV, SMART, NAM, HYMOD 
hydrological models were selected using NSE objective function values (0.5 as threshold). 
GLUE was used to investigate the role of hydrological parameters in flood hazard estima-
tion in the selected catchments. The analysis was performed by using a uniform sampling 
approach from the given parameter ranges. The simulated flow in the historical period is 
pretty good for mean and high flow simulation. The width of the simulated band is not 
significantly increased by changing the threshold for high flow simulation. Generally, the 
uncertainty is band due to parameter change is not significant in flood hazard estimation. 
Our finds conformed that the role of hydrological parameter sets is less in all the selected 
catchments in Awash basin. Yan et  al. (2015), Meresa and Romanowicz (2017),Joseph 
et al. (2018) they appear with similar conclusion that high flow is less sensitive to hydro-
logical parameters.

The uncertainty related to flood frequency under climate change is not extensively 
investigated and it has been very challenging to integrate with other sources of uncertain-
ties. Each extreme high flow simulation from each climate model simulation and bias cor-
rected simulations were fitted to most dominant frequency models. Several researchers 
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have been conducted flood frequency estimation, and they concluded that GEV and EV 
distribution models are the most commonly used frequency models in Awash catchments 
(Tegegne et al. 2020; Ahilan et al. 2012). However, our numerical experiment result con-
firms that GEV distribution is the most dominant model type in the selected Awash catch-
ments. The uncertainty band is not significant in the selected catchments of flood quan-
tile values. Therefore, the uncertainty of flood frequency models in these catchments are 
avoidably in the hydro-climate projections. However, the results should be assessed with 
care because the probability of recurrence of extreme floods of the selected catchments are 
become more intense and frequent and intense in the near, far, and very far future periods.

6 � Conclusions

The results of climate variables from CMIP6 data set are consistent with previous stud-
ies and applied for the first time in estimation of future flood hazard under varying cli-
mate conditions and associated uncertainty estimation. There is a significant range of 
differences among the results of GCMs in climate projections. The results also con-
firm that the CMIP6 GCMs outputs are promising for climate change impact studies 
on hydrological extremes. Our results also indicate that the proper climate model bias 
correction techniques can improve future estimated precipitation and temperature char-
acteristics. The climate models bias has been corrected using three techniques (DQM, 
EQM, and SQF). The precipitation results using the DQM approach are relatively close 
to observed daily maximum precipitation data. This indicates that climate models have 
higher biases in projection of extreme precipitation magnitude (greater than 75% of 
the maximum precipitation), and smaller bias results in lower precipitation magnitude 
(lower than 75% of the maximum precipitation). This is due to seasonal variability and 
intensity of precipitation. Therefore, giving more focus to the upper quantile of pre-
cipitation distribution can improve the model’s capability to reproduce the observed 
time series and reduce the error of model predicted extreme values of precipitation and 
temperature.

The projected hydro-climate extreme indices are less consistent and indicate a strong 
model agreement with a wide range of variability in the selected catchments. However, 
the magnitude of changes in hydro-climate extreme indices mainly depend on the type 
of bias correction technique. DQM, EQM, and SQF give relatively smaller range of 
changes in annual maximum precipitation and annual maximum flow. Overall, increases 
in flood and extreme rainfall are expected and are not uniform in space/time. Similarly, 
the GEV frequency model was fitted to simulated annual maximum flow time series. 
The flood quantile changes were calculated based on the relative difference between the 
future (2015–2100) and historical (1981–2010) flood quantile simulations. Due to pre-
cipitation and temperature changes, in the twenty-first century, the magnitude of flood 
quantiles at different return periods between 5 and 100 years could increase between 5 
and 50% in the selected catchments. However, these changes are not the same across all 
bias correction methods and frequency models in each catchment.

Comparing the results of climate change scenarios revealed that SMART, HBV, 
NAM and HYMOD are suitable for assessing climate change impact on peak flow 
because they provide similar and comparable results. The NAM and HYMOD models 
produce considerably higher peak discharge. The SMART model can simulate the slow 
and fast subsurface flow components and produce smaller change in peak flow in almost 
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all the catchments, all the catchments. Whilst the HBV model shows suitability for peak 
flow simulation in C1 and C4 catchments due to its physical representativeness and 
exhibits the best tradeoffs between calibration parameterization efforts. In contrast, the 
NAM model reproduces the peak flow curve very well but does not significantly con-
tribute to understanding the subsurface processes. This finding strengthens the opinion 
that a smaller number of parameters and storages would lead to a poor representation of 
hydrological processes, especially in data-sparse catchments.

The uncertainty analysis was performed by comparing each source of uncertainty 
regarding the total aggregated value flood quantile at different return periods. The result 
confirms that hydrological model parameters, spread of climate models and bias cor-
rection techniques are important sources of uncertainty in flood hazard estimation. 
Specially, the climate models, bias correction methods and frequency distribution type 
models are the most significant source of uncertainty in future flood hazard estimation. 
This additive of uncertainty analysis is also proved by ANOVA analysis. ANOVA is 
variance-based sensitivity analysis and provides information about the main factors’ 
contribution and their interactions. The decomposition of sources of uncertainty in 
future hazard estimation was performed based on the variance in changes of flood haz-
ard value at Q20 (probability of recurrence of flood event at 20  years return period), 
Q50 (probability of recurrence of flood event at 50 years return period) and Q100 (prob-
ability of recurrence of flood event at 100 years return period). The result confirms that 
climate change is the dominant factor in C1 and C2, whereas C3 bias correction type 
and C4 distribution type are very important factors. The ANOVA also confirms that the 
contribution of their interactions is significant. The contribution of climate models and 
bias correction methods and interaction is especially substantial and non-negligible in 
flood hazard estimation.

Moreover, better flood risk management and policy need to consider these main factors 
and their management policy interaction. However, the value range of each source is large 
and challenging to communicate with decision-makers and stakeholders. Therefore, we 
strongly recommended considering the use of each spread’s median values for future flood 
risk management and take as standard information on extreme flood adaptation measures.
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