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Abstract
In the literature, numerous papers report comparative analyses of drought indices. In these 
types of studies, the similarity between drought indices is usually evaluated using the 
Pearson correlation coefficient, r, calculated between corresponding severity time series. 
However, it is well known that the correlation does not describe the strength of agree-
ment between two variables. Two drought indices can exhibit a high degree of correlation 
but can, at the same time, disagree substantially, for example, if one index is consistently 
higher than the other. From an operational point of view, two indices can be considered in 
agreement when they indicate the same severity category for a given period (e.g. moder-
ate drought). In this work, we compared six meteorological drought indices based on both 
correlation analysis and Cohen’s Kappa test. This test is typically used in medical or social 
sciences to obtain a quantitative assessment of the degree of agreement between different 
methods or analysts. The indices considered are five timescale-dependent indices, i.e. the 
Percent of Normal Index, the Deciles Index, the Percentile Index, the Rainfall Anomaly 
Index, and the Standardised Precipitation Index, computed at the 1-, 3-, and 6-month time-
scales, and the Effective Drought Index, a relatively new index, which has a self-defined 
timescale. The indices were calculated for 15 stations in the Abruzzo region (central Italy) 
during 1951–2018. We found that the strength of agreement depends on both the criteria of 
drought severity classification and the different indices’ calculation method. The Cohen’s 
Kappa test indicates a prevailing moderate or fair agreement among the indices considered, 
despite the generally very high correlation between the corresponding severity times series. 
The results demonstrate that the Cohen’s Kappa test is more effective than the correlation 
analysis in discriminating the actual strength of agreement/disagreement between drought 
indices.
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1 Introduction

Although it is difficult to give a univocal definition of drought, this can be very generically 
defined as a natural hazard that arises from a considerable deficiency in precipitation for 
prolonged periods (Folger 2017). Droughts are usually classified considering the affected 
domain, for example, distinguishing meteorological, hydrological and agricultural droughts 
(Whilite et al. 2007). Drought characterisation in a given area is very useful, both for defin-
ing early-warning systems (Kogan 2000), and for water resources planning and manage-
ment (Zargar et al. 2011). For these purposes, drought indices are typically used: these are 
measures deriving from the elaboration of suitable variables or data such as precipitation, 
evapotranspiration, or satellite images, which allow us to express the drought character-
istics (e.g. severity) in a more effective way than the original information (Zargar et  al. 
2011). Moreover, the operational use of drought indices is based on specific classification 
criteria, enabling a qualitative description of the drought severity (e.g. extreme, severe, 
moderate, etc.) according to the index’s value. This way of proceeding has the advantage of 
allowing a rapid understanding of the type of ongoing event and of making its description 
independent of the scale of values assumed by a particular index.

The drought indices proposed and used in monitoring the phenomenon in its various 
implications are very numerous (Keyantash and Dracup 2002; WMO 2006), precisely 
because they reflect the complexity of the phenomenon and the application contexts’ vari-
ability. For example, Zargar et al. (2011) mention as many as 74 drought indices in their 
review. Some indices are very common and universally used and accepted (e.g. the Stand-
ardised Precipitation Index, SPI), whereas others are used in a more local context.

This huge availability of drought indices has often led to comparative studies aimed at 
identifying the index (or group of indices) and the related timescales that are more suitable 
to describe a specific type of drought in a given area. Usually, the evaluation of the perfor-
mances is carried out based on the ability of the different indices to correctly describe the 
characteristics (onset, duration, severity, etc.) of historical drought events or based on their 
correlation with hydrological or agricultural impacts in a specific region (Myronidis et al. 
2018; Blauhut et al., 2015). Examples can be found, amongst others, in Morid et al. (2006) 
for the Tehran province (Iran), Jain et al. (2015) for India, Salehnia et al. (2017) for Iran, 
Bayissa et al. (2018) for Ethiopia, Myronidis et al. (2018) for Oregon (USA), and Wable 
et  al. (2019) for a semiarid region of India. In this type of study, a preliminary part of 
the analysis usually deals with evaluating the similarity among the indices, almost always 
based on the Pearson correlation coefficient r between the corresponding severity time 
series.

The correlation coefficient r is a measure of the strength of the linear relationship 
between two generic variables, and it helps to evaluate the similarity of the temporal 
dynamics of two indices. However, as Schober et  al. (2018) underlined, the correlation 
does not describe the strength of agreement between two variables. Let us consider, for 
example, two generic drought indices X1 and X2, based on the same severity classifica-
tion scheme, such as that of SPI (Table 1). Let us also assume that, in a given period, the 
two indices follow the dynamics shown in Fig. 1a. The correlation between X1 and X2 in 
Fig. 1a is perfect (r = 1), despite the corresponding severities that differ systematically. In 
this specific case, X1 and X2 indicate different drought categories at each time step consid-
ered (i.e. the two indices are not in agreement).

High correlations between drought indices are reported in most of the literature men-
tioned above, but, according to the previous considerations, this does not necessarily 
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indicate similarity between the indices. For example, Salehnia et  al. (2017), when com-
paring eight precipitation-based drought indices (SPI, PN (Percent of Normal Index), DI 
(Deciles Index), EDI (Effective drought index), CZI (China China-Z index), MCZI (Modi-
fied CZI), RAI (Rainfall Anomaly Index), and ZSI (Z -score Index)), always found r ≥ 0.94, 
with very few differences among indices (except for the comparisons involving EDI, for 
which the correlations are slightly lower). High correlations (r ≥ 0.74) were also indicated 
by Morid et al. 2006 regarding the comparisons among CZI, MCZI, ZSI and SPI. In Wable 
et al. (2019), the correlation matrix related to SPI, RDI (Reconnaissance Drought Index), 
PN and SPEI (Standardised Evapotranspiration Precipitation Index) always shows r ≥ 0.79 
for the 6-month and longer timescales. In Jain et al. (2015), average r values greater than 
0.88 are indicated for the comparisons among DI, SPI, CZI and ZSI.

