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Abstract
The island of Ischia, located in the Gulf of Naples, represents an unusual case of resur-
gent caldera where small-to-moderate magnitude volcano-tectonic earthquakes generate 
large damage and catastrophic effects, as in the case of 4 March 1881 (Imax-VIII-IXMCS) 
and 28 July 1883 (Imax X-XI MCS) historical earthquakes, and of the recent 21 August 
2017 MW = 3.9, event. All these earthquakes struck the northern area of the island. With 
about 65,000 inhabitants, Ischia is a popular touristic destination for thermals baths, host-
ing more than 3,000,000 visitors per year, thus representing a high seismic risk area. 
Assessing its seismic potential appears a fundamental goal and, to this end, the estimate 
of the magnitude of significant historical events and the characterization of their source are 
crucial. We report here a reassessment of historical data of damage of 1881 and 1883 earth-
quakes to evaluate the main source parameters of these events (obtained with the BOXER 
and EXISM software) and quantitatively compare, for the first time, the results with the 
source characteristics, obtained from instrumental data, of the recent 2017 earthquake. The 
results allowed us to assess the location, as well as the possible dimension and the related 
maximum magnitude, of the seismogenic structure responsible for such damaging earth-
quakes. Our results also provide an additional framework to define the mechanisms leading 
to earthquakes associated with the dynamics of calderas.
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1  Introduction

The seismicity of active volcanic areas is generally characterized by low magnitude earth-
quakes (McNutt and Roman 2015). Nevertheless, the occurrence of moderate (4 < M < 5) 
volcano-tectonic events is not rare and can generate damage and fatalities (Zobin 2012), 
mainly due to their shallow hypocentral depth (e.g. Convertito and Zollo 2011). Volcano-
tectonic earthquakes are mostly associated with the magma dynamic but, in some cases, 
could be not straightforwardly correlated to primarily magmatic processes. A well-known 
case is the active volcanic island of Ischia (located in the Gulf of Naples), where recent and 
historical earthquakes have caused heavy damage and thousands of fatalities (Cubellis and 
Luongo 1998; Carlino et al. 2010) (Table 4, Appendix) (Fig. 1). These events appear to be 
associated with a phase of subsidence of the central part of the island (Trasatti et al. 2020).

Ischia is a 46 km2 island located a few km west of Naples. It is an active resurgent cal-
dera, whose central part underwent large uplift, about 900 m since ~ 55 ka (Sbrana et al. 
2009), and subsidence in historical time (Buchner et  al. 1996; Manzo et  al. 2006). The 
resurgence generated the Mt. Epomeo block, an approximately ~ 2 × 2 km2 squared struc-
ture, bordered by a system of faults mainly oriented NW–SE, E-W, and N-S (Fig. 1). The 
resurgence was accompanied by volcanic activity outside the block (last eruption in 1302) 
and produced the exhumation of a high-temperature hydrothermal system, with geothermal 
gradients > 150 °C  km−1 (Vezzoli 1988; Sbrana et  al. 2009; Sbrana and Toccaceli 2011; 
Carlino 2018).

During the nineteenth century, the island of Ischia was a very important site for the 
Earth Science scholars and one of the most famous places for spas in Europe (Carlino, 
2019). For these reasons, many accounts and reports were produced after the earthquakes 
of 4 March 1881 and 28 July 1883. In particular, many coeval papers, technical reports, 
and various accounts described the damage distribution of these two events (see Cubel-
lis and Luongo 1998, and references therein), leading to the assessment of macroseismic 
intensity of I0 VIII-IX MCS and I0 X-XI MCS, respectively, for the 1881 and the 1883 
earthquakes (Cubellis and Luongo 1998; Cubellis et al. 2004; Carlino et al. 2010). Inten-
sity data (EMS98) for both earthquakes are included in the Parametric Catalogue of Italian 
Earthquakes (CPTI15, Rovida et  al. 2019). In particular, the CPTI15 lists 17 (11 on the 
island) and 27 (18 on the island) intensity–points (localities) for the 1881 and the 1883 
earthquakes, respectively, for which the epicentral intensity (I0) IX EMS98 (1881) and X 
EMS98 (1883) are reported.

