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Abstract
A timely and cost-effective method of creating inundation maps could assist first respond-
ers in allocating resources and personnel in the event of a flood or in preparation of a future 
disaster. The Height Above Nearest Drainage (HAND) model could be implemented into 
an on-the-fly flood mapping application for a Canada-wide service. The HAND model 
requires water level (m) data inputs while many sources of hydrological data in Canada 
only provide discharge  (m3/sec) data. Synthetic rating curves (SRCs), created using river 
geometry/characteristics and the Manning’s formula, could be utilized to provide an 
approximate water level given a discharge input. A challenge with creating SRCs includes 
representing how multiple different land covers will slow impact flow due to texture and 
bulky features (i.e., smooth asphalt versus rocky river channel); this relates to the rough-
ness coefficient (n). In our study, two methods of representing multiple n values were 
experimented with (a weighted method and a minimum-median method) and were com-
pared to using a fixed n method. A custom ArcGIS tool, Canadian Estimator of Ratings 
Curves using HAND and Discharge (CERC-HAND-D), was developed to create SRCs 
using all three methods. Control data were sourced from gauge stations across Canada in 
the form of rating curves. Results indicate that in areas with medium to medium–high river 
gradients (S > 0.002 m/m) or with river reaches under 5 km, the CERC-HAND-D tool cre-
ates more accurate SRCs (NRMSE = 3.7–8.8%, Percent Bias = −7.8%—9.4%), with the 
minimum-median method being the preferred n method.
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1 Introduction

In the last decade, major flood events across Canada have caused heavy damage to infra-
structure and homes and have cost the lives of Canadians. In 2013, a flood in Calgary 
caused 6 billion dollars in damages to the city and killed five people (Bogdan et al. 2018). 
Over in Eastern Canada, a wide-set flooding event in April of 2019 caused over 15,000 
residences from across Ontario, Quebec, and New Brunswick to be flooded; the water lev-
els from this flooding event had broken Quebec records, previously held by the 2017 flood 
(Lowrie 2019). To help mitigate the damage caused by floods across the nation, and to help 
better understand flood patterns, a centralized system for flood/inundation mapping in Can-
ada would be beneficial. These maps could visually display the estimated spatial extents 
of flood water from a simulated flood event and are important tools for facilitating risk 
communication to stakeholders and motivating action (Henstra et al. 2019; Dransch et al. 
2010). Further, if an accurate and computationally rapid flood model was combined with 
continuous hydrological/meteorological measurements and/or prediction data, it would be 
possible to create flood maps in near-real time that represent near-future forecasted flood 
conditions, or even simulate experimental flood conditions based on user inputs. These on-
the-fly flood maps could support emergency personnel and decision makers in being better 
informed about ongoing flood events in their respective jurisdictions.

Traditional methods for flood mapping focus on complex hydrodynamic and hydrau-
lic models to map out the inundation extent areas. These models often incorporate shal-
low water equations (SWEs) in various dimensions (1D–3D) and require a variety of 
data inputs including flow rates, temperature, bed roughness, wind conditions, and more 
(Jovanovic et al. 2019). The extensive data requirement of these models limits their usa-
bility within many Canadian communities that are data scarce, while their high computa-
tion times are impractical for on-the-fly flood mapping. Although many of these models, 
like TUFLOW, parallelize SWE calculations and are being implemented into cloud-based 
systems to reduce overall computation times, the high cost constraints and data require-
ments are still a considerable factor (Jovanovic et  al. 2019; Van Der Velde and Huxley, 
2020). Other research into flood mapping is focused on simplifying the models themselves 
(0D) and their data requirements to allow for widespread application (Rebolho et al. 2018; 
McGrath et al. 2018).

One such simplified flood model is the Height Above Nearest Drainage (HAND) model. 
The HAND model estimates flood extents by normalizing topography data through calcu-
lating the difference between the elevation of a land grid cell and the elevation of the river 
grid cell it is estimated to drain into  through flow simulations (Nobre et  al. 2011). This 
model only requires topological data of the watershed and a river network raster file (Liu 
et al. 2018). Once a HAND raster file is produced, creating an inundation/flood map only 
requires the user to run a simple raster calculation:

where  DZ is the flood depth (m) at each pixel, H is the water level (m) from either a gauge 
measurement or a reach-average level, and  HHAND is the value (m) of the HAND raster at 
each pixel. The HAND model has performed well in previous inundation and floodplain 
mapping studies (Garousi-Nejad et al. 2019; Diehl et al. 2021), including a flood modeling 
study by McGrath et al. (2018) for watersheds in Quebec and New Brunswick. Results of 
the study showed that the HAND model produced inundation maps with Critical Success 
index (CSi) values of 0.903 and 0.958. Computational time with HAND was rapid, with 

(1)D
z
= H − H

HAND
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only a duration of 3.3 and 5.6  seconds of processing needed to generate a flood extent 
raster for two study sites of size 17 km by 8 km (136 million pixels) and 11 by 7 km (77 
million pixels) with a 1 m resolution (McGrath et al. 2018). In comparison, Vacondio et al. 
(2017) required eight hours to process a flood extent raster with about 40 million pixels 
(2  m resolution) using a Cartesian  grid-based 2D SWE model. Combining the HAND 
model with predictive or continuous hydrological/meteorological data, such as from the 
hydrometric gauge stations, operated by the National Hydrological Service (NHS), or the 
GeoMet platform from the Meteorological Service of Canada (MSC), could assist in pro-
ducing on-the-fly flood maps across Canada. The challenge here is that in many sites with-
out a hydrometric gauge station, the best source of hydrological data comes from models 
and platforms, like GeoMet, that only provide estimates of river discharge/flow  (m3/sec) 
(Q). Because the HAND model requires water level (H) data, a mathematical relationship 
between Q and H is needed to generate a flood extent map in these ungauged locations.

