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Abstract
Coupled 1D–2D hydrodynamic models are widely utilized in flood hazard mapping. Previ-
ous studies adopted conceptual hydrological models or 1D hydrodynamic models to eval-
uate the impact of drainage density on river flow. However, the drainage density affects 
not only river flow, but also the flooded area and location. Therefore, this work adopts the 
1D–2D model SOBEK to investigate the impact of drainage density on river flow. The 
uncertainty of drainage density in flood hazard mapping is assessed by a designed case and 
a real case, Yanshuixi Drainage in Tainan, Taiwan. Analytical results indicate that under 
the same return period rainfall, reduction in tributary drainages in a model (indicating a 
lower drainage density) results in an underestimate of the flooded area in tributary drain-
ages. This underestimate causes higher peak discharges and total volume of discharges in 
the drainages, leading to flooding in certain downstream reaches, thereby overestimating 
the flooded area. The uncertainty of drainage density decreases with increased rainfall. We 
suggest that modeling flood hazard mapping with low return period rainfalls requires tribu-
tary drainages. For extreme rainfall events, a lower drainage density could be selected, but 
the drainage density of local key areas should be raised.

Keywords  Uncertainty · Drainage density · Flood hazard mapping · 1D–2D 
hydrodynamics model

1  Introduction

In coupled one-dimensional and two-dimensional hydrodynamics models (1D–2D model), 
the channel flows are simulated in a 1D model, and the floodplain flows are simultane-
ously simulated in 2D. Two-dimensional hydrodynamics schemes include simple-volume 
conservative storage-filling algorithms, diffusive wave scheme and fully dynamic shallow 
water modelling. Since 1D–2D models have high accuracy and short calculation time, it 
is widely used in Meso (regional) scale and Micro (local) scale flood hazard assessment 
(Apel et  al. 2009; de Moel et  al. 2015; Werner 2004; Werner et al. 2005). Wilson et al. 
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(2007) adopted 1D–2D model LISFLOOD-FP and topographic data from the Shuttle Radar 
Topography Mission to derive the inundation of Amazonian seasonally flooded wetlands. 
Price and Vojinovic (2008) proposed the use of the concept of digital city to manage urban 
flood disasters, based on the tropical island of St Maarten, one of five land area of the Neth-
erlands Antilles. The flood hazard maps were simulated with the flooding model MIKE 11 
package developed by DHI Water and Environment. Timbadiya et al. (2015) used a 1D–2D 
model (MIKE 11 and MIKE 21) to forecast the water level of lower Tapi River in India. 
The flood hazard maps in Tainan, Taiwan were simulated using the 1D–2D model SOBEK 
for flood risk management (Doong et al. 2016). Wu et al. (2017) applied a 1D–2D model, 
coupling the SWMM and LISFLOOD-FP models, to predict the future flooding scenarios 
in Dongguan, China. Yang et al. (2018a, 2018b) used the SOBEK model to evaluate the 
flood risk transfer effects due to land development in lowlands.

Several sources of uncertainties in 1D–2D models have been widely studied, analyzed 
and summarized. The main sources of uncertainties for the models include model selection 
and parameter settings, as well as hydrological and geological data of the models (Bales 
and Wagner 2009; de Moel et al. 2015; Merwade et al. 2008; Teng et al. 2017). Werner 
(2004) compared 1D (SOBEK-RIVER), 2D (DELFIT-FLS) and 1D–2D (SOBEK-OVER-
LAND FLOW) models to predict flood stages of the River Saar in Germany. The research 
results demonstrated 1D and 1D–2D models generated more reliable simulation results 
than 2D model. Werner et al. (2005) compared SOBEK 1D model and coupled SOBEK 
1D–2D model to predict floodplain inundation in the towns of Usti and Orlici in Czech 
Republic. Their research results show that the simulation results of 1D model and 1D–2D 
model in the flooded area were similar. However, the 1D–2D model showed better perfor-
mance in comparison of distributed water level observations. Apel et al. (2009) compared 
linear interpolation methodology, 1D–2D model (LISFLOOD-FP) and 2D models for the 
risk analysis in the municipality of Eilenburg in Saxony, Germany. The simulation results 
of the 1D–2D and 2D models were highly consistent with the observed flooding extents 
and depths. However, the long calculation time required by the 2D model was a major 
obstacle in the calibration process. Dimitriadis et  al. (2016) employed a Monte-Carlo 
approach to analyze the uncertainty of input discharge, longitudinal and lateral gradients, 
roughness coefficient and the grid size in three 1D and quasi-2D models (HEC-RAS, LIS-
FLOOD-FP, and FLO-2d). Their research result revealed that the channel and floodplain 
friction, and inflow discharge were the main uncertainties in flood propagation.