With more than 2300 victims and the whole destruction of the town of Casamicciola 
Terme, the 1883 event was the most devastating (Carlino et  al. 2010). Considering the 
small-to-moderate magnitude inferred from previous studies (e.g. 4.6 ≤ M ≤ 5.2; Cubellis 
and Luongo 1998), the high damaging level of this earthquake can be primarily related to 
the shallowness of the seismogenic source, which is located between 1 and 2 km of depth 
(Cubellis and Luongo 1998; Carlino et al. 2010).

As for the whole of Italy (Crescimbene et al. 2015), seismic risk has not been adequately 
perceived by the inhabitants of the island, until 21 August 2017 when a Md = 4.0 (MW = 3.9) 
earthquake stroke the island. The occurrence of this recent earthquake, after 134 years of 
almost complete seismic silence, has brought out again the problem of the relatively high 
seismic risk for the island (Briseghella et al. 2019; De Natale et al. 2019; Marotta et al. 
2019). Based on the current national seismic hazard map provided by the Istituto Nazionale 
di Geofisica e Vulcanologia (http://​esse1.​mi.​ingv.​it/), for the whole island the acceleration 
with probability of exceeding equal to 10% in 50 years ranges between 0.125 and 0.175 g 

http://esse1.mi.ingv.it/
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(being g the gravity acceleration and the values corresponding to the 50th percentile) with 
a range of variability (0.1, 0.2) g (corresponding to the 16th and 84th percentile, respec-
tively). In fact, given the grid at which the national hazard map is computed there are only 
two points for the entire island. In this regard, the 2017 earthquake was the first significant 
event at Ischia recorded instrumentally, for which a PGA of 0.25 g was recorded at about 
800 m from the epicentre (De Novellis et al. 2018). Although the comparison between the 
recorded value and the expected values indicated in the national seismic hazard should take 
into account the probabilistic nature of the latter and its reference to bedrock soil condition, 
we note that the recorded value is larger than the expected value at the 84th percentile.

The source mechanism of the 2017 earthquake has been differently interpreted by vari-
ous authors (De Novellis et al. 2018; Braun et al. 2018; Calderoni et al. 2019; Nazeri et al. 
2020). As for the 1881 and 1883 events, albeit to a limited extent, this last earthquake 
produced serious destruction in spite of its modest magnitude, causing two fatalities, more 
than 40 injuries and serious damage in the upper part of the town (Nappi et  al. 2018). 
Before its occurrence, only about 50 very-low magnitude earthquakes (M < 2.3) had been 
recorded since 1999 by the seismic network installed on the island. Despite the seriousness 
of the situation, the 2017 event gave us the opportunity to deepen our understanding of 
seismic processes occurring in the island, comparing the latter event to the historical ones, 
which seem to have similar characteristics.

In this study, we compare for the first time the macroseismic data of two main historical 
earthquakes of Ischia (1881, 1883) to those of the first instrumental earthquake occurred 
in the island in 2017. This represents a first important step to quantitatively compare mac-
roseismic and instrumental events for the study of the seismic source of this volcanic area. 
We use uniform and standard criteria to represent the macroseismic field and to retrieve the 
fault parameters of the three events, in order to analyse the location and the kinematic of 
the seismogenic structures generating highly damaging earthquakes in the island, verifying 
their relation and/or their possible coincidence. In particular, we elaborated the intensity 
data of both the 4 March 1881 and the 28 July 1883 earthquakes, which are mainly inferred 
from the analysis of historical archive reports. We reassessed the data for the 1881 and 
1883 earthquakes following macroseismic criteria and using the EMS98 scale, to obtain 
macroseismic fields. We inferred new magnitude estimations and retrieved the geometry 
of the faults using different computational methods: BOXER (Gasperini and Ferrari 2000; 
Gasperini et al. 1999) and EXSIM (Motazedian and Atkinson 2005; Boore 2009; Assatou-
rians and Atkinson 2012). Then, we compared the results to the fault plane solution and the 
damage of the 21 August 2017 earthquake. The results suggest the presence of a unique 
seismogenic structure, which can be periodically reactivated during the present quiescent 
phase of the volcano, providing new elements to assess the processes that could generate 
earthquakes in subsiding calderas. Noteworthy, the fault geometries obtained in the present 
study can also help to refine the seismic hazard estimates for the island, in particular for 
those approaches based on single faults rather than areal seismic source zones (e.g. Akinci 
et al. 2009; Convertito et al. 2006; Pace et al. 2006).