To address this issue, we developed a custom ArcGIS tool, Canadian Estimator of Rat-
ings Curves using HAND and Discharge (CERC-HAND-D), that can assist in the creation 
of synthetic rating curves (SRCs) through the method described by Zheng et al. (2018a). An 
SRC defines a mathematical relationship between Q and H for a given segment of river and 
its catchment area. For each iteration of H, a corresponding Q is calculated using the cross-
sectional geometry of the inundation maps, river characteristics, and the Manning’s formula. 
CERC-HAND-D can produce an SRC in the form of an equation (SRC equation) and a look-
up table (SRC table), depending on the need of the user.

Creating accurate SRCs is challenging due to a variety of factors. For instance, accord-
ing to Godbout et al. (2019), the Manning’s formula is sensitive to the Manning’s roughness 
coefficient (n). An irregular surface, such as a rocky riverbed, will create a larger resistance 
to water flow than a smooth textured surface, such as asphalt, would. As the stage height of a 
flood increases and the flood waters reaches the riverbank and the floodplain, the flood waters 
are exposed to multiple different land surface types across the wetted perimeter, leading to the 
difficulty in determining an appropriate n value. Traditionally, SRCs are created using a single 
fixed n value in the calculation of Q, with this fixed value representing the roughness of the 
main channel bed (Zheng et al. 2018a). Vatanchi & Maghrebi (2019) emphasized the bias of 
using a single fixed n value and found that changes in floodplain or riverbank roughness will 
have a stronger effect on SRCs than the channel bed roughness. Another challenge with creat-
ing SRCs, especially when using the HAND model to define flood extents, is that river reaches 
with extreme lengths and/or slopes will tend to have inflated estimations. In their study on the 
accuracy of SRCs in a Texas watershed, Godbout et al. (2019) found that river reaches with 
gradients below 0.001 m/m usually performed poorly, while river reaches with lengths lower 
than 1.2 km also performed poorly, and as well above 5 km the performance starts to decline 
(Garousi-Nejad et al. 2019).

In this study, we experimented with two distributed n methods (weighted and minimum-
median) for calculating SRCs, in addition to applying a single fixed value. CERC-HAND-D 
was modified to accommodate the two experimental methods, and the study was conducted in 
a variety of locations across Central and Eastern Canada to explore the applicability of CERC-
HAND-D in the diverse landscapes of Canada.
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2  Study sites and control data

Five control rating curves tables, derived from the primary sensor in the hydrometric gauge 
stations, were provided by the NHS. These were the most current data available; each 
being last updated between September 4th, 2019 and August 28th, 2020. These gauge sta-
tions (Table 1) were selected due to availability of control rating curves and high-resolution 
topographic data. In addition, these gauge stations were selected to provide a variety of 
river slopes and reach lengths to test the accuracy of the SRCs when given moderate and 
extreme reach characteristics. A reach is defined here as the section of river within a catch-
ment polygon (Fig. 1). Slopes greater than 0.002 m/m were considered to be high gradient 
while slopes lower than 0.001  m/m were considered to be low gradient (Godbout et  al. 
2019). In keeping with the finding of Godbout et al. (2019), river reaches shorter than 1.2 
kms were considered short, while river reaches above 5 km were considered long.

The sites selected for this study are displayed in Fig.  1. The Whitemud River study 
site in Westborne, Manitoba is a low slope gradient area (S = 0.00069 m/m) and is highly 
forest covered (40%) with a moderate reach length of 2.7 km. The Whitemud River was 
one of many rivers that experienced flooding during the province wide spring-melt flood 

Fig. 1  The location of the research case studies located in Central and Eastern Canada with the station 
number of the hydrometric stations, operated by the National Hydrological Service. The catchment pol-
ygons and the river network for the study areas: Whitemud River in Westborne, Manitoba; Grand River 
in Cambridge, Ontario; Riviere Richelieu near Saint-Jean-sur-Richelieu, Quebec; Aroostook River near 
Tinker, New Brunswick; North River in North River, Nova Scotia. River network was sourced from the 
National Hydro Network (NHN)
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event in May of 2011, with the village of Westbourne experiencing a 1 in 100-year flood-
ing (Government of Manitoba 2013). The Grand River study site is located in the highly 
urbanized (78.4%) downtown area of Cambridge, Ontario, which was the location of a 1 in 
500-year flood event in 1974 (Gardner 1977). The Grand River in downtown Cambridge 
has a low-moderate slope (S = 0.0013  m/m) and a moderate reach length (3.7  km). The 
Riviere Richelieu study site near Saint-Jean-sur-Richelieu, Quebec had the longest river 
reach of 15.7 km, with a low-moderate river slope of 0.0013 m/m and is made up mostly of 
cropland (63.8%). A record flood occurred on the Riviere Richelieu in early spring of 2011 
that lasted for 67 days as a consequence of a mixture of spring melt and intense spring 
rains (Saad et al. 2015). The Aroostook River study site near Tinker, New Brunswick is 
both moderate in river length (1.9 km) and river slope (S = 0.0015 m/m), surrounded by 
highly rural areas (49.5% forested, 36.9% cropland). The Aroostook River is a main tribu-
tary to the Saint John River and was one of the sites of a record-breaking spring flooding 
event that occurred along the Saint John River and its tributaries in May of 2008 (Newton 
and Burrell 2016). The North River study site in North River, Nova Scotia has the high-
est river gradient (S = 0.0046 m/m) and is highly forested (57.1%) with a moderate river 
length (1.7 km). The site was the location of a severe widespread flood event in September 
of 2012 caused by an intense rainfall and leading to water levels of 1.5  m (CBC News 
2012). Because the control dataset from the NHS provided an inconsistent range of H val-
ues between hydrometric stations, water level (m) values (H) between a range of 0.1–2.7 m 
for the Riviere Richelieu study site and 0.1–2.5 m for the North River site; the other sites 
had an H value range of 0.1–5 m.

3  Materials and methods

The subsequent steps were followed to generate the SRC equations and tables using CERC-
HAND-D: (a) accessing publicly available data from the publicly available national data-
sets; (b) deriving the HAND rasters; (c) running the CERC-HAND-D tool to create the 
SRCs tables using single fixed n values and distributed n methods; (d) nonlinear regression 
to derive the final SRC equations using CERC-HAND-D; (e) accuracy assessment of the 
SRCs with the control rating curves from the NHS.