Another major source of model uncertainty is the model input, which include both 
hydrological and geological data. Many researchers have examined the design rainfall, 
inflow hydrograph, lateral discharge, channel and floodplain geometry, as well as the ini-
tial condition of soil moisture. Wu et  al. (2010) developed a risk analysis model, com-
bined with multivariate Monte Carlo simulation and Advance First-Order Second-Moment 
method. The model was applied to assess the risk of underestimating flood peak flows due 
to the uncertainties in rainfall information (rainfall depth, duration and storm pattern), and 
the uncertainties in the parameters of the rainfall-runoff model (Sacramento Soil Mois-
ture Accounting model, SAC-SMA). Wu et al. (2011) presented a risk analysis model to 
consider the risk of damage to the flood protection structure of the Keelung River due to 
uncertainties in hydrological and hydraulic analysis, including design rainfall event, free-
board of level and the flood-diversion channel. Wong et al. (2015) used a 1D–2D model 
(LISFLOOD-FP) to study the effect of river channel cross-section and longitudinal-section 
geometry on flood dynamics. Their results indicated that uncertainty on channel longitu-
dinal-section variability only affected the local flood dynamics, but did not significantly 
affect the friction sensitivity or inundation mapping. These effects were negligible, as they 
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were less important than other uncertainties, such as boundary conditions. Parameter val-
ues and initial condition impact a hydrological model results. Pradhan et al. (2020) built a 
distributed hydrological model of the sub-basin of Reynolds Creek Experimental Water-
shed using the GSSHA (Gridded Surface Sub-surface Hydrological Analysis) model, and 
evaluated the impact of different resolutions of satellite imagery-based soil moisture on the 
discharge simulation.

The grid resolution and the post-processing quality significantly influence the flood sim-
ulation results. Adeogun et al. (2015) proposed a 1D–2D model, coupling 1D sewer model 
(SWMM) and 2D inundation model, and analyzed the sensitivity of the mesh resolution 
and roughness. The research results revealed that a higher-resolution mesh enhanced the 
flooding simulation results, but lengthened the calculation time. Noh et al. (2018) devel-
oped a hybrid parallel code (H12) of the 1D–2D model to accelerate the calculation speed 
of the flood simulations with a hyper-resolution grid. Their research results showed that 
the hyper-resolution grid modeling accurately described the flooding situation in urban 
areas, while the coarser resolution grid modeling led to local isolation and distortion of the 
flooded area, due to the lack of topographical details. Meesuk et al. (2015) presented Mul-
tidimensional Fusion of Views-Digital Terrain Model (MFV-DTM) to integrate ground-
view Structure from Motion (SfM) observations with top-view LiDAR data. A 1D–2D 
model was applied to simulate an extreme urban flood event that occurred on June 10, 2003 
in Kuala Lumpur, Malaysia. The research results demonstrated that MFV-DTM modeling 
could represent a true flood situation better than the standard LiDAR-DTM modeling and 
Filtered LiDAR-DTM modeling.

The drainage density in the model influences the flood simulation results for flood 
hazard mapping. Yildiz (2004) used a physically based spatially distributed hydrological 
model to study the sensitivity of flow simulation to the drainage density, taking the Mon-
ongahela River Basin in the United States as an example. Pallard et  al. (2009) took the 
Po River in Italy as an example, and applied a spatially distributed hydrological model to 
investigate the relationship between the drainage density and the mean, standard devia-
tion coefficient of variation and coefficient of skewness of the annual maximum peak flow. 
Ogden et al. (2011) and used the GSSHA model to evaluate the impact of impervious area, 
drainage density, width function and subsurface storm drainage on peak flood flows using 
the Dead Run watershed in Lanzhou State, USA as a case. Those studies, which were based 
on the concept hydrological model or 1D model, found that a larger drainage density leads 
to an increase in peak discharge. However, adjusting the drainage density in a flood simu-
lation alters not only discharge, but also the flooded area and location. This issue has not 
been discussed in previous studies. Therefore, this investigation designed two experiments 
using the SOBEK model to measure the effect of drainage density on two-dimensional 
flooding simulation.