2 � Historical Data

The description of the damage of the 1881 and 1883 earthquakes and the felt report data 
had been previously reported in various papers and databases (Cubellis and Luongo 
1998; Cubellis et al. 2004; Carlino et al. 2010; Rovida et al. 2019). Those data had been 
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elaborated by various authors to provide an estimation of epicentral intensity, epicentral 
location, and intensity-related magnitude (see for instance Cubellis and Luongo 1998; Car-
lino et al. 2010, and Rovida et al. 2019).

The macroseismic intensities of the 1883 event published by Cubellis and Luongo 
(1998), Cubellis et  al. (2004) and Carlino et  al. (2010) have been obtained by assigning 
the intensity value to very small localities, represented by a group of edifices located in 
a single street or district. This procedure does not match with the standard macroseismic 
method (see, for instance, Grünthal 1998, Musson et  al. 2008, and Locati et  al. 2019), 
because in many cases the intensity was assigned according to damage suffered by a too 
low number of edifices that is not representative for an intensity estimate. On the other 
hand, in the CPTI15 (Rovida et al. 2019), the number of intensity points represented on 
the Ischia Island for each one of the three considered earthquakes differs significantly (11 
points for the 1881, 17 for the 1883, 24 for the 2017). In particular, the CPTI15 reports a 
lower number of points in the highest damage (and densely inhabited) areas for the 1881 
and 1883 earthquakes with respect to 2017. Given the very shallow hypocentre depth of 
these events (generally associated with very fast spatial variation of the intensity) and 
pointing at retrieving more information on their source characteristics, our first intent was 
to homogenize the areal coverage of the intensity points of 1881 and 1883 events, to get a 
distribution comparable with that of 2017. In particular, the macroseismic intensities for 
the 1881 and 1883 earthquakes can be reviewed on the basis of the large amount of avail-
able data.

In general, the analyses of seismic intensity data represent the only way to retrieve infor-
mation about the location and the dimension of the seismogenic source of seismic events 
occurred in the pre-instrumental era (e.g. Panza and Cuscito 1982; Gasperini and Ferrari 
2000; Gasperini et al. 1999; Tertulliani et al. 2012). However, these methods are affected 
by a number of uncertainties, also due to the local geological conditions, affecting the seis-
mic wave propagation and amplification, and to the different seismic response of the build-
ings. However, the above uncertainties can be reduced in the case of the 1881 and 1883, in 
consideration of the quality and quantity of available historical data.

Considering the moderate magnitude of the events, the observed very fast decay of the 
damage level (that is, the fast spatial variation of intensities) would require a higher level of 
detail of the intensity pattern with respect to larger earthquakes, to retrieve information on 
the source characteristics. Thus, we collected the original descriptions of the damage, for 
both the earthquakes, and increased the number of data points in the northern zone of the 
island, which was affected by larger damage.

For the 1883 event, we used the original description of the damage, derived from the 
consultation of the report of the Comitato Centrale di soccorso pei dannegiati dell’isola 
d’Ischia (1885) (Rescue Committee for the damage of the island of Ischia), which repre-
sents the most detailed data source for the damage caused by this event. Immediately after 
the events, the Committee provided technical forms with the description of damage suf-
fered by each building (with indication of the street and, when available, of the building 
number) (see also Cubellis et al. 2004 and Carlino et al. 2010).

We grouped the original damage data by location, prior to assessing intensity, as recom-
mended by Musson et al. (2008). We used the criteria for which a location is represented 
by multiple settlements (MS) (Locati et al. 2019), which is a significant number of build-
ings grouped in a well-known site. The locations are distributed within the six different 
municipalities of the island (Casamicciola, Lacco Ameno, Forio, Serrara Fontana, Barano, 
Ischia). Apart from a few exceptions regarding non-damaged zones, we considered only 
the MS having a number of buildings > 50 units. The report of the Comitato Centrale pei 
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Dannegiati dell’isola d’Ischia (1885) also includes damage data of the island for the 1881 
earthquake. However, due to the limited information, we also consulted further literature 
data (see Cubellis and Luongo 1998, and references therein). We adopted the same criteria 
used for the 1883 event in the identification of the localities, finally obtaining intensity data 
for the 1881 earthquake.