3.1  Raw datasets

3.1.1  Digital terrain models

Topological data of each study area (Fig. 2a, d, j, g, m) were acquired from the HRDEM 
dataset, provided by Natural Resources Canada (NRCan). This dataset provides digital ter-
rain models (DTMs) of scenes from across Canada, covering about 400,000  km2 of area 
(Bélanger et al. 2020). These models were generated using airborne Light Detection and 
Ranging (LiDAR) measurements. DTMs are “bare-earth” representations of topography, in 
which vegetation and manmade structures, such as buildings and bridges, are not included 
(Natural Resources Canada 2020). For this study, DTMs of each case study were utilized 
as they are better suited for hydrological studies. Horizontal resolutions were 2 m for the 
Richelieu study area and 1 m for the remaining study areas; the study sites vertical accu-
racy range of 0.036—0.226 m with a 95% confidence level in non-vegetated areas.
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3.1.2  Stream network

Stream network vector data (Fig. 1) were extracted from the NHN dataset. The data were cre-
ated at scale of 1:50,000 or smaller, and it provides geospatial information on inland bodies of 
water in Canada, including lakes, rivers, and streams. Only major rivers and tributaries in the 
stream network data were chosen for creating the HAND model and the SRCs to save on com-
putation time (McGrath et al. 2018). The NHN stream network vector data were also used to 
create the catchment polygons (Fig. 1) by using the Watershed tool in ArcGIS Pro 2.4 with an 
input D8 flow raster file and a pour points vector file that was based off the intersecting mid-
vertices of the NHN stream network vector dataset.

3.1.3  Land class

Land class data (Fig.  2b, e, h, k, m) were acquired from the 2015 Land Cover of Canada 
(2015LCC), provided by the Canada Center for Remote Sensing (CCRS). The dataset has a 
resolution of 30 m and was generated using satellite observations. In Table 2, n values for each 
land class category were based off Table 3–1 in the HEC-RAS manual (Brunner 2016), spe-
cifically using the ‘Normal’ column. CERC-HAND-D automatically adds these values to the 
attribute table of the 2015LCC.

3.2  Height above nearest drainage

A HAND raster of each study area (Fig. 2c, f, l, i, o) was derived using the Hydrology toolset 
available in ArcGIS Pro 2.4 (under the spatial analyst license) and methods described by Tar-
boton (1997) and Nobre et al. (2011). First, the DTM files were hydrologically conditioned 
using the Fill tool to remove voids in the elevation profile. Then, the void-filled DTM was 
passed through the Flow Direction tool (D8 algorithm) and then the Flow Accumulation tool 
to create a stream raster, which is a binary raster dataset where a cell value of 1 is a stream cell 
and a cell value of 0 is a non-stream cell. The void-filled DTM was then applied to the Flow 
Direction tool again using the D-Infinity algorithm to create the flow direction raster. Finally, 
the three datasets (void-filled DTM, stream raster, and flow direction raster) were added to 
the Flow Distance tool with a vertical distance type setting and then a HAND model was the 
output file. The value of each pixel in these HAND rasters represents the elevation difference 
between each point of interest and the end point its drainage path (Fig. 3). The main assump-
tion of the HAND model is that any cell with a HAND value lower than the simulated flood 
water level will be inundated; therefore, Eq. 1 was the raster calculation equation used to cre-
ate the flood maps.

3.3  SRC tables

Three Python 3.7 scripts were written to calculate the SRCs, with the only difference 
being how they represented surface roughness. Each script requires the Spatial Analyst 
license extension for ArcGIS Pro to allow access to the various Spatial Analyst module 

Fig. 2  Input data sourced or derived from national and public datasets. Elevation data from the HRDEM 
dataset a, d, g, j, m. Land class data from the 2015LCC b, e, h, k, n. The HAND rasters c, f, i, l derived 
from HRDEM and the NHN

▸
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functions used in the code (i.e., arcpy.sa). Equations  5–11 from Zheng et  al. (2018a) 
were the basis for the various intermediate calculations that derived the Manning’s 
parameters (river slope, n, flood volume, and hydraulic radius). All three scripts could 
be loaded into the CERC-HAND-D custom tool and were written to accommodate the 
data from the previously mentioned public databases.

The workflow for the CERC-HAND-D tool is shown in Fig. 4, displaying how the tool 
incorporated the input datasets into various spatial analytics and mathematical equations 
from Zheng et  al. (2018a) to calculate the values of the Manning’s Formula parameters 
(Fig. 5a). These parameters were based on reach average characteristics (wetted perimeter, 
slope, etc.) of each inundation zone. The tool first clips all the input datasets to the extent 
of the catchment polygon. Then, the tool iterates through water level (H) values (m) start-
ing at 0.1  m, increasing by increments of 0.1  m, until the maximum H is met. In each 
H iteration  (Hi), an inundation extent raster file is created using a raster calculation  (Hi 
– HAND value), which is used to compute the entire flood volume. The inundation extent 
file is then used to create a temporary clip of the DEM and that clipped DEM will be con-
verted to a slope raster. That slope raster is used to calculate the hydraulic radius of the 
entire flooded zone. The catchment average flood volume and hydraulic radius for each 
 Hi are derived by dividing the two parameters by the stream length within the watershed. 
Once the stream network file is clipped by the catchment polygon, the average river slope 
is estimated by sampling the DTM elevations at the stream network start and end vertices 
(dangling points) using the Feature Vertices to Points tool with dangle option enabled. The 
slope is calculated as the difference between the highest and lowest elevations divided by 
the length of the river reach. The CERC-HAND-D tool provides the user with the option 
to designate an n value for the channel bed roughness based on physical characteristics of 
the channel bed and n values from HEC-RAS. For example, because the river channel in 
the Whitemud river case study was meandering, an n value of 0.045 was chosen, while an 
n value of 0.035 was chosen for the rest of the study sites as these channels were straighter 
(Brunner 2016). In the single fixed n value script, these n values are used to represent the 
surface roughness of the entire scene. Once the parameters are calculated and a Q value is 
calculated using  the Manning’s formula, each Q is added to a resulting SRC table along 
with the  Hi.