2 � Materials and methods

2.1 � SOBEK model

The hydrological and hydraulic model was developed with the SOBEK model (ver-
sion 2.13) developed by Deltares in the Netherlands. The SOBEK model has several 
modules, including Rainfall-Runoff, 1D FLOW-Rural and Overland Flow-2D (Deltares 
2017). The flooding simulation process in this study has two phases. The first phase is 
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the hydrological phase, in which the Rainfall-Runoff module is run to convert rainfall 
into runoff, and then the sub-catchment discharge is computed. The second phase is the 
hydraulic phase. After the runoff is introduced into the channel, the 1D–2D module is 
run to perform the calculation with complete Saint Venant equations. For one-dimen-
sional and two-dimensional flow, continuity and momentum equations are calculated 
numerically using the Delft scheme. When the discharge exceeds the flood capacity of 
the channel, the water overflows the channel, and then the dynamic flow on the surface 
is simulated through the 2D module.

This study employed the US Soil Conservation Service Curve Number method to 
compute abstractions. In the rainfall-runoff model, the US Soil Conservation Service’s 
dimensionless unit hydrograph was employed to transform rainfall into sub-catchment 
discharge. The SCS CN Method is described as follows.

where Pe denotes rainfall excess (mm); P represents depth of precipitation (mm); S indi-
cates potential maximum retention (mm), and CN is the curve number. Lag time is com-
puted according to the SCS Lag Equation, shown as follows:

where T1ag denotes lag time (h); L represents length of the longest drainage path (m); H 
indicates average catchment slope (%); S is the potential maximum retention (mm), and CN 
denotes the curve number. The SCS Dimensionless Unit Hydrograph Model is adapted as 
the Rainfall-Runoff model to estimate the discharge.

where Tlag represents the lag time of peak flow (h); Tc indicates the time of concentration 
(h); Tp is the time to peak flow (h); Tr denotes the recession limb time (h); Tb represents the 
runoff time base (h); Qp indicates the quantity of peak flow (cms); A is the area of catch-
ment (km2), and R denotes the quantity of effective rainfall (mm).
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2.2 � Experiment I

Five different models were designed (as shown in the Table 1). Model A included Drainages 
2-years, 5-years, 10-years, 50-years, and 100-years. Model B included Drainages 5-years, 
10-years, 50-years, and 100-years, and so on (as shown in Fig. 1). A 2-years return period 
flood could be drained by Drainage 2-years. A 5-years return period flood could be drained 
by Drainage 5-years, and so on. Cross-sections of the designed channel are shown in Table 2. 
Each model was simulated with 2-years, 5-years, 10-years, 50-years, and 100-years return 
period rainfalls. In each scenario, the flooded area, as well as the peak discharge (QA) and the 
total volume of discharge at Point A (VA) were calculated and compared.

Table 1   Drainages included in 
various models in Experiment I

○: included in the model; ×: not included in the model

Model Drainage 
2-years

Drainage 
5-years

Drainage 
10-years

Drainage 
50-years

Drainage 
100-years

Model A ○ ○ ○ ○ ○
Model B × ○ ○ ○ ○
Model C × × ○ ○ ○
Model D × × ×  ○ ○
Model E × × × × ○

Fig. 1   Drainages included in various models
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2.3 � Experiment II

2.3.1 � Study area

This study used the catchment of Yanshuixi Drainage in Tainan, Taiwan as a case study. The 
Taiwan Strait, Zengwun River and Yanshuei River are situated in the west, north and south 
of the catchment, respectively. The catchment area is 108.454 km2, and the terrain is inclined 
from northeast to southwest. The elevation of the catchment area is between Elevation Level 
(E.L.) − 0.2 m and 9.5 m. The drainage length is 19.20 km, and the average slope is about 
1/7,000. The river export is about 315 m wide, and most of the river bank is concrete revet-
ment (see Fig. 2). The land usages in the catchment of Yanshuixi Drainage are agriculture 
(42.4%), forest (1.8%), traffic (9.9%), water (5.9%), build-up (19.3%), public (2.0%), recreation 
(3.0%), mining (0.1%) and other (15.6%). Due to the flat and low terrain, the drainage outlets 
are affected by the tidal level, and typhoons and heavy rains often cause floods downstream.