A high correlation may depend on the fact that many indices have almost linear relation-
ships in a wide range, although they differ greatly in the extreme values (tails). In this situ-
ation, the correlation coefficient is mainly affected by the central (i.e. normal) values and 
does not adequately highlight the marked differences in the tails (which instead represent 
the most interesting conditions from an operational viewpoint), thus concealing possible 
differences in the assessment of severe and extreme drought conditions.

On the other hand, moderate differences between the values of two generic indices 
and their not synchronous temporal dynamics could lead to low correlation values, even 
in those cases in which the two indices are in substantial agreement in terms of drought 
severity classification. In the example of Fig.  1b, the correlation coefficient between X1 
and X2 is only 0.52, despite X1 and X2 being in substantial agreement in terms of drought 
category at each time step.

Since the indices’ operational use is mainly done through a qualitative classifica-
tion of the severities (e.g. Table  1), the similarity among indices should consider the 

Table 1  Severity classification adopted for the indices considered

Class, C PN (%) DI PI (%) SPI RAI EDI

Wet PN > 120 DI > 7 PI > 84 SPI > 1 RAI > 1 EDI > 1
Normal 80 < PN ≤ 120 3 < DI ≤ 7 16 < DI ≤ 84 −1 < SPI ≤ 1 −1 < RAI ≤ 1 −1 < EDI ≤ 1
Moderately dry 40 < PN ≤ 80 2 < DI ≤ 3 7 < PI ≤ 16 −1.5 < SPI ≤−1 −1 < RAI ≤ −2 −1.5 < EDI ≤ −1
Severely dry 20 < PN ≤ 40 1 < DI ≤ 2 3 < PI ≤ 7 −2 < SPI ≤ −1.5 −2 < RAI ≤ −3 −2 < EDI ≤ −1.5
Extreme dry PN < 20 DI < 1 PI < 3 SPI < −2 RAI < −3 EDI < −2
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Fig.1  Theoretical ex  amples illustrating the concepts of correlation and agreement between two generic 
drought indices X1 and X2: a X1 and X2 are highly correlated but not in agreement; b X1 and X2 are 
poorly correlated, but substantially in agreement



2190 Natural Hazards (2021) 108:2187–2209

1 3

correspondence between the drought classifications rather than the correlation between 
the quantitative values of the indices. In practice, from an operational point of view, two 
drought indices can be considered in agreement when, for a given period, they indicate the 
same severity classification (e.g. moderate, severe, extreme drought).

This type of evaluation can be effectively obtained by the Cohen’s Kappa test (Cohen 
1960, 1968), one of the most well-known methods to compare the agreement between two 
different raters or analysis techniques (Craig 1981). However, this test has been applied in 
very few cases to compare the similarity between drought indices. Examples can be found 
in Teweldebirhan Tsige et  al. (2019) and in Ezzine et  al. (2014), who compared mete-
orological and agricultural drought indices using the Cohen’s Kappa test, amongst other 
methods.

In this paper, we describe and discuss the advantages of applying the Cohen’s Kappa 
test to assess the similarity between drought indices, using the traditional correlation analy-
sis as a term of comparison. Moreover, both the unweighted and weighted versions of the 
Cohen’s Kappa test are applied. As detailed in the methods section, this will enable us to 
assess both the strength of agreement between two drought indices (unweighted version) 
and how different are the severity classes when two indices disagree (weighted version).

To illustrate the method, we compared some well-known meteorological drought indi-
ces at 15 stations in the Abruzzo region (central Italy) from 1951 to 2018. We limited the 
analysis to six meteorological indices, which only require precipitation data: the Percent of 
Normal Index (PN), the Decile Index (DI), the Percentile Index (PI), the Standardised Pre-
cipitation Index (SPI), the Rainfall Anomaly Index (RAI), and the Effective Drought Index 
(EDI). The indices considered include several different characteristics: five indices, i.e. PN, 
DI, PI, RAI, and SPI, need the specification of a timescale, while EDI has a self-defined 
timescale. Moreover, the EDI, unlike the other indices, is based on the concept of effective 
precipitation, i.e. the precipitation of the previous periods influences the current EDI value 
with weights that decrease as the temporal distance of those precipitations increases from 
the current period (Byun and Wilhite 1999). Some indices (DI, PI, SPI) have a precise 
probabilistic interpretation while others (PN, RAI, EDI) do not. Most indices (DI, SPI, PI, 
RAI, EDI) are suitable for spatial and temporal comparisons, while PN is not. Finally, the 
Percentile Index, defined in this paper, is conceptually and quantitatively analogous to the 
Decile Index, but it is based on a different classification of drought severity.

For simplicity’s sake, the calculation of the indices PN, DI, PI, RAI and SPI was carried 
out only for short-medium timescales (i.e. 1-, 3- and 6-months), which are typically associ-
ated with agricultural drought conditions.

2  Materials and methods

2.1  Study area and data

The region of Abruzzo is located in Central Italy and covers an area of 10,798  km2. The 
region is predominantly mountainous and hilly and has the highest peaks in the Apennine 
Mountains, while plains are mainly located in the coastal strip bordering on the Adriatic 
Sea and in some inland plateaus (Fig. 2). The climate is Mediterranean, with hot, dry sum-
mers and mild winter, with rainfall usually being higher in autumn.
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The study was carried out based on the rainfall data recorded by the Hydrographic 
Regional Service from 1951 to 20181 at 15 stations, quite uniformly distributed in the 
region (Fig. 2). These data are part of a more extensive database already used in previous 
works (e.g. Di Lena et al. 2014; Vergni et al. 2016) and are here updated to the year 2018. 
In the same references, the details related to the data quality assessment, with particular 
reference to the homogeneity and the reconstruction of missing data, can also be found.

The mean monthly precipitation at the 15 stations considered is presented in Fig. 3. The 
mean annual precipitation ranges from 644 mm (Sulmona) to 992 mm (Arsita).

2.2  Drought indices

The indices were computed for each station based on monthly precipitation data. For the 
indices PN, DI, PI, SPI and RAI, requiring the specification of an accumulation period, we 
only considered the 1-, 3- and 6-month timescales.

The drought severity classification for the different indices was based on a common 
scheme (Table 1) which creates the distinction between wet, normal, and dry conditions 
(in turn divided into 3 levels). Wet conditions have not been further subdivided, given that 
the work is mainly focussed on the degree of agreement of the indices in the classifica-
tion of drought events. However, the method proposed can be applied to any classification 
criterion.

Details about the index’s calculation, their main characteristics, and the classification 
criteria are provided in the next paragraphs.

Fig. 2  Stations considered and orography of the Abruzzo region

1 For the station of Giulianova the series is 1951–2017.
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2.2.1  Percent normal PN

The percent of normal, PN, is calculated by dividing a given observation of cumulative 
precipitation Xk

i,j
 , related to the month j (j = 1,…,12) and timescale k, by the normal pre-

cipitation of the same period (typically the mean of a data series of at least 30 years). The 
simplicity is the main strong point of the PN index, and it can be considered quite effective 
for comparing the anomalies related to a single region or season. PN meets the needs of a 
general audience since it does not require in-depth statistical knowledge. Disadvantages 
are mainly associated with the lack of robustness (Zagar et al. 2011): the percent of normal 
implies a normal distribution where the mean and median are considered the same, but in 
most cases, precipitation on monthly or seasonal scales does not have a Normal distribu-
tion. Moreover, the precipitation probability distribution changes with localities and sea-
sons, making any spatial or temporal comparison based on PN unreliable. The classifica-
tions considered for PN (Table 1) were derived from Fluixá-Sanmartín et al. (2018).

2.2.2  Deciles Index DI and Percentile Index PI

The Deciles Index, DI, groups the observations of cumulative precipitation Xk
j
 in deciles. 

At this end, the values Xk
i,j

 (from a long-term record) are first ranked from lowest to high-
est, assigning the corresponding cumulative frequency (%) to each observation. The first 
decile is the precipitation value not exceeded by the lowest 10% of all precipitation values, 
and the second is between the lowest 10 and 20%, etc. The DI index, developed by Gibbs 
and Maher (1967), is still a reference point in drought monitoring in some countries, such 
as Australia. DI is an elementary index, easy to calculate, whose understanding is quite 
intuitive. Despite this simplicity, it is more robust than PN, as it has a precise statistical 
meaning and characteristics of spatial and temporal comparability. DI is usually grouped 
into five classes: if precipitation falls into the lowest 20% (deciles 1 and 2), it is classified 
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as "much below normal". Deciles 3 and 4 indicate "below normal" precipitation, deciles 5 
and 6 indicate "near normal", deciles 7 and 8 "above normal", and deciles 9 and 10 "much 
above normal". In this work, to increase the comparability among the indices considered, 
the classification of DI was based on 3 (instead of 2) drought classes (Table 1) as proposed 
in Morid et al. (2006).

In this paper, the percentile index PI is also proposed. It is computed the same as DI, 
but PI uses percentiles instead of deciles, allowing more flexibility in the definition of the 
severity classes. In particular, the class limits used for PI (Table 1) almost exactly corre-
spond to the cumulative probability values (%) of the class limits of SPI (which ultimately 
corresponds to the standard variable z).

2.2.3  Standardised Precipitation Index SPI

The Standardised Precipitation Index (McKee et al. 1993) is one of the most commonly 
adopted drought indicators and its use in meteorological drought assessment has been rec-
ommended by the World Meteorological Organisation (Hayes et al. 2011). A brief descrip-
tion of the calculation steps is provided hereafter, and more details can be found in several 
papers (e.g. Lloyd-Hughes and Saunders 2002). The first step is the determination of a 
Probability Density Function (PDF) suitable for the description of the long-term series of 
observations Xk

i,j
 . The fitting is performed for each calendar month to consider the climatic 

differences due to seasonality. Once this PDF is determined, the cumulative probability 
of an observed precipitation amount Xk

i,j
 is estimated. Thanks to an equiprobability trans-

formation (Abramowitz and Stegun 1965), the estimated cumulative probability is trans-
formed into a standardised variate representing the SPI value. The Gamma distribution is 
the commonly adopted PDF (McKee et al. 1993), even if other PDFs could have a better 
goodness of fit in some contexts (Stagge et al. 2015). Here, the SPI was calculated accord-
ing to the initially suggested algorithm (specifically, assuming that the cumulated precipi-
tation follows a Gamma distribution).

SPI, as underlined by Guttman (1998) and Lloyd-Hughes and Saunders (2002), has sev-
eral strong points: (1) suitability to spatial and temporal comparisons; (2) flexibility, as 
it can be applied at different timescales; (3) reduced calculation complexity in compari-
son to other indices; (4) ease of application, as it is based only on precipitation. However, 
some weak points have also been indicated. For example, Wu et al. (2007) recommended 
cautions in interpreting short-timescale SPI in arid climatic regimes (i.e. series with zero 
rainfall values) due to the non-normality of SPI. Critical aspects are also associated with 
the choice of a suitable PDF, which introduces elements of uncertainty in the SPI esti-
mates (Vergni et al. 2017). Moreover, SPI and the other timescale-dependent indices here 
considered (i.e. PN, DI, PI, and RAI) depend only on the cumulative value of the precipi-
tation in the period of length k, regardless of both the distribution of the precipitation in 
the same period and its temporal distance from the current period. In most contexts (e.g. 
agricultural, hydrological), this approach can lead to misleading assessments of the current 
drought conditions and related impacts.

2.2.4  Rainfall Anomaly Index RAI

The rainfall anomaly index RAI (van Rooy 1965) is computed by comparing each obser-
vation Xk

i,j
 with the mean of the ten highest (for positive anomalies) and the ten lowest 

(for negative anomalies) precipitation records (for the same month j and timescale k). The 
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calculation starts by arranging the precipitation data Xk
i,j

 in descending order. The ten high-
est values are averaged to form a threshold M for positive anomalies, and the ten lowest 
values are averaged to form a threshold m for negative anomalies. The RAI index corre-
sponding to the ith precipitation value is computed as:

where Xk
i,j

 is the actual precipitation related to the month j and timescale k in the year i; and 
X
k

j
 is the corresponding long-term mean. The RAI classification considered in this paper 

(Table 1) is derived from Fluixá-Sanmartín et al. (2018), with the only modification being 
the limits of the normal class, which here also includes the categories defined as "slightly 
dry" and "slightly wet" in Fluixá-Sanmartín et al. (2018).

2.2.5  Effective Drought Index EDI

In its original formulation (Byun and Wilhite 1999), the Effective Drought Index (EDI) 
was computed on a daily timescale, but the same principles were used later to calculate 
EDI based on monthly precipitation data (e.g. Smakhtin and Hughes 2007; Pandey et al. 
2008; Jain et al. 2015). This last approach is the one considered here for better comparabil-
ity with the other indices.

The first step is the calculation of EP (Effective Precipitation), defined as a function of 
the current month’s rainfall and weighted rainfall over a defined preceding period. If Pm is 
the rainfall of the current month and D is the duration of the preceding period, then the EP 
for the current month is:

For example, for D = 3, EP = P1 + (P1 + P2)/2 + (P1 + P2 + P3)/3, where P1, P2 and P3 
are precipitation amounts during the current month, the previous month and two months 
before, respectively.

In most application of EDI, D = 365 days (i.e. 12 months) is assumed since it represents 
the most common precipitation cycle (Byun and Wilhite 1999; Deo et al. 2017).

Then, the long-term mean of EP (for a specific month) is calculated and named MEP. 
The EDI index is finally calculated as:

where DEP is the current anomaly (DEP = EP-MEP), and St(DEP) is its standard deviation 
in the time series.

Unlike SPI, the EDI is not normally distributed and preserves the original time series’ 
skewness (Smakhtin and Hughes 2007).
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− X
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j
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Among the indices considered, EDI is the one that differs the most in terms of both 
calculation and physical interpretation. The other indices depend on the simple summation 
of precipitation in a given period, while EDI is based on the concept of effective precipita-
tion EP (Eq. 3). This implies that more weight is given to the current period’s precipitation 
(day or month) and progressively descending weights to all previous periods. According to 
Byun and Whilite (1999), the EDI algorithm implicitly considers the progressive decrease 
of water resources (e.g. soil moisture, water reservoirs) after rainfall due to the runoff and 
evapotranspiration processes. Several authors (e.g. Pandey et  al. 2008; Deo et  al. 2017; 
Jain et al. 2015) demonstrated the advantages of the EDI approach in describing historical 
drought events. Compared to other indices that refer to fixed timescales, the main advan-
tage of EDI is that it provides continuous and reliable monitoring of the progression of 
drought (or wet) periods. Moreover, the EDI application fields extend to other contexts, 
such as flash flood warnings (Deo et al., 2015). This advantage is most appreciable if EDI 
is calculated with the original daily sliding timescale, but to a certain extent, it also remains 
at the monthly scale.

In most applications available in the literature (e.g. Salehnia et al. 2017; Deo et al. 2017; 
Smakhtin and Hughes 2007), the classification proposed for the EDI index is the same as 
SPI (Table 1).

2.3  Methods

The EDI was compared with all the other indices (PN, DI, PI, SPI, and RAI) at their differ-
ent timescales. However, these last indices were compared with each other, only consider-
ing the same timescale.

The similarity between drought indices was first evaluated by analysing the two-by-two 
scatter plots of corresponding monthly severity time series (1951–2008) and calculating 
the Pearson correlation coefficient r, as is usually done in the literature.

A more effective and innovative assessment of the similarity between the indices was 
then obtained comparing all possible pairs of indices in terms of the severity category 
assigned to each month of the time series, and then quantifying their degree of agreement 
by the Cohen’s Kappa test. This test is often applied to evaluate the degree of agreement 
between two raters, methods, or classifiers, mainly in medical sciences. The test’s main 
principles are here briefly summarised here; more details can be found in Cohen (1960, 
1968).

The classification obtained from two classifiers can be represented by an agreement 
matrix (Cohen 1968), where along the upper-left to lower-right diagonal, there are the cells 
of perfect agreement (agreement diagonal). An example of an agreement matrix between 
two generic drought indices with C = 5 severity categories (see Table 1) for climatic con-
ditions is given in Table 2, where pij represents the generic proportion of classifications 
assigned to the category i by the index A, and to the category j by the index B (i, j = 1…C). 
The notations pi. and p.j indicates the row and column proportion totals, respectively.

The Kappa test is based on the following coefficient of agreement K, corrected for 
chance:

where pO is the total observed frequency of agreement and pe is the proportion of agree-
ment expected by chance. In practice, K indicates how much the observational frequency 

(5)K =
po − pe

1 − pe



2196 Natural Hazards (2021) 108:2187–2209

1 3

of agreement is in excess of the frequency of agreement pe, expected under a random 
classification. The value of po is obtained by summing the observed proportions in the 
agreement diagonal (i.e. 

∑5

h=1
phh in Table  2). The value of pe is obtained by summing 

the products of the corresponding row and column proportions in the agreement diagonal 
(i.e.

∑5

h=1
(p.h ⋅ ph.) in Table 2).

The statistical test associated with K tests the null hypothesis that the agreement’s extent 
is the same as random (K = 0). The relative strength of agreement associated with kappa 
statistics is sometimes evaluated referring to a qualitative description of the strength of 
agreement like that given in Table 3 (Landis and Koch 1977).

The K statistic is based only on the proportions in the agreement diagonal, and therefore 
the result is not dependent on the proportions in the disagreement cells. This can some-
times lead to misleading information because some disagreements in assignments are of 
greater gravity than others. Cohen (1968) proposed a generalisation of the previous statis-
tics (weighted Kappa, Kw), which is able to overcome the previous shortcoming:

where vij (vij > 0) is the disagreement weight assigned to the cell ij, poij is the proportion of 
the joint judgment observed in the ij cell, and peij is the proportion in the same cell expected 
by chance (calculated as the product of the corresponding row and column proportions).

The weights are assigned according to a subjective but rational criterion. The weights 
quantitatively influence the value of Kw and its statistical significance. Consequently, 
even if Kw allows obtaining a more exhaustive evaluation of the agreement degree, it also 

(6)Kw = 1 −

∑

vijpoij
∑

vijpeij

Table 2  Example of agreement matrix between two generic drought indices A and B

Index A

ij Wet Normal Moderate 
drought

Severe drought Extreme 
drought

pi

Index B Wet p11 p12 p13 p14 p15 p1

Normal p21 p22 p23 p24 p25 p2

Moderate drought p31 p32 p33 p34 p35 p3

Severe drought p41 p42 p43 p44 p45 p4

Extreme drought p51 p52 p53 p54 p55 p5

p.j p.1 p.2 p.3 p.4 p.5 1

Table 3  Ranges of the Kappa 
statistic K and corresponding 
strength of agreement

Kappa statistic Strength of agreement

 < 0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect
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introduces an element of subjectivity due to the selected weights. In this paper, the weights 
were assigned according to the pattern named "squared", in which the weights are a func-
tion of the squared distance from the agreement diagonal, as illustrated in Table 4 (Cohen 
1968; Gamer et al. 2019).

As for K, Cohen (1968) proposed a statistical procedure to test the null hypothesis that 
the extent of agreement is the same as random (Kw = 0). Instead, due to the weight depend-
ence, a qualitative classification similar to that of K (Table 3) is not available for Kw.

Kw can be either larger or smaller than K. This depends on how the different weights are 
combined with the disagreement proportions. For example, a Kw greater than K indicates 
that, in general, the two classifiers disagree much less than chance expectation where it 
counts very much (high weight) and disagree at about a chance level where it counts little 
(low weight).

Moreover, it should be noted that the use of a constant generic weight for all the disa-
greement cells (i ≠ j) leads to Kw = K, and for this reason, Eq. (6) is considered a generalisa-
tion of (5).

In the paper, the evaluation of the classification agreement among indices was obtained 
on the basis of both K and Kw, whose values and statistical significance were determined by 
using the procedures available in the R package "irr" (Gamer et al. 2019).

3  Results

In the presentation and discussion of the results, the indices that require a timescale speci-
fication will be indicated with the notation Xk, where X is the generic acronym of the index 
and k is the timescale (e.g. SPI1 indicates the SPI computed at the 1-month time scale). 
When the timescale is not specified, it means that the result is valid for all the timescales.

3.1  Scatter plots and correlation

An overall description of the relationships among indices is given in Fig. 4 which shows 
all the possible two-by-two scatterplots of corresponding severities. For each scatterplot of 
Fig. 4, the value of the Pearson correlation coefficient r is also shown.

The scatterplots were obtained considering the data of all the stations together. The 
same analysis (not shown), carried out for each station, led to very similar results, and 
therefore, all stations’ data were merged together for simplicity’s sake.

In Fig.  4, the scatter plots are subdivided in three groups related to the timescales 
adopted to calculate the indices DI, PI, PN, SPI, and RAI. When expressed as the empirical 
cumulative frequency in percentage (instead of decile or percentile values), the DI and PI 
indices are perfectly equivalent. Therefore, the scatterplots DI-PI are not shown in Fig. 4, 
as they would be in a 1: 1 line with a correlation coefficient r = 1.

The scatterplots’ analysis reveals that all the pairs of indices exhibit a more or less evi-
dent positive correlation at all the timescales, with r ranging from 0.63 to 0.99.

The highest scatterings are observed for the comparisons involving the EDI index. This 
result was expected, considering that EDI has a very different calculation algorithm com-
pared to the other indices. The correlations between the EDI and the other indices com-
puted at the 1-month scale are the lowest (average r ≈ 0.65), but when the same indices 
are calculated at the 3- and 6-month scales, the correlations with EDI rise well beyond 0.8, 
although the points scattering remains relevant.
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Apart from the comparisons involving EDI, for all the other comparisons the correlation 
coefficients are > 0.91 and tend to increase slightly with the timescale. Moreover, all the 
comparisons are characterised by a linear relationship in a more or less wide range of val-
ues. In most cases, this linearity is lost when approaching the extreme lower (e.g. PN-SPI, 
DI-SPI, SPI-RAI) or higher values (e.g. PN-DI, DI-SPI, DI-RAI). Another aspect worthy 
of note is the sharp reduction in the range of values assumed by the PN index, passing from 
the 1-month to the 6-month timescale. In fact, as the accumulation scale increases, the 
probability of observing exceptionally different values from the mean is also reduced. This 

r =0.91 r =0.93 r =0.98 r =0.96

r =0.96 r =0.97

r =0.94 r =0.96 r =0.98 r =0.85 r =0.97

r =0.97
r =0.82 r =0.99 r =0.84 r =0.85

r =0.96 r =0.99r =0.98 r =0.97r =0.88

r =0.97 r =0.86 r =0.99 r =0.88 r =0.88

r =0.67

r =0.63
r =0.64 r =0.67

Fig. 4  Scatter plots and correlation coefficients of the pairs of indices considered in the comparative analy-
sis
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contributes to a certain increment of the correlation coefficients between PN and the other 
indices with the timescale. However, this also denotes the lack of robustness of PN, which 
is, therefore, not very reliable for comparative analysis involving different timescales.

3.2  Cohen’s Kappa test

As in the case of the correlation analysis, the indices were compared considering all the 
stations jointly. For each pair of indices, a comparative analysis of the severity classes 
assigned to each month of the time series was carried out, evaluating both the unweighted 
(K) and weighted (Kw) agreement statistics.

3.2.1  Detailed examples of agreement tables between drought indices

To understand the Kappa test’s functioning, two detailed examples are first given in 
Tables  4 and 5, which show, respectively, the agreement matrices for the comparisons 
DI3-RAI3 and SPI3-RAI3, considering the data of all the stations. For Table 4, the sum 
of the agreement diagonal frequencies is pO= 0.8027, while the proportion of agreement 
expected by chance, pe, is 0.2645. For Table 5, pO= 0.5693 and pe is 0.3219. Therefore, 
according to Eq. (5), the K statistic is 0.73 and 0.36 for the DI3-RAI3 and SPI3-RAI3 
comparisons, respectively. Both K = 0.73 and K = 0.36 are significant at the 1% significance 
level, but, according to Table 3, the agreement between DI3 and RAI3 is substantial, while 
the agreement between SPI3 and RAI3 is only fair. It should be noted that the correlation 
coefficients (Fig. 4) for the two previous comparisons are very high in both cases (0.97 and 
0.99, respectively), which confirms that the comparisons between drought indices based on 
this coefficient are not very informative.

The weighted Kappa statistic Kw, calculated by Eq. (6) and adopting the weights indi-
cated in parentheses in Tables  4 and 5, leads to Kw= 0.93 and Kw = 0.72 for DI3-RAI3 
and SPI3-RAI3, respectively. As explained in Sect. 2.3, the Kw statistic focusses on what 
happens in the disagreement cells. In this case, Kw provides information aligned with that 
obtained by K. The fact that Kw is higher than the corresponding K indicates that, for both 
comparisons, the indices disagree much less than chance expectation where it counts very 
much (high weight) and disagree at about a chance level where it counts little (low weight).

In the example of Table 4, a substantial agreement (K = 0.73) is found between DI3 and 
RAI3. DI is an index having a precise statistical meaning as it is based on deciles. It is 
no coincidence that the line totals of Table 4 (i.e. the DI experimental frequencies for the 
different categories) are very close to the theoretical probabilities expected for the DI’s 
categories (Table 1). Even if RAI does not have a precise statistical meaning, the similarity 
between the column and lines totals of Table 4 tells us that RAI tends to classify drought 
severities with logic not too far from that of DI. However, the classification operated by 
DI cannot be considered very effective since all the drought categories (moderate, severe, 
extreme) are based on the same decile interval and have the same expected occurrence 
probabilities of 10%. In contrast, one should expect decreasing probabilities passing from 
moderate to severe drought categories. In this sense, RAI provides a more reliable clas-
sification since the frequencies associated with moderate, severe, and extreme droughts 
decrease (18%, 13% and 6%, respectively). These decreasing frequencies are also observed 
for SPI (Table 5). However, the agreement between RAI3 and SPI3 is limited due to very 
relevant differences in the frequencies expected for the same drought categories (Table 5).
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In the next section, all the other comparisons will be synthetically described in terms of 
K and Kw.

3.2.2  Synthetic results

The values of the unweighted (Eq. 5) and weighted Kappa (Eq. 6) statistics for all the two-
by-two comparisons considered are shown in Tables 6 and 7, respectively. All the values 
are significant (α = 1%), denoting a degree of agreement among indices higher than that 
expected by chance. On the other hand, the strength of agreement varies considerably 
with both the indices and the timescale. Considering the unweighted K (Table 6), it can 
be observed that a substantial or even perfect agreement (bold values) at all the timescales 
considered is only present for the pairs DI-RAI and PI-SPI. A substantial agreement is also 
present for the pairs PN1-RAI1, PN3-RAI3, PN1-DI1, PN6-SPI6, and PN6-PI6. For all the 
other comparisons, the agreement is moderate to fair, or even slight, such as for the com-
parisons PN1-EDI and RAI1-EDI. The worst agreement at all the timescales can be found 
for the pairs DI-EDI and RAI-EDI.

In general, the analysis of the weighted Kappa statistic Kw (Table 7) does not carry rel-
evant additional information with respect to K, indicating that even by applying weights to 
the disagreement cells, the assessment of the strength of agreement/disagreement does not 

Table 6  Values of the unweighted Cohen’s statistic K (Eq. 5) related to the two by two comparisons among 
indices at different time scales

Values in bold indicate substantial or almost perfect agreements (according to Table 3)

PN1 DI1 PI1 SPI1 RAI1 EDI

PN1 1
DI1 0.65 1
PI1 0.27 0.37 1
SPI1 0.27 0.37 0.85 1
RAI1 0.74 0.66 0.37 0.37 1
EDI 0.16 0.20 0.27 0.27 0.19 1

PN3 DI3 PI3 SPI3 RAI3 EDI

PN3 1
DI3 0.60 1
PI3 0.47 0.35 1
SPI3 0.46 0.37 0.85 1
RAI3 0.66 0.73 0.35 0.36 1
EDI 0.36 0.31 0.47 0.47 0.31 1

PN6 DI6 PI6 SPI6 RAI6 EDI

PN6 1
DI6 0.53 1
PI6 0.61 0.35 1
SPI6 0.61 0.37 0.85 1
RAI6 0.55 0.78 0.36 0.38 1
EDI 0.49 0.32 0.54 0.54 0.32 1
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change significantly. Really, with more detailed analysis, it is possible to describe some 
interesting cases that allow us to appreciate the added value of Kw with respect to K. An 
example is represented by the results obtained for the pairs PN3-EDI and DI3-SPI3. As 
shown in Tables 6 and  7, these pairs have very similar K (0.36 and 0.37, respectively), but 
they differ more when the Kw is considered (0.62 and 0.72, respectively). This indicates 
that, despite a very similar behaviour in the agreement diagonal (quantified by K), the two 
pairs have quite different behaviour in the disagreement cells (quantified by Kw). In par-
ticular, for the pair PN3-EDI, the proportions of events classified differently by the two 
indices (and probably with weights higher than 1) are higher than those obtained for the 
pair DI3-SPI3.

4  Discussion

It is observed that almost all the indices considered have a high degree of positive correla-
tion between the corresponding values of monthly severity (Fig. 4). The only exception is 
represented by the comparisons between the EDI and the other indices computed at the 
1-month time scales. At any rate, an analysis of Fig. 4 and the corresponding correlation 

Table 7  Values of the weighted Cohen’s statistic, Kw (Eq. 6) related to all possible two by two comparisons 
among indices at different time scales

Weights are assigned according to a squared distance pattern (as detailed in Tables 4 and 5)

PN1 DI1 PI1 SPI1 RAI1 EDI

PN1 1
DI1 0.92 1
PI1 0.69 0.73 1
SPI1 0.69 0.73 0.94 1
RAI1 0.93 0.92 0.71 0.71 1
EDI 0.38 0.38 0.42 0.42 0.38 1

PN3 DI3 PI3 SPI3 RAI3 EDI

PN3 1
DI3 0.81 1
PI3 0.73 0.70 1
SPI3 0.73 0.72 0.94 1
RAI3 0.86 0.93 0.71 0.72 1
EDI 0.62 0.54 0.66 0.67 0.55 1

PN6 DI6 PI6 SPI6 RAI6 EDI

PN6 1
DI6 0.72 1
PI6 0.75 0.7 1
SPI6 0.75 0.73 0.94 1
RAI6 0.75 0.95 0.72 0.75 1
EDI 0.68 0.59 0.74 0.75 0.61 1
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coefficients could lead to believing that, in most cases, the indices considered provide simi-
lar information about drought severity.

However, the indices are much less in agreement than they appear by a correlation anal-
ysis when they are compared in terms of drought severity classification (Tables 6, 7). To 
analyse in more detail the different information deriving from the correlation analysis and 
the Cohen’s Kappa test, in Fig. 5 the correlation coefficients r are plotted versus the cor-
responding unweighted K statistics.

From Fig. 5, it is evident that several pairs of indices are characterised by a very similar 
correlation but a very different strength of agreement. For example, considering Fig. 5b, in 
correspondence of the correlation range 0.9 < r < 1, there are pairs of drought indices with 
agreement fair (PI3-RAI3, DI3-PI3, SPI3-RAI3, DI3-PI3), moderate (PN3-SPI3, PN3-PI3, 
PN3-DI3), substantial (PN3-RAI3, DI3-RAI3), and almost perfect (PI3-SPI3).

Similar considerations can also be made for the comparisons concerning the EDI. Con-
sidering Fig. 5b again as an example, we find pairs in fair (RAI3-EDI, DI3-EDI, PN3-EDI) 
and moderate agreement (PI3-EDI and SPI3-EDI) in correspondence   of very similar corre-
lations (0.82 < r < 0.85). Even, the pair RAI3-EDI has a correlation higher than SPI3-EDI, 
but, based on the K value, the similarity between SPI3 and EDI is higher than that between 
RAI3 and EDI.

In general, there are two main reasons why two drought indices may disagree on the 
severity category assigned to a given month of the time series. The first reason, of course, 
lies in the severity classification criteria (Table 1). The other is related to actual differences 
in the index calculation methods, despite that the reference variable is always represented 
by precipitation.

An enlightening example of the first reason is the result obtained for the comparisons 
DI-SPI and PI-SPI. Despite DI and PI deriving from the same quantitative values (empiri-
cal cumulative frequencies of precipitation in a given period), they differ for the sever-
ity classification criterion (Table 1). In particular, the PI classes have been defined in this 
paper based on a probabilistic correspondence with the SPI classification. Thus, SPI and 
PI’s agreement is almost perfect (K = 0.85 for all the time scales), while between SPI and 
DI it is only fair (K = 0.37 for all the time scales). This also indicates that for central Ita-
ly’s climatic conditions, a classification of drought events based on the PI index (under the 
further hypothesis of sufficiently long series) could be effective and analogous with that 
obtained from SPI. The advantage in the use of PI instead of SPI would be the greater ease 
of calculation and, of course, the ease of understanding for a wider audience.

Another example of the effect of the severity classification criterion can be found by 
analysing the similarity between RAI and SPI. The poor agreement between RAI and SPI 
(Tables  5, 6, 7, and Fig.  5) is determined by the mismatch in the classification criteria 
because the two indices show an excellent correlation at all the timescales (Fig. 4). In fact, 
by changing the class limits adopted for RAI (Table 1) to 1.5, -2.4, -3, and -3.3 (instead of 
1, -1, -2, and -3), there could be a relevant increment of the Kappa statistic (0.85, 0.86, and 
0.82, for the 1-, 3-, and 6-month timescales, respectively), which indicates an almost per-
fect agreement between the two indices.

The other reason for the presence of a limited agreement resides in the different algo-
rithms adopted for calculating the index. The most striking example of this situation is 
represented by the comparisons involving the EDI index. As explained in Sect. 2.2.5, the 
EDI is based on the precipitation of the previous periods cumulated using weights that 
decrease as the temporal distance from the current period increases (Byun and Whilite, 
1999). This specific calculation approach leads to a general moderate agreement between 
the EDI and the other indices (Tables 6, 7, and Fig. 5). The fact that EDI’s agreement with 
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Fig. 5  Comparison between 
the correlation coefficient and 
the Cohen’K for all the pairs of 
drought indices considered. The 
pairs have been divided into three 
graphs, relating to the 3 time-
scales considered for the indices 
PN, DI, PI, SPI and RAI: a 1 
month; b 3 months; c 6 months. 
The classification of the strength 
of agreement is based on Table 1 PI1-EDI
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the other indices increases when these are calculated at longer timescales (e.g. 6 months) 
is the normal consequence of EDI accounting for precipitation over a period prior to 365 
days. Therefore, even if the calculation method remains conceptually very different, it is 
certainly expected that the similarity between the EDI and the timescale-dependent indi-
ces increases when the latter are calculated on medium-long timescales. This was also 
observed by Jain et al. (2015), which, based on the correlation coefficient, found a maxi-
mum similarity between EDI and the timescale-dependent indices (e.g. SPI) when these 
were calculated on a 9-month scale. However, even for EDI, one can appreciate the more 
reliable assessment of similarity provided by Cohen’s Kappa test with respect to the cor-
relation coefficient (Figs. 4 and 5). In particular, the correlation of EDI with the other indi-
ces at the 6-month timescale (Fig. 5b) is very high (average r ≈ 0.88), but this conceals 
an actual agreement between drought severity classification that is only fair or moderate. 
Therefore, the comparison of drought indices, based on Cohen’s Kappa test, appears par-
ticularly useful in highlighting the specificities of some indices, as in the case of EDI.

The SPI provides another example of the calculation algorithm’s effect on the strength 
of agreement between drought indices. The SPI is the only index among those considered 
which requires a preliminary fitting of the precipitation data to a theoretical probability 
distribution (i.e. the Gamma distribution). The most direct effect of this aspect can be 
seen in the agreement with PI, which is very high (K = 0.85) but not perfect, despite the 
imposed correspondence among the severity classification criteria. Indeed, PI is based on 
the implicit assumption that precipitation is normally distributed. In the region considered 
(Mediterranean climate), the consequences of these two different hypotheses, regarding 
the probability distribution of the precipitation, appear moderated, but in other climatic 
conditions (e.g. drier), there could more marked effects on the agreement. For example, 
a detailed analysis of the variability of K with the month and the timescale indicated that 
the agreement between SPI and the other indices (PI included) tends to be lower in the 
spring–summer period (i.e. dry period), particularly at the 1-month timescale. This can be 
likely attributed to the fact that the precipitation of these months is more positively skewed 
than that of the winter–spring period (due to the relevant presence of low or even zero val-
ues). In these circumstances, the goodness of fit of the Gamma distribution is much better 
than that of normal distribution, and larger differences among the indices computed under 
the two underlying distributions are expected.

No significant differences in the strength of agreement were detected among the 15 
stations. This is certainly due to the relatively small extent of the region considered, and 
thus to the limited climatic differences among stations (Figs. 2 and 3). In other climatic 
conditions, the strength of agreement among indices could significantly differ from those 
reported in this paper.

5  Conclusion

In this paper, the agreement in the drought severity classification obtained from some 
popular meteorological drought indices (Percentage of Normal PN, Deciles Index DI, Per-
centile Index PI, Rainfall Anomaly Index RAI, Standardised Precipitation Index SPI, and 
Effective Drought Index EDI) has been evaluated for a typical Mediterranean region, based 
on a 68-year time series. The main objective was to illustrate the advantage of a compari-
son technique based on Cohen’s Kappa test (Cohen 1960, 1968), with respect to the com-
monly adopted Pearson correlation coefficient.
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The Cohen’s Kappa test proved to be more effective and flexible than the correlation 
analysis in evaluating the actual similarity between drought indices. In particular, the 
Cohen’s Kappa test indicates a prevailing moderate or fair agreement between the indices 
considered, despite the generally very high correlation between the corresponding severity 
times series.

The first reason for the lack of agreement resides in the severity classification criteria. 
New classification criteria have been proposed for DI (defining a new index based on per-
centiles, PI), which showed an almost perfect agreement with SPI. It was also shown that 
a revision of the severity classification criteria usually adopted for RAI could lead to an 
almost perfect agreement with the SPI.

The strength of agreement between the indices is also affected by the index calculation 
method. For this aspect, EDI is the index that is less in agreement with the other indices, 
due to the specificity of its calculation algorithm based on the concept of effective precipi-
tation. This difference does not emerge clearly if the EDI is compared with the other indi-
ces on the basis of a traditional correlation analysis.

For the other indices (PN, PI, DI, SPI, RAI), the differences due to the calculation have 
a limited influence on the agreement between indices, probably because the reference vari-
able is always the same (i.e. cumulative precipitation in a given timescale). However, in 
different climatic conditions (i.e. drier than those examined in the present paper), there 
could be larger differences between indices, particularly between those implying different 
underlying probability distribution of cumulative precipitation. For example, by analysing 
the intra-annual variability of the agreement, it was found that it tends to be lower in the 
summer months, which, in the region considered, have the lowest precipitation amounts 
and sometimes include zero values at the shortest timescale (1 month).

The procedure illustrated in the paper appears exportable to any other area in order 
to obtain an effective evaluation of the strength of agreement among any set of drought 
indices.
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