Fig. 3  Visual display of how the HAND raster is created. The HAND value is the vertical difference 
between the point of interest and the drainage endpoint that it is most likely to drain into (Nobre et al. 2011)



1637Natural Hazards (2021) 109:1629–1653 

1 3

Ta
bl

e 
1 

 H
yd

ro
m

et
ric

 g
au

ge
 st

at
io

n 
st

at
ist

ic
s;

 d
at

a 
pr

ov
id

ed
 b

y 
En

vi
ro

nm
en

t a
nd

 C
lim

at
e 

C
ha

ng
e 

C
an

ad
a 

(E
C

C
C

)

St
at

io
n 

na
m

e
St

at
io

n 
#

La
t.

Lo
ng

.
Ye

ar
s o

n 
re

co
rd

M
ax

. Q
M

in
. Q

M
ea

n 
an

nu
al

 Q
St

d.
 d

ev

A
ro

os
to

ok
 ri

ve
r n

ea
r T

in
ke

r
01

A
G

00
3

46
.8

16
36

−
67

.7
51

97
44

17
90

0.
13

11
6.

10
12

1.
34

G
ra

nd
 ri

ve
r a

t G
al

t
02

G
A

00
3

43
.3

53
11

−
80

.3
15

75
10

7
11

40
0.

74
37

.5
8

36
.2

3
N

or
th

 ri
ve

r a
t N

or
th

 ri
ve

r
01

D
H

00
4

45
.4

25
56

−
63

.2
54

72
23

24
8

0.
08

6.
27

4.
78

R
ic

he
lie

u 
(R

iv
ie

re
) A

ux
 R

ap
id

es
 F

ry
er

s
02

O
J0

07
45

.3
98

47
−

73
.2

58
44

83
15

50
39

.9
0

36
1.

96
22

3.
61

W
hi

te
m

ud
 ri

ve
r a

t W
es

tb
ou

rn
e

05
LL

00
2

50
.1

34
94

−
98

.5
84

06
48

30
5

0.
00

7.
02

13
.7

6



1638 Natural Hazards (2021) 109:1629–1653

1 3

3.4  Distributed n methods

Recent studies have suggested that a composite n value could improve the overall accuracy 
of an SRC (Zheng et al. 2018b; Garousi-Nejad et al. 2019). Several composite n relation-
ships have been proposed by researchers in the past (Chen and Yen 2002). Often these 
methods involve partitioning the cross-sectional area of the inundation extent into subsec-
tions, such as river channel and riverbank (Fig. 5b), then providing each subsection an n 
value, wetted perimeter, and cross-sectional area (Vatanchi and Maghrebi 2019; Brunner 
2020). It could be challenging for a user to select a proper n value for each subsection along 
the growing wetted perimeter or to identify where these boundaries such as the riverbanks 

Fig. 4  Workflow of the CERC-HAND-D tool, specifically for the scripts involving the distributed n meth-
ods. For the fixed n version of CERC-HAND-D, the Land Class arm of the flowchart is not present

Fig. 5  The Manning’s formula and its parameters (a), including the reach average cross-sectional area, the 
hydraulic radius, river reach slope, and the roughness coefficient (n). The geometry and characteristics of 
the riverchannel/riverbanks and how they influence the parameters in the Manning’s formula (b) 
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are located. For this study, simplistic approaches were experimented with to determine the 
best representation of variable flow resistances in the study area. Similar to the methods 
of Ozdemir et al. (2013), a classified land-class raster (2015LCC) was used to capture the 
general distribution of surface roughness in each scene and to delineate where the river 
channel ends and the riverbank begins.

3.4.1  Minimum‑median distributed n method

The first distributed n method involved extracting the minimum and median n values from 
the land classes present within the catchment area of each case study. For example, the 
urban land class had the smallest n value (Table 2), and in every case study, the urban land 
class was present (Fig. 4); thus, in every case study, a value of 0.016 was used as the mini-
mum n value. For each  Hi, the minimum and median n values were incorporated into the 
Manning’s formula so that each  Hi translated into two flow (Q) values that capture a range 
of possible Q values for a given fixed H. Thus, the median and minimum SRCs could be 
used to estimate a best-case and a worst-case flood scenario or to create a prediction win-
dow that potentially captures the true flood extent. A maximum n value was experimented 
with, however this resulted in an SRC that greatly over-estimated H values for every case 
study.

3.4.2  Weighted distributed n method

The second distributed method is similar to the general method to calculate a composite n 
value proposed by Yen (2002). The weighted method calculates a weighted average flow 
(Q) value for a given inundation extent based on the land classes within the maximum 
inundated extent and their respective n values, expressed as:

where  QWeighted is the weighted average Q  (m3/sec) value,  Qi is the Q  (m3/sec) value calcu-
lated using the n value of land class type i,  Wi is the weighting factor (unitless), and  NL is 
the total number of land class types within the maximum inundated extent. The weighting 
factor is equivalent to the proportion of the maximum inundation extent that land class type 
i encompasses. The purpose of this is to incorporate all the n values within the watershed, 
but still emphasize, or provide higher influential weight, to the n values that are associated 
with prominent land classes.

3.5  Deriving SRC equations

Once the SRC table is fully populated, each of the Python scripts used the SciPy (v.1.2.1) 
library to perform a nonlinear least squares regression (scipy.optimize.curve_fit) on the H 
values and estimated Q values from the table. Because the SRC equations need to convert 
Q values into H values, the Q are designated as the independent variable and H are desig-
nated as the dependant variable. 