Table 2   The designed channel 
cross-section in Experiment I

Drainage Width (m) Depth (m) Area (m2)

Drainage 2-years 5.00 3.35 16.75
Drainage 5-years 10.00 3.66 36.60
Drainage 10-years 20.00 4.47 89.40
Drainage 50-years 45.00 8.23 370.35
Drainage 100-years 650.00 9.57 6220.50

Fig. 2   Location of Yanshuixi Drainage
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2.3.2 � Model parameters

The DEM with an elevation accuracy of 10–20  cm was output from the Airborne LiDAR 
point cloud run by the Ministry of Interior, Taiwan. The grid resolution of DEM was set to 
20 m in the experiments. The parameters of the flow path and the slope in the catchment were 
estimated from DEM, and the CN was estimated from land use. The CN of each sub-catch-
ment area was based on weighted calculation of different land use areas. The surface friction 
parameters (White–Colebrook Kn) were derived according to land use.

The SOBEK model was configured with regional drainages, farmland drainages, and 
related hydraulic structures, such as gates, pumping stations, detention basins and bridges. 
The channel cross-sections were set according to the measurement data. The channel friction 
parameters (Manning n) were set according to the channel type.

The exit boundary condition of the model is based on the tide level at the Sicao tide sta-
tion. Observed rainfall data from the Quantitative Precipitation Estimation and Segrega-
tion Using Multiple Sensor (QPESUMS) are obtained from 6 Dopper radars of the Central 
Weather Bureau. The interval of the weather information was 10 min, and the grid resolution 
was 1.3 km (Chiou et al. 2005; Wang et al. 2016).

2.3.3 � Model calibration and verification

The water level data in the Yanshueixi Drainage were accumulated from three Tainan City 
Government water level stations (see Fig. 2), which measure the water level using ultrasonic 
sensors with an accuracy of 2.5%. The degree of bias between the observed and simulated 
water depths was measured by coefficient of efficiency (CE). The equation of CE is shown 
below:

where Hsim(ti) denotes the simulated water depth (m) at time t; Hobs(ti) represents the 
observed water depth (m) at time t; Hobs

(

ti
)

 indicates the average observed water depth 
(m). Storm 0611 in 2016 and Tropical Storm Haitang in 2017 were utilized for model cali-
bration and verification, respectively. The CN value and overland roughness kn of model 
calibration were the same as those of model verification. Channel roughness n was adjusted 
for model calibration. Figure  3 depicts the comparison between the observed and simu-
lated water levels of three water level stations. The CE values of Storm 0611 were 0.847, 
0.994, and 0.960 at Station 1, 2, and 3, respectively. The CE values of Tropical Storm Hai-
tang were 0.916, 0.996, and 0.983 at Station 1, 2, and 3, respectively. It indicated that the 
model accuracy was high. Figure 4 illustrates the calibrated CN of sub-catchment, overland 
roughness kn and channel roughness n.

2.3.4 � Drainage density

In this study, drainage density (Dd) is the total length of all the drainages in a watershed 
divided by the total area of the watershed.
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where L is total length of all the drainages in a watershed (km); A is total area of the water-
shed (km2). Two types of drainages, regional drainage and farmland drainage, were set in 
models. The total length of regional drainages in Model I was 75.370 km. In Model II, 
in addition to regional drainages, 50.143  km of farmland drainages was added. Table  3 
lists the channel densities of Model I and II, which are 0.695  km−1, and 1.157  km−1, 
respectively.

(10)Dd =
L

A

Fig. 3   Hydrographs of water levels for model calibration and verification
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Fig. 4   Calibrated CN, overland 
roughness and channel roughness

Table 3   Comparison of the drainages and sub-catchments for two models

Model Type of drainage Total area A (km2) Total length of drain-
age L (km)

Drainage 
density L/A 
(km−1)

Model I Regional drainage 108.454 75.370 0.695
Model II Regional drainage, 

farmland drainage
108.454 125.513 1.157
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2.3.5 � Flooded areas comparison

The differences of simulated flooded areas between Model I, and II were evaluated using 
three indices, defined as follows. Figure 5 illustrates the schematic diagram.

where A(I) is the simulated flooded area in Model I; A(II) is the simulated flooded area in 
Model II; A(I ∩ II) is the simulated flooded area in both Model I and Model II; A(I ∪ II) is 
the simulated flooded area in Model I or Model II A(I − II) is the simulated flooded area 
in Model I, but not in Model II; A(II − I) is the simulated flooded area in Model II, but not 
in Model I; P(I ∩ II) is the percentage of the simulated flooded area in both Model I and 
Model II; P(I − II) is the percentage of the simulated flooded area in Model I, but not in 
Model II; P(II − I) is the percentage of the simulated flooded area in Model II, but not in 
Model I.

3 � Results and discussion

3.1 � Experiment I

Tables  4, 5, and 6 depict the results of Experiment I, and Fig.  6 display the simulated 
flooded areas under 2–100-years return period rainfall.

Under the 2-year return period rainfall, Drainage 2-years to Drainage 100-years had 
greater flood capacities than the 2-year return period. Therefore, no flooding occurred in 
Model A to Model E, and the QA and VA of all models were 856 cms and 13,795,000 m3.

(11)A(I − II) = A(I) − A(I ∩ II)

(12)A(II − I) = A(II) − A(I ∩ II)

(13)P(I ∩ II) =
A(I ∩ II)

A(I ∪ II)
× 100%

(14)P(I − II) =
A(I − II)

A(I ∪ II)
× 100%

(15)P(II − I) =
A(II − I)

A(I ∪ II)
× 100%

Fig. 5   Schematic diagram com-
paring flooded areas
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Under the 5-year return period rainfall, only Drainage 2-years had a lower flood capac-
ity than the 5-year return period flood. Since Model A contained Drainage 2-years, 25 ha 
of flooding occurred. The other models did not include Drainage 2-years, so no flooding 
occurred. At the same time, the QA and VA in Model A were 2111 cms and 38,164,000 m3, 
which were smaller than those of other models (2114  cms and 38,199,000  m3). Since 
Model A contained 25 ha of flooding, the flood water was retained on the surface, resulting 
in a decrease in drainage.

Under the 10-year return period rainfall, the 10-year return period flood was greater 
than the flood capacities of Drainage 2-years and Drainage 5-years. In Model A, 
300 ha of flooding occurred in Drainage 2-years and Drainage 5-years. Since Model 
B contains Drainage 5-years, 212  ha of flooding occurred. Conversely, Drainage 
2-years and Drainage 5-years were not set in other models, so no flooding occurred. 

Table 4   Simulated flooded area under various rainfall scenarios (unit: ha)

Model 2-years return 
period rainfall

5-years return 
period rainfall

10-years return 
period rainfall

50-years return 
period rainfall

100-years return 
period rainfall

Model A 0 25 300 569 844
Model B 0 0 212 519 791
Model C 0 0 0 138 411
Model D 0 0 0 0 278
Model E 0 0 0 0 0

Table 5   Peak discharge at Point A under various rainfall scenarios (unit: cms)

* There is no Point A in Model 100-years

Model 2-years return 
period rainfall

5-years return 
period rainfall

10-years return 
period rainfall

50-years return 
period rainfall

100-years 
return period 
rainfall

Model A 856 2111 2831 4463 4922
Model B 856 2114 2853 4480 4940
Model C 856 2114 2902 4652 5205
Model D 856 2114 2902 4708 5293
Model E –* – – – –

Table 6   Simulated total discharge volume at Point A under various rainfall scenarios (unit: thousand m3)

* There is no Point A in Model 100-years

Model 2-years return 
period rainfall

5-years return 
period rainfall

10-years return 
period rainfall

50-years return 
period rainfall

100-years 
return period 
rainfall

Model A 13,795 38,164 54,517 89,970 103,325
Model B 13,795 38,199 54,802 90,475 103,802
Model C 13,795 38,199 55,188 92,940 107,497
Model D 13,795 38,199 55,188 93,360 108,405
Model E –* – – – –
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Correspondingly, QA and VA of Model A (2831  cms and 54,517,000  m3) were the 
smallest, followed by the QA and VA of Model B (2853 cms and 54,802,000 m3), and 
the QA and VA of other models (2902 cms and 55,188,000 m3) were the largest.

Because SOBEK is a 1D–2D model, the discharges from Rain-Runoff model are 
input into the drainages first. If the discharge is less than the flood capacity of the 
drainage, then flooding does not occur. If the discharge is greater than the flood capac-
ity of the drainage, then flooding occurs. Therefore, the reduction in tributary drain-
ages results in two effects on the simulation results of the 1D–2D model.

Effect 1: Under the same return period rainfall, fewer tributary drainages in a model 
(lower drainage density) indicates a smaller flooded area.

Effect 2: Under the same return period rainfall, fewer tributary drainages in a model 
(lower drainage density) indicates an increased peak discharge and total volume of dis-
charge in the drainages.

Previous works have noted that a larger drainage density leads to an increase in 
flow rate (Ogden et al. 2011; Pallard et al. 2009; Yildiz 2004). However, our research 
results indicate that an increase in drainage density does not necessarily lead to an 
increase in flow. Previous investigations adopted the spatially distributed hydrological 
model or the GSSHA model, and therefore determined surface and underground dis-
charges are drained to the outlet of the catchment. The increase in channels shortens of 
the concentration time, causing the peak flow rate to rise with the increased drainage 
density. However, not all runoff is drained to the catchment outlet in the 1D–2D model. 
A simulation scenario with a high drainage density is modeled with dense and narrow 
upstream channels. Floodwater is retained in the upstream when the upstream channels 
are flooded, reducing discharge from outlets.

Fig. 6   Simulated flooded areas under various return period rainfalls in Experiment I
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3.2 � Experiment II

The analysis results are shown in Table 7, Figs. 7, 8, and 9. Table 7 shows that in all 
simulated rainfall scenarios, Model II have larger flooding areas than Model I, and A(I) 
is approximately 83.9–96.9% of A(II). However, P(I ∩ II) is only 49.7–66.1%. Thus 
Models I and II have similar total flooded areas, but significantly different flooded loca-
tions, and this difference increases with an increase in rainfall.

The A(II − I) of 2-years, 5-years, 10-years, 50-years, and 100-years return period 
rainfalls were 86.32 ha, 162.16 ha, 329.56 ha, 499.80 ha and 672.32 ha, respectively. 
However, P(II − I) of 2-years, 5-years, 10-years, 50-years, and 100-years return period 
rainfalls were 31.2%, 23.7%, 27.4%, 18.2% and 19.8%, respectively (as shown in 
Table 7). A(II − I) occurred because farmland drainages were set up in Model II, but not 
in Model I, so some flooding that occurred in farmland drainages could not be shown in 
Model I. This caused an underestimate of the flooded area in Model I (Effect 1 had been 
proved in experiment I). The flood capacity of farmland drainage is almost 2–5-years 
return period, and the flood capacity of regional drainage is 10-years return period. 
Under 2 return period rainfall, the majority of flooding occurred in farmland drain-
ages, and P(II − I) = 31.2%. However, the P(II − I) values during the 50-years or 100-
years return period rainfalls were only 18.2% and 19.8%, respectively, because most of 
the discharges far exceeded the drainage capacities of regional drainages and farmland 
drainages. In general, A(II–I) increased as the total rainfall rose, and P(I − II) decreased 
significantly as the total rainfall rose (see Figs. 8 and 9).

The A(I − II) of 2-years, 5-years, 10-years, 50-years, and 100-years return period 
rainfalls were 53.12 ha, 128.68 ha, 162.52 ha, 428.72 ha, and 512.88 ha, respectively. 
However, P(I − II) of 2-years, 5-years, 10-years, 50-years, and 100-years return period 
rainfalls were 19.2%, 18.8%, 13.5%, 15.6% and 15.1%, respectively (see Table  7). 
A(I − II) occurred because farmland drainages were set up in Model II, but not in Model 
I, so some flooding in farmland drainages could not be shown in Model I. Therefore, 
the peak discharges and volumes of discharges in drainages in Model I were greater 
than those in Model II (Effect 2 was shown in Experiment I). In Model I, the higher 
discharges in drainages caused the overflow occurrence at certain downstream reaches, 
resulting in an overestimate of the flooded area. In general, A(I − II) increased as the 
total rainfall rose, and P(I − II) declined slightly with increasing total rainfall (see 
Figs.  8 and 9). Overall, P(I − II) and P(II − I) decreased with increasing rainfall, and 
P(I ∩ II) rose with rising rainfall (see Fig. 9), indicating that the uncertainty of drainage 
density declined with rising rainfall.

These experimental results indicate that the drainage density in the 1D–2D model 
had a direct impact on the accuracy of the flood hazard mapping. The analytical results 
reveal a model with higher drainage density was more similar to the real terrain, and 
generated more accurate simulation results. However, obtaining detail topographical 
data of tributary drainages is difficult, expensive and time-consuming. Therefore, in the 
flooding hazard mapping, we recommend evaluating the drainage density with reference 
to two factors, the simulated rainfall scenario and the local key areas.

In the model, the determination of drainage density is directly related to the simulated 
rainfall situation. A higher drainage density should be selected for a lower simulated 
rainfall level. Conversely, a lower drainage density could be selected given a higher sim-
ulated rainfall level. Flood hazard mapping is generally simulated with extreme histori-
cal or designed rainfall events, and the models are typically calibrated and verified by 
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the hydrological stations located in rivers (Timbadiya et al. 2015; Wilson et al. 2007). 
In this case, the models are normally set up in with only vertical and horizontal sections 
of the mainstreams. When the extreme flow is greater than the flood discharge capac-
ity of the river, large-scale flooding occurs on both sides of the mainstream, causing 
flooding in low-lying areas. Conversely, a model for the flood hazard mapping with low 
return period rainfall, such as 2-years, 5-years, and 10-years should establish tributary 
drainage, such as regional drainage or farmland drainage, otherwise it might underesti-
mate the simulated flooded area, and skew the location of flooded area.

Fig. 7   Simulated flooded areas under various return period rainfalls in Experiment II
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We recommend raising the drainage density of local key areas in the model, such as 
important preservation objects and settlements, in the process of flood hazard mapping. Since 
the flood hazard map is an important basis for the subsequent decision of disaster prevention 
measures, the accuracy of flooding simulation in some key areas is very important. There-
fore, if the drainage density of the entire survey area cannot be increased owing to limitations 
of funding and data acquisition, then the drainage density can be increased in key regions.

Another method of reducing the uncertainty of drainage density is to perform hydro-
dynamic calculations on high-resolution two-dimensional DEM data using the 2D model. 
This method is computationally intensive, so it should be combined with other high-speed 
computing technologies, such as GPU (Morales-Hernández et al. 2021).

The latest technology can be employed to improve the accuracy of the flood hazard 
mapping. A large number of tributary drainage data need to be collected, saved and man-
aged in order to improve the accuracy of flooding simulation. The management platform of 
the basic data for the model is very important. Performing surveys manually in the field is 

Fig. 8   Simulated flooded areas of various return periods

Fig. 9   Percentage of simulated flooded areas in various return periods
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quite time-consuming and expensive. The digital terrain data can be obtained using drones, 
and processed through appropriate post-processing technology (Meesuk et  al. 2015). As 
well as the calibration and verification of the model, distributed flooding observation data 
are also required to improve the accuracy of the model, and especially to confirm the accu-
racy of the flooded area. Smart water level gauges and Internet of Things technology can be 
efficiently used to obtain a large number of continuous and accurate flooding data (Chang 
et al. 2018). The application of drones for large-scale identification of range of flooding is 
also a significant direction for future research (Yang et al. 2020).

4 � Conclusion

Drainage density has a significant impact on the accuracy of the 1D–2D model simulation, 
but has not been discussed in previous studies. Simplifying the tributary drainages has two 
main effects under the same rainfall scenario. Under the same return period rainfall, fewer 
tributary drainages in a model indicates a smaller flooded area (Effect 1), as well as an 
increased peak discharge and total volume of discharge in the drainages (Effect 2). In the case 
study of Yanshuixi Drainage, Effect 1 caused an underestimate of the flooded area, and Effect 
2 caused an overestimate of the flooded area. The impact of these two effects on the simula-
tion results gradually decreased as the rainfall increased. These characteristics can be utilized 
to select the appropriate drainage density. If the model is to simulate rainfall with a low return 
period, then the tributary drainage data cannot be simplified. However, for flood hazard map-
ping with extreme events, if only mainstreams are set in the model, then the tributary drain-
ages at important locations can be raised to improve the accuracy of the simulation. Manual 
survey of tributary drainages is costly and time-consuming. For large-scale flood hazard map-
ping, airborne radar or drones can quickly obtain a large amount of tributary drainage data, 
making an important future research direction. Future studies will set the drainage density 
as a variable, so that the appropriate drainage density can be selected according to different 
rainfall scenarios. The function of flooding depth and flooded area can be established with 
artificial intelligence models to accelerate the estimation of flooding range and depth.
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