In the end, damage data for about 3000 edifices (total) located in the island were ana-
lysed. Furthermore, surface effects, such as major fractures, open-cracks and landslides 
have been also considered in the evaluation of the intensity, taking into account the con-
temporary chronicles and technical reports (see Cubellis and Luongo 1998, and references 
therein). On the base of the damage descriptions, we evaluated the EMS98 intensity for 
the 1881 and 1883 earthquakes, obtaining intensity data for 20 (Table 5, Appendix) and 26 
(Table 6, Appendix) locations on the island, respectively, assigning a name to each MS on 
the basis of the present toponymy (Grünthal 1998). In Fig. 8 of Appendix, we also report 
the different intensity maps (1881 and 1883) in which the distribution of our intensity 
points is compared with those reported in the CPTI15 (Rovida et al. 2019). 

As for the vulnerability classification (Grünthal 1998) for Ischia Island, apart for a few 
noble buildings, at the end of nineteenth century, the building heritage of the island was 
mainly made by the same local tuff masonry, with local rough stone and/or squared stony 
blocks (Polverino 1996, 1998; Cubellis and Luongo 1998), all belonging typologies to vul-
nerability class B. Also, recent studies report that (at least in the most damaged area) the 
building heritage erected before the 1919 mainly falls in the vulnerability class B and C 
and only in minor part to class A (~ 12% and ~ 25%, respectively, for the Lacco Ameno and 
the Casamicciola Terme municipalities; Verderame et al. 2017; Del Gaudio et al. 2018). 
The poor building typology might have increased the overall damage. In fact, many loca-
tions of the northern sector of the island (between Casamicciola Terme and Lacco Ameno 
municipalities) fall in the damage classification 3 to 5 (damage from “significant” to “very 
heavy”), while the damage were heavy at the epicentre (Casamicciola Terme) for both the 
earthquakes (1881, 1883). In the municipality of Casamicciola Terme, 250 edifices out of 
about 800 suffered heavy damage during the 1881 event, and about 670 were collapsed 
during the 1883 earthquake (Comitato Centrale pei dannegiati dell’isola d’Ischia, 1885) 
Furthermore, the similarity of the poor architectural technique in the whole island, possibly 
contributed to a general increase of damage, and not in its difference in the spatial distribu-
tion (Polverino 1998). Finally, it should be stressed that the damage produced by the 1881 
earthquake had probably weakened the buildings stock, contributing to an increase of the 
effects during the following 1883 event. Anyway, due to the lack of punctual information 
of the 1881, this cannot be quantified in terms of increase of vulnerability.

Fig. 2 depicts the macroseismic field of 1881 and 1883 earthquakes, obtained from the 
interpolation of the intensities data listed in Appendix Tables 5 and 6, and  the 2017 mac-
roseismic field from CPTI15 (Rovida et al. 2019) data (we used the kriging method for the 
interpolation of data; Kerry and Hawick, 1998).

3 � Assessment of the modelling approach

3.1 � Direct modelling of the 2017 earthquake

To infer the geometry and the orientation of the faults responsible for the two historical 
1881 and 1883 earthquakes, we implemented a procedure similar to that proposed by 
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Convertito and Pino (2014) to study the 1908 Messina Straits earthquake. We first selected 
a set of parameters for model faults in terms of orientation (strike and dip), Mach number 
values (i.e. the ratio between rupture velocity and shear-wave velocity), and static stress 
drop. Then, for each model, we computed peak-ground acceleration (PGA) and peak-
ground velocity (PGV) by using the EXSIM code (Assatourians and Atkinson 2012; Atkin-
son and Assatourians 2014) at the geographic locations where the observed macroseismic 
intensities are available. The computed PGAs and PGVs are finally converted to macro-
seismic intensities by using the relationship proposed by Faenza and Michelini (2010) and 
compared with the observed ones. The best model corresponds to the one that minimizes 
the misfit function:

In Eq. (1), m is the model parameters’ vector, whose components are the length L and 
the width W of the fault, its strike and dip, the stress drop (Δσ), and the Mach number (α). 
N is the number of intensity data points, Iobs

i
 are the observed intensities and Ical

i
 are the 

intensities obtained from PGAs or PGVs.
Before analysing the two historical earthquakes, in order the check the performance of 

the whole procedure, we tested the method on the recent 21 August 2017 (Mw = 3.9) earth-
quake that stroke the same area and for which a reliable model exists for its source geom-
etry and slip distribution (De Novellis et al. 2018). We examined both the direct and the 
inverse modelling. As for the direct problem, we first computed the predicted intensities 
from PGAs and PGVs obtained for a realistic source model and checked the results against 
the observations. Then, as for the inverse problem, we computed intensities for distinct 
simplified source models and used the observed intensities to determine the source charac-
teristics better simulating the data and compared the best solution with the actual source.

In all the EXSIM computations, we assumed a crustal model characterized by average 
S-wave velocity value of 1700  m/s, density of 2700  kg/m3, and a frequency-dependent 
anelastic attenuation model Q(f) = 21f 0.6 (being Q the quality factor and f the frequency) 
(Nunziata and Rapolla 1987; Petrosino et al. 2008; Del Pezzo and Bianco 2013; Capuano 
et al. 2015). Given the relatively short source-to-site distances considered in this study, a 
1/R geometrical spreading is considered (where R is the minimum site distance from the 
fault). The fault plane was assumed to be rectangular and was subdivided into an appropri-
ate number of 0.1 × 0.1 km2 sub-faults, which are modelled as point sources characterized 
by a ω−2 spectrum. The upper left corner of the fault is used as reference fault point (Assa-
tourians and Atkinson 2012; Atkinson and Assatourians 2014). Moreover, in the simula-
tions, we always investigated three stress-drop values (0.1, 1, and 3 MPa), as typical ranges 
for volcanic areas (e.g. De Natale et al. 1987, 1988) and three Mach number values (0.6, 
0.7, and 0.8), as reasonable range for light-to-moderate earthquakes (e.g. Seekins and Boat-
wright 2010; Convertito et al. 2012).

As for local effects, previous studies suggest that in the northern sector of the island the 
effect of seismic waves propagation, as well as site amplification, can be considered less 
important with respect to source effects, because of both the very shallowness of the hypo-
centre and the relatively short hypocentral distances (Cubellis and Luongo 1998; Gasperini 
and Ferrari 2000). Also, recent seismic measurements performed in the most damaged area 
of the 2017 earthquake conclude that H/V spectral analyses performed on seismic noise do 
not show important peaks related to site amplification (Vassallo et al. 2018). On the other 

(1)f (m) =

N
∑

i=1

(

Iobs
i

− Ical
i

)2

Ical
i
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hand, microzonation investigations in three municipalities, in the northern and western 
areas of the island, determined amplification factors in the range 1 to 3 for the frequency 
band of interest (1.25–10  Hz) (http://​www.​commi​ssari​orico​struz​ionei​schia.​it/​Esiti-​Micro​
zonaz​ione.​html). Unfortunately, the three districts only cover a limited extent of the island 
and less than 50% of the data points. On these grounds, we cannot account quantitatively 
for the site effect, unless assigning arbitrary values to all the sites with unknown site ampli-
fication factor. Thus, we simulated PGAs and PGVs at the bedrock.

Firstly, for the direct modelling of the 2017 earthquake, we adopted the fault geometry 
(L × W = 3.0 × 1.8 km2; fault strike 86° ± 5°; dip angle 70° ± 7°) inferred from the analysis 
of DinSAR data by De Novellis et al. (2018) and their slip distribution, characterized by a 
single patch with most slip confined approximately in a 0.5 km-radius circle. We used the 
observed macroseismic field available in the CPTI15 parametric catalogue (Rovida et al. 
2019), consisting of 24 intensity data points ranging between III and VIII. For both PGA 
and PGV, we obtained the best solutions for Δσ = 1.0 MPa and α = 0.7 (Fig. 3 and Model 
M1-A-B in Table 1), and maximum PGA and PGV value of about 0.5 m/s2 and 0.16 m/s, 
respectively. Notably, PGA-derived intensities definitely provide a better fit with the hypo-
central distance with respect to PGV. This result can be ascribed to the very short source-
to-site distances and to the fact that the considered event is a low magnitude one, with a 
major relative contribution of high frequencies to the peak-ground motion. Based on this 
test, we considered the PGAs better able to reproduce the data and, thus, to provide a more 
robust link between the source fault and the observed intensities.