(2)QWeighted =

NL
∑

i

QiWi
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3.6  Accuracy assessment

All SRC tables, including the water gauge control rating curve tables, were added to 
Microsoft Excel. Because the DTMs in the HRDEM dataset do not include bathymetry 

Fig. 6  Synthetic ratings curves creating using the three n methods (fixed, minimum-median, weighted) for 
each study site; all charts include the ± 15% acceptance ranges and the SRC equations
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data for any bodies of water, the origin point (0 m) for the control H values was set to the 
base river level (m) of each site (Fig. 5b). The river base river levels were chosen based on 
the average daily levels (m) between the start and end dates for the LiDAR capture. For 
example, the Grand River site had its LiDAR survey done between October  20th–Decem-
ber 6th, 2017, and between these dates the average daily level was 0.99 m; thus, the origin 
point for the control H data was set to 0.99 m. To compare the estimated flow (Q) values to 
the control Q values, an uncertainty range of 15% around the control Q values was selected 
and the percentage of estimated Q values that fell within this range was calculated. Failing 
to capture any estimated Q values within the 15% acceptance range (AR) was considered a 
failure for the SRC table. Fifteen percent was selected based off research done by Mansan-
arez et  al. (2019), where rating curve errors stayed under 15% for medium flows in riv-
ers with similar mean annual flows as the Grand River, North River, and Whitemud River 
sites. This AR comparison method was chosen to account for possible water gauge reading 
errors, potential errors in DTM creation, and uncertainty in HAND model performance.

While there is no set standard method for using statistics to compare SRC equations, 
previous research has generally used a normalized root mean squared error (NRMSE) 
to perform error analysis (Godbout et  al. 2019; Kavousizadeh et  al. 2019; Vatanchi and 
Maghrebi 2019). For each study site, the NRMSE was calculated as:

where Hc is the control H (m) values from the NHS hydrometric stations, while  He is the 
estimated H (m) value from the SRC equations and N is the number of data points used to 
compare the two datasets. An NRMSE closer to 0 indicates that the SRC equation has a 
stronger agreement with the control rating curve. This NRMSE formula used in Godbout 
et  al. (2019) was chosen because under-estimations and over-estimations do not cancel 
each other out and because the formula allows for comparisons between rivers of different 
scales. Because the NRMSE does not measure the extent of under-estimations and over-
estimations, the percent bias formula from Godbout et al. (2019) was used:

A positive percent bias would measure the degree of over-estimation, while a negative 
percent bias would measure the degree of under-estimation of the final SRCs. For the pur-
pose of clarity, the minimum n SRCs and the median n SRCs were tested separately to 
better examine the performance of each, though they are part of the same distributed n 
method.

4  Results

Except for the Riviere Richelieu study site, every study site had at least one SRC table 
where the estimated data fell within the 15% acceptance range, with the minimum 
and weighted n SRCs always producing an AR score above 0%  (Table  3). The mini-
mum n SRCs produced an AR score range of 24.0–64.0%, while the weighted n SRCs 
produced an AR score range of 23.7 – 74.0%. While the fixed n SRCs produced an AR 
score range of 44.0–64.0%, it failed in the Whitemud River site in addition to the Riviere 

(3)NRMSE =

�

∑

(Hc−He)2

N

Hc
max

− Hc
min

(4)Percent bias =

�∑

(Hc − He)
∑

Hc

�

∗ 100(%)
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Richelieu site. The median n SRCs failed (AR = 0%) in every site except for the North 
River site (AR = 44%) and the site with the highest AR score range was Aroostook River 
(AR = 64.0–74.0%), excluding the failed score (AR = 0%) from the median n SRC. In gen-
eral, with the exclusion of the AR scores from the median n SRCs and the Riviere Rich-
elieu site, the AR scores ranged from 23.7–74.0% with a median AR score of 54.8%. While 
these scores are not overwhelming high, they still indicate that the general trend for the 
SRC estimates follows that of the control SRC. These trends are supported by Fig. 6, which 
plots the SRC equations against the 15% acceptance ranges. As can be seen in Fig. 6, none 
of the Riviere Richelieu SRCs overlapped with the acceptance range, with the median n 
SRCs also deviating from the acceptance range. Otherwise, there is generally at least some 
(> 23.7%) overlap between the SRCs and the acceptance ranges.

These trends are further supported by the NRMSE and percent bias error analysis on the 
SRC equations, both shown in Table 3. The North River, Aroostook River, and Grand River 
study sites had a NRMSE range  of 3.7%–8.8% and a percent bias range of -7.8%–9.4% 
when excluding the median n SRC, which had an NRMSE range of 7.0–45.3% and a per-
cent bias range of 11.5–78.3%. These results indicate that the SRCs for these study sites, 
with the exception of the median n SRCS, are generally accurate when compared with the 
control rating curves, with some deviation present. The Riviere Richelieu study site had the 
weakest performance out of all the study sites, with a NRMSE range of 37.5%–76.2% and 
a percent bias range of 69.5%–140.1%, which indicates that the SRCs in this study sites 
excessively overestimate H values regardless of the n SRCS used. Interestingly, while the 
Whitemud River study site had a low AR score range (23.7–34.2%) with two n SRCss and 
failed (AR = 0%) with the other n SRCs, the NRMSE and percent bias ranges were only 
somewhat high (14.0–30.9% and 21.0–56.5% respectively), indicating that the SRC errors 
may not be significant. Except for the North River study site, every study site and every 
n method produced SRCs with positive percent bias, which implies that these SRCs will 
more often overestimate H values rather than underestimate them. In the context of flood 

Table 2  Designation of n values for 2015LCC file, based on the normal values in HEC-RAS manual (Brun-
ner 2016; Table 3–1)

2015 Canada land cover HEC-RAS Table 3–1 Manning’s n

Temperate needle leaf forest Tree-heavy stand of trees 0.1
Taiga needle leaf forest Tree-heavy stand of trees 0.1
Temperate broadleaf deciduous forest Tree-heavy stand of trees 0.1
Mixed forest Tree-heavy stand of trees 0.1
Temperate shrub land Brush-medium to dense bush in winter 0.07
Temperate grassland Pasture no crops-short grass 0.03
Polar shrub land Lichen moss Brush–scattered brush heavy weeds 0.05
Polar grassland-Lichen Moss Earth–stony bottom and weedy banks 0.035
Polar Barren-Lichen Moss With short grass–few weeds 0.027
Wetlands Earth-aquatic plants in deep channels 0.035
Cropland Between mature row and mature field crops 0.037
Barren lands No crops 0.03
Urban Asphalt–rough 0.016
Water Winding river channel with pools, weeds, and stones 0.045
Snow and ice Brush-medium to dense bush in winter 0.07
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prediction, the more conservative error is preferable, as it is more dangerous to under-esti-
mate a flood than to over-estimate it (Godbot et al. 2018).

Further, between the fixed n SRCs, the minimum n SRCs, and the weighted n SRCs, no 
n method notably outperformed throughout the case studies. None of the methods consist-
ently produced SRCs with the lowest NRSME and in each case study  the SRC with the 
lowest NRSME only outperformed the next SRC by 2.5% or less. However, as previously 
mentioned, when the minimum n SRCs are combined with the median n SRCs, despite 
being the lowest performing group of SRCs, there is an advantage of a prediction window 
(Fig. 6). The assumption with using this prediction window is that the true Q-H relation-
ship will generally fall somewhere between the median n SRC and the minimum n SRC. 
This assumption holds for the North River and Grand River sites quite well, and it nearly 
holds true for the Aroostook River site as well. This suggests that the minimum-median n 
method may be the preferred method to implement into the CERC-HAND-D tool.

There does seem to be some indication that both river gradient and reach length did 
influence the quality of the SRCs based on the results of this study. Both the case study 
with the lowest river gradient (Whitemud River) and the case study with the largest reach 
length (Riviere Richelieu) performed the worst. The  Riviere Richelieu site most likely 
failed because reach average calculations, such as slope and wetted perimeter, become less 
accurate as they are applied over larger areas; it is possible that segmenting the catchment 
polygon to smaller sections of the reach might improve outcomes. Interestingly, the North 
River study site had the highest river gradient (S = 0.0046 m/m), yet the CERC-HAND-
D tool was able to produce generally accurate SRCs for this study area. This is despite 
the fact that previous research suggests that SRCs are not accurate in geographical areas 
with high or low river gradients. While low reach lengths were not experiment with in this 
study (< 1.2  km), the poor results of the Riviere Richelieu study area (> 5  km) suggest 
that CERC-HAND-D, regardless of the n method used, may be unsuitable for large river 
reaches.

5  Historical flood recreation

The overall goal of creating the CERC-HAND-D tool is to support on-the-fly flood map-
ping utilizing the HAND model, and thus in this section, a series of flood maps that recre-
ated the flood extents of the 2011 Richelieu floods are presented. The objective was to test 
the overall workflow, starting with converting Q values into H values using an SRC, then 
applying those H values to the HAND model to produce flood maps.

5.1  Background and testing metrics

The worst performing case study, Riviere Richelieu, was selected for this test to determine 
how significant the errors could be when using the CERC-HAND-D tool to support flood 
mapping. The minimum-median n method was chosen due to the advantage of the predic-
tion window provided by this method. As the 2011 Richelieu flood occurred over a period 
of two months, it was decided to use flood extent data that was captured during the peak 
flood event in an attempt to recreate the spatial–temporal variability of the flood. Accord-
ing to the historical record of the NHN gauge station located in the Richelieu study area 
(#02OJ007), peak flow during the 2011 spring floods occurred on May 6th; however, there 
was no flood extent data available for that day. Instead, gauge data from May 5th, May 
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7th, May 8th, and May 12th were used as there were satellite-derived flood extent poly-
gons available; these datasets were sourced from the Open Canada Database (https:// open. 
canada. ca/ en). The daily average discharge  (m3/sec) values  (Qc) and the daily average water 
level (m) values  (Hc) from station 2OJ007 are shown in Table 4.

To calculate the estimate water level (m) values  (He) using the input  Qc values, the min-
imum-median n SRC equations from the Riviere Richelieu study site (Fig. 6) were applied:

To compare the HAND derived flood maps with the flood extent polygons, the tech-
niques used by McGrath et  al. (2018) and Chaudhuri et  al. (2021) to perform a binary 
classification evaluation were followed. Pixels in the flood maps were categorized as either 
true positive (TP), false positive (FP), true negative (TN), or false negative (FN), and then 
added into a contingency table (Table 4). To evaluate the accuracy of the flood maps, the 
Critical Success index (CSi), the Matthews correlation coefficient (MCC) and Percent Bias 
(Bias) were calculated using the following equations:

CSi was used as an overall score, in which TP, FP, and FN values were balanced out in 
their influence on the final score (McGrath et al. 2018). MCC was also used as an overall 
score, where high scores are the result of correctly predicting the majority of the positive 
(flooded) and negative (non-flooded) indicators equally (Chicco & Jurman, 2020; Chaud-
huri et al. 2021). Similar to Sect. 4, Bias was used to determine the magnitude of over or 
underestimations for the flood maps (McGrath et al. 2018). The CSI, MCC and Bias scores 
are shown in Table 4.

5.2  Comparison results

Overall, the minimum-median n method did in fact create a prediction window that func-
tioned as it should for this test; the  Hc values were consistently in-between the two  He val-
ues  (Hmin and  Hmed) for each date of study (Table 4). Both the CSi and MCC scores over 
the four study dates were moderate to high, with a CSi range of 0.644–0.809 and an MCC 
range of 0.776 – 0.877; these scores suggest a strong agreement between the flood extent 
datasets and the recreations. The minimum n SRCs performed slightly better than the 
median n SRCs with a median CSI score of 0.722 vs. 0.684 and with a median CSI score 
of 0.820 vs. 0794. All of the Bias scores were above 1, with a Bias score range of 1.048 
– 1.555, suggesting that the simulations over-estimated the extent of the flood.

(5)Hmin = 0.037
(

Q0.575
)

(6)Hmed = 0.051
(

Q0.575
)

(7)CSi =
TP

TP + FP + FN

(8)MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(9)Bias =
TP + FP

TP + FN

https://open.canada.ca/en
https://open.canada.ca/en
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Similar trends appear in the classified flood maps, alongside the control flood maps, in 
Fig. 7 (May 5th, 2011) and Fig. 8 (May 7th, 2011). In each of the classified flood maps 
(Figs. 7b ,7c, 8b, 8c), there are FP cells that align along the sides of the river, indicating 
that the HAND model over-estimated the extent of the flood; it is also evident that the 
median n SRC maps (Figs.  7b, 8b) have more FP cells than the minimum n SRC maps 
(Figs. 7c, 8c), which agrees with the results of Table 4. In the control flood maps (Figs. 7a, 
8a), some inconsistencies in the control flood extent data are highlighted. For example, 
in Fig. 7a, several flood cells were disconnected from the main Riviere Richelieu stream; 
these consistently produced FN cells in the classified flood maps. Upon inspection, these 
cells aligned with the Chambly Canal that runs parallel to the river, with no indication of 
overland flooding. This could be a result of an artifact error made by satellite capture, as 
it is not present on the May 8th map. In addition, a bridge (Fig. 8a) occluded flood cells 
(approx. 3933 pixels) in some maps and produced FP cells in the classified flood maps; 
the occlusion from the bridge is not present in Fig. 7a. To determine if these control data 
errors significantly lowered the CSi and MCC scores, the number of FP, TP, TN, FN cells 
in confusion matrix were adjusted. It was found that these control errors only affected the 
median CSi and MCC scores by about 0.200 (unitless). Because the effects were minimal, 
the scores were kept as there are. 

Interestingly, even though the minimum n SRCs produced an under-estimated H val-
ues, the Bias scores were still greater than 1. This implies that the minimum n SRC flood 
maps had more significant over-estimations of flood extents than under-estimations. This 
is most likely a result of the HAND model itself, as it can result in overestimations in flat-
ter geographical regions (Hocini et  al. 2020) and the Riviere Richelieu site does have a 
low-moderate river gradient (0.0013 m/m) and flat terrain slopes. Further, it was noticed 
in the minimum n SRC flood maps (Figs.  7c and 8c) that there was a consistent group 

Fig. 7  May 5th, 2011 flood polygon over the Riviere Richelieu study site (a). The binary classified flood 
map for the median n SRC (b) and the minimum n SRC (c). Note the circle highlighting the canal artifact 
from the control data
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of FN cells in the southern portion of the map. Through inspection of the HAND model 
(Fig. 2l), it seems that this portion of the river was erroneously deemed elevated above the 
adjacent sections of river; this may stem from an error made during the processing of the 
HAND model (Sect. 3.2). Additionally, it is likely that the MCC scores were higher than 
the CSi scores because the CSi formula does not have TN (Eq. 7), while the MCC does 
(Eq. 8); notice in the classified maps and Table 4, the overwhelming number of TN cells 
(> 2,000,000 pixels) compared to the number of TP, FP, and FN cells. Because the large 
number of TN cells may be inflating the MCC scores, the CSi scores are probably more 
accurate.

6  Discussion

The CERC-HAND-D tool has shown promise as a proxy for hydrometric gauge derived 
rating curves, especially when using the minimum-median n method. On its own, the mini-
mum n method performed quite well, with an NRMSE range of 5.4–40.0% and an AR score 
range of 0.0–64.0%; those ranges would be 5.4–19% and 24.0–64.0% if the challenging 
Riviere Richelieu site is excluded. Further, combining a minimum n SRC with a median 
n SRC produces the advantageous prediction window that provides more opportunities to 
catch the true Q-H relationship. As seen in Sect. 5, the minimum-median n SRC was able 
to capture the gauge water level (m) value (Hc) in its prediction window for each test-
ing event. This suggests that within the prediction window of the tool, with the minimum-
median n method incorporated, the user is more likely to find results that match closely 
with natural Q-H relationships than when using a single SRC. This is especially true when 

Fig. 8  May 7th, 2011 flood polygon over the Riviere Richelieu study site (a). The binary classified flood 
map for the median n SRC (b) and the minimum n SRC (c). Note the circle highlighting the bridge artifact 
from the control data
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applying the tool in geographic locations that follow the set guidelines for quality SRC 
performance (river length < 5  km; S > 0.001  m/m). There is an inherent uncertainty in 
designating an n value for the Manning’s formula (Tullis 2012), and the minimum-median 
n method allows for a prediction window to accommodate for this uncertainty. The predic-
tion window is also beneficial as it allows us to avoid the general difficulty of finding a sin-
gle n value, even a composite n value, that can represent all the surface resistances present 
within a scene.

Short river reaches (< 1.2  km) were not tested  and while the North River study site 
was considered to be high gradient (S = 0.0046 m/m) for our study, Godbout et al. (2019) 
were able to produce acceptable results up until S = 0.1 m/m. It would be beneficial to fur-
ther assess tool performance in geographical study areas with these characteristics. The 
land class types can affect the quality of the SRCs, specifically between urban, cropland, 
and forest land classes and further testing for this issue is recommended (Godbout et al. 
2019). The heavily urbanized (78.4%) Grand River study area and the heavily forested 
(49.5–57.1%) Aroostook and North River study sites all had lower NRMSE scores, while 
the Riviere Richelieu study site, with cropland taking up 63.8% of its area, performed 
poorly. These results suggest that croplands might have a negative influence on tool per-
formance, although it is uncertain if this a factor of croplands generally being flat or how 
land classes interacts with river gradients and river lengths to affect SRC quality. It was 
also assumed that proximity to bridges, dams, culverts, and other hydraulic infrastructures 
would influence tool performance; however, this was not explored in our study.

A future study may also want to explore an alternative source for land class data that 
has a higher resolution than the 2015LCC (30 m) to match the resolution of the HRDEM 
(1–2  m). Diehl et  al. (2021) combined HAND models with a 1  m resolution land class 
raster to created flood probability maps that had good agreement (F-statistics = 0.61–0.82) 
with 1D HEC-RAC maps. Interestingly, the researchers achieved these results using a 
weighted n method similar to the one in this study, although Diehl et al. (2021) weighted 
the n values rather than the Q values. This may suggest that if a 1 m resolution land cover 
was available and incorporated into the CERC-HAND-D worflow, the weighted n method 
might perform better. This would not be surprising, considering that weighted n method 
was similarly successful in this study (NRMSE range of 3.7–37.5%) as the minimum n 
method. The authors are currently experimenting with creating a land cover of Canada 
with a 1 m resolution and if successful, the raster map may be incorporated into the work-
flow of CERC-HAND-D.

Adjustments and additional features to the CERC-HAND-D workflow could be imple-
mented to improve overall tool usability and performance. For instance, the HRDEM data-
set does not include bathymetry, which resulted in under-estimation of flow (Q) values due 
to the exclusion of the in-channel geometry (Moretti and Orlandini 2018). A tested solu-
tion was to create a base river flow  (QBASE) variable to offset and correct the estimated Q 
values. A similar approach to the Terrain Correction Technique (Choné et al. 2018) was 
used, where the flow depth during the LiDAR survey was used to correct flow estimations. 
The results of this experiment showed that QBASE only decreased NRSME by 1.5% or 
less, and in the North River study site it increased NRSME by up to 3.6%. This was on 
top of the fact that requiring the user to determine a flow depth value made the tool less 
user-friendly. In future, if a more successful and automated method of calculating  QBASE is 
found, then this may become an option feature for CERC-HAND-D.

The HAND model itself is imperfect and is best utilized for capturing fluvial floods 
caused by river waters rising and spilling over their banks, while ice-jam and coastal 
floods cannot easily be replicated by the model (Wing et al. 2019). Flat terrains are also a 
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challenge for the HAND model, as the model tends to over-estimate flood extents in these 
locations; this is a limitation shared with CERC-HAND-D, as the HAND model is required 
for creating SRCs. Further, the HAND model has been shown to be outperformed by 
Hydraulic 1D and 2D SWE models, albeit with higher computation times, and the model 
cannot produce outputs such as velocity and shear stress, which are important for flood 
hazard assessments (Hocini et al. 2020; Rebolho et al. 2018). Despite this, results such as 
those found by McGrath et al. (2018) suggest that the HAND model can be a cost-effec-
tive, rapid, and accurate flood model that would be suitable for on-the-fly flood mapping. 
By keeping within the limitations of both the HAND model and the CERC-HAND-D tool, 
it is possible to expand the flood mapping capabilities across Canada in a variety of ways. 
Further, there is no centralized source of catchment polygon data available for Canada that 
could support the CERC-HAND-D tool. While there are watershed polygons available 
from NRCan, they are generally too large to fit within the 5 km river length limit set for 
creating SRCs. Users can follow the same steps taken in this study to create the catchment 
polygons (Sect.  3); however, alternative DTM files will result in inconsistent catchment 
polygons.

Currently, the centralization of flood maps in Canada is limited, as the availability of 
these datasets is often restricted to regional and local governments with no coordinated 
standards between government bodies on the quality and the accessibility of flood maps 
(Henstra et al. 2019). The HAND model, with support by CERC-HAND-D, could assist 
in building a national repository of flood maps in Canada, especially for regions where 
these maps are outdated or non-existent. An even more advantageous approach would be to 
create an interactive web mapping application that houses archive and current flood maps 
that are both HAND derived and non-HAND derived (Henstra et al. 2019). A similar web 
application, named Hydrogeomorphic Flood Hazard Mapping, was created by Tavares da 
Costa et  al. (2019), wherein big open-access datasets were used to support flood hazard 
mapping across Europe, providing both archive flood hazard maps and experimentally 
derived maps in conjunction. Additionally, Chaudhuri et al. (2021) have created a proto-
type for a flood mapping web application (InundatEd-v1.0) in the Grand River watershed 
by combining HAND models with discrete global grid system (DGGS)-based architecture.

Further, a potential web application could combine active river gauge data and/or pre-
dictive meteorological data with the CERC-HAND-D tool and the HAND model to pro-
duce on-the-fly flood maps. Some sources of such continuous and predictive data across 
Canada include the Real-Time Hydrometric Dataset (RTHD), provided by NHS, and the 
GeoMet platform, provided by MSC. Liu et al. (2018) have done a similar project where 
the HAND model, river streamflow forecasts, and SRC look-up tables are applied together 
to produce real-time inundation extent data on a national scale; Zheng et al. (2018b) have 
also done something similar with their Geoflood method. While there are some doubts 
on how suitable the HAND model is at inundation mapping on a national scale (Wing 
et al. 2019), a potential web application can be updated frequently as methods and models 
improve.

7  Conclusion

In this paper, we have discussed a custom ArcGIS Pro tool, called CERC-HAND-D, how 
the tool can produce SRCs to act as a proxy for rating curves, and the ways in which these 
SRCs can support on-the-fly flood mapping in Canada. CERC-HAND-D was shown to 
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create SRCs that accurately (NRMSE = 3.7–8.8%, Percent Bias = −7.8–9.4%) compared to 
the control rating curves when river gradients and reach lengths are moderate. The min-
imum-median n method was advantageous for creating a prediction window that better 
captures true Q-H relationships through deriving two SRCs. Combining these SRCs with 
the HAND model in a workflow, two flood maps were produced that accurately captured 
(CSI = 0.644–0.809; MCC = 0.776–0.877) the extent of the 2011 Richelieu flood event. 
Further testing with CERC-HAND-D will be needed to better establish the limitations of 
the tool, and some adjustments to the GUI could make the tool more user-friendly. Future 
directions for the tool involve implementing CERC-HAND-D and the HAND model in the 
creation of an on-the-fly flood mapping application that would be widely applicable across 
the country.
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