To test the effects of our assumptions on the local amplification, we modified the PGAs 
and PGVs obtained for the best model and the “true” slip distribution and fault geometry, 
considering the relevant amplification factors. In particular, we applied amplification fac-
tors in the frequency bands 2–10 Hz and 1.25–2.5 Hz, respectively, to PGA and PGV. As 
obvious, this could be done only for the sites for which the factor is available (squares in 
Fig. 3). Remarkably, only for three of the tested sites the resulting intensity is 0.66 larger 
than the value obtained from PGA and PGV at the bedrock and, most important, the modi-
fied values provide comparable (0.120 vs. 0.117, for PGA) or worse (1.2259 vs. 0.268, for 
PGV) fit to the observed intensities.

3.2 � Inverse modelling of the 2017 earthquake

In order to investigate how much of a realistic source can be retrieved from the modelling 
of macroseismic data points, we applied an inverse approach by assuming for the 2017 
earthquake the observed intensities. We initially used the CPTI15 epicentre (Rovida et al. 
2019) and the fault azimuth and extent resulting by using BOXER code (Gasperini and Fer-
rar 2000; Gasperini et al. 1999, 2010), obtaining 80.50° (± 31°) and 0.8 × 1.9 km2, respec-
tively. Then, we assumed uniform slip distribution and, by slightly varying the parameters, 
searched for the best fault by converting the EXSIM predictions to intensity and comparing 
these latter with the observed ones. In particular, we used the EXSIM results to test the 
sensitivity of the intensity data points to fault length and also checked the possibility of the 
whole procedure to retrieve the fault dip. We investigated three fault surfaces extents (1 × 1, 
2 × 2, 3 × 3 km2), with the top in correspondence of the Earth surface, and two opposite 
fault strike directions (80.50° and 260.50°). In the lack of any constraints about the hypo-
centre, we fixed it at half-length along the strike and 0.2 km above the fault bottom (e.g. 
Mai et al. 2005). As for the dip angle, the major faults on the island are all vertical or sub-
vertical (Acocella and Funiciello 1999; Vezzoli 1998; Sbrana and Toccaceli 2011) thus, for 

http://www.commissarioricostruzioneischia.it/Esiti-Microzonazione.html
http://www.commissarioricostruzioneischia.it/Esiti-Microzonazione.html
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each combination of fault strike and fault extent we computed synthetic intensities for two 
fault dips, 70° and 90°, with the two strikes giving coincident faults for the vertical planes.

The best model is illustrated in Fig.  4 and listed in Table  1 (MB17). As expected 
from the previous test, the PGA-derived intensities simulate the data significantly bet-
ter then PGVs. Both PGAs and PGVs indicate 80.50° as preferred strike and stress drop 
Δσ = 0.1 MPa. However, while PGAs prefer a small, vertical fault (1 × 1 km2) with Mach 
number α = 0.7, PGVs are better simulated by using a larger fault (2 × 2 km2) dipping 70° 

Table 1   Best solutions for the investigated models for the August 27, 2017, Md = 4.0, earthquake

X and Y indicate the position of the nucleation point on the fault plane along the strike and along the dip, 
respectively, and α if the Mach number. M1 is the source model of De Novellis et al. (2018), while MB17 
represents the best solutions obtained starting from the BOXER result for the 2017 earthquake and assum-
ing uniform slip. For each model, A and B refer to the results obtained computing PGA and PGV, respec-
tively

Model Strike (°) Dip (°) Δσ (MPa) L (km) W (km) α X (km) Y (km) Misfit

M1A 86 70 0.1 3.0 1.8 0.7 1.5 1.6 0.117
M1V 86 70 0.1 3.0 1.8 0.7 1.5 1.6 0.268
MB17A 80 70 0.1 1.0 1.0 0.6 0.5 0.8 0.106
MB17V 80 70 0.1 2.0 2.0 0.6 1.0 1.8 0.208

Fig. 1   The Island of Ischia and the most significant seismicity. Black lines are the main fault systems of the 
island (after Sbrana and Toccaceli 2011). The historical earthquakes epicentres are taken from the CPTI15 
(Rovida et al. 2019) while the location of most recent 2017 seismic swarm is from INGV seismic database 
(Modified after De Novellis et al. 2018)



185Natural Hazards (2021) 108:177–201	

1 3

and with slightly lower rupture velocity (α = 0.6). Considering the assumption of uniform 
dislocation and the slip distribution derived from the DInSAR analysis (De Novellis et al. 
2018), the smaller fault extent appears to be in better agreement with the geodetic solution. 
Finally, the difference in the fault dip angle between the two preferred solutions can be 
considered as an estimate of the uncertainty for this parameter. The maximum PGA and 
PGV values are 0.5 and 0.32 m/s, respectively.

Based on the above observations, we deemed the modelling of the PGA-derived intensi-
ties more reliable in determining the source geometry and used the PGVs anyway to evalu-
ate the robustness of the preferred solution.

4 � Results

4.1 � Magnitude estimation of 1881 and 1883 events

In order to proceed with the simulations for the 1881 and 1883 earthquakes, we first 
assessed the magnitude of these events, which have been used together with the other 
parameters, as input data of BOXER. Different intensity-magnitude relations have been 
already used for the 1883 earthquake and provide a magnitude range between 4.6 and 5.2 
(Cubellis and Luongo 1998 and references therein). After the 2017 earthquake, we could 
have a first instrumental assessment of the magnitude for a significant earthquake at Ischia 
(Md = 4.0, MW = 3.9; http://​cnt.​rm.​ingv.​it), which can be compared with its maximum inten-
sity (I0 EMS98 VII-VIII) (Rovida et al. 2019). Thus, among the most used intensity-mag-
nitude relationships for volcanic areas (Patanè et al. 1986; Marturano et al. 1988; Azzaro 
et al. 2011) (Table 2), we used the ones that provide the most consistent result for the 2017 
event. Considering I0 EMS98 VII-VIII, the intensity-magnitude relationships that provides 
the closer values to MW = 3.9 (or Md = 4.0) are that derived by Patanè et al. (1986), giving 
M = 3.8, and the one proposed by Azzaro et al. (2011), giving Md(average) = 3.8. On the other 

Table 2   Magnitude estimation for the 1881, 1883 and 2017 Casamicciola earthquakes, using different I0-M 
(maximum intensity-magnitude) relationships (Patanè et  al. 1986; Marturano et  al. 1988; Azzaro et  al. 
2011)

See text for details
*According to Gasperini and Ferrari (1990), Gasperini et al. (1999) and Gasperini et al. (2010) the value I0 
for the magnitude assessment is the average of the two maximum values of the epicentral area

Relation Reference I0* Value (M) Earth-
quake

M = 0.4I0 + 0.8 Patanè et al. 
(1986)

(VIII-IX)
(X-XI)
(VII-VIII)

4.2
5.0
3.8

1881
1883
2017

M = (log I0–0.155)/(0.165) Marturano 
et al. (1988)

VIII-IX
X-XI
VII-VIII

4.6
5.1
4.3

1881
1883
2017

Md(min) Md(average) Md(max)

Md = 0.31(± 0.03)
I0 + 1.51(± 0.14)

Azzaro et al. 
(2011)

VIII-IX
X-XI
VII-VIII

3.8
4.3
3.5

4.1(± 0.12)
4.8(± 0.12)
3.8(± 0.12)

4.5
5.2
4.2

1881
1883
2017

http://cnt.rm.ingv.it
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side, the result of the magnitude-intensity relation of Marturano et  al. (1988) (Table  2) 
provides a difference with respect to the 2017 Md and MW of 0.4 and 0.3, respectively. 
This difference is larger or at the limit of the uncertainty in the evaluation of the magni-
tude of 2017 earthquake (± 0.3; http://​cnt.​rm.​ingv.​it), thus we excluded this relation from 
the following computations. By applying the relations proposed by Patanè et  al. (1986) 
and Azzaro et al. (2011), we obtained M = 4.2 and Md(average) = 4.1, for the 1881 event, and 
M = 5.0 and Md(average) = 4.8, for the 1883 event, respectively (Table 2). However, we notice 
that, compared to that inferred by Patanè et  al. (1986), the relation proposed by Azzaro 
et al. (2011) is better constrained, being inferred from an about fivefold number of earth-
quakes. Thus, in the next steps, we utilized the relation derived by Azzaro et al. (2011).

4.2 � Retrieved faults parameters for the 1881 and 1881 events

Concerning the 4 March 1881 earthquake, we used the macroseismic intensities obtained in 
the present study consisting of 20 intensity points ranging between IV and IX. We first used 
BOXER to infer the best macroseismic epicentre and surface fault projection extent. We 
obtained 40.744°N (± 0.2 km) 13.903°E (± 0.4 km) for the epicentral location, very close 
to that obtained for the 2017 event,  a best azimuth of 88° (± 30°), and fault extent 1 × 2 
km2. Next, following the same approach used above for the 2017 event, we computed PGAs 
and PGVs and converted them to macroseismic intensities. We tested two opposite strikes 
(88° and 268°), two dips (70° and 90°), three fault geometries (1 × 1, 2 × 2, 3 × 3 km2), three 
stress-drop values (0.1, 1, 3 MPa), and three Mach number values (0.6, 0.7, 0.8). For the his-
torical events, considering the uncertainty in the BOXER epicentral location, we also tested 
different reference points, by moving it ± 500 m along the N-S direction and, for each one 
of these two locations, also shifting it ± 500 m along the direction identified by the azimuth 
obtained from BOXER. We used uniform slip distribution for all the investigated models.

The best models for PGA and PGV are represented in Fig.  5 and listed in Table 3 
(MB81A and MB81V). Like for the 2017 event, a lower misfit results for PGA. Both 
PGA- and PGV-derived intensities indicate a 2 × 2 km2 fault plane, with Mach number 
α = 0.6 and stress drop Δσ = 1 MPa. The stress drop is larger than what obtained for the 
2017 event, possibly reflecting the higher maximum intensity of the 1881 earthquake 
with respect to what estimated for 2017. In contrast, different fault dips result for PGA 
and PGV, respectively, with the former dipping 70° and the latter being a purely verti-
cal plane. The two planes have the same fault centre, which is slightly shifted (500 m) 
to the south and to the west relative to the BOXER solution. This disparity may result 
from the different assumption of the two inversion schemes: BOXER uses only the 

Table 3   Best solutions for the investigated models for the 4 March 1881, MW = 4.1, earthquake (MB81A 
and MB81V) and for the 28 July 1883, MW = 4.8, earthquake (MB83A and MB83V)

X and Y indicate the position of the nucleation point on the fault plane along the strike and along the dip, 
respectively, and α if the Mach number. For each model, A refers to the results obtained when computing 
PGA and V when computing PGV

Model Strike (°) Dip (°) Δσ (MPa) L (km) W (km) α X (km) Y (km) Misfit

MB81A 88 70 1.0 2 2 0.6 1.0 1.8 7.37E−2
MB81V 88 90 1.0 2 2 0.6 1.0 1.8 9.52E−2
MB83A 86 90 1.0 1 1 0.6 0.5 0.8 5.98E−2
MB83V 266 70 1.0 2 2 0.8 1.0 1.8 7.61E−2

http://cnt.rm.ingv.it
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points corresponding with the major intensities, while the synthetic intensities obtained 
through EXSIM are compared to all the data points on the island. In fact, the observed 
macroseismic field of the 1881 earthquake is characterized by a clear asymmetry, with 
rapidly decreasing intensity moving eastward from I0, while higher values are located in 

Fig. 2   Macroseismic field of 1881 (top), 1883 (center) and 2017 (bottom) earthquakes obtained from the 
interpolation of the intensities data listed in Tables 5 and 6 (1881 and 1883) and the intensity data from 
CPTI15 (2017) (Rovida et al. 2019) (see text for details)
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the opposite direction, at the same distance. This makes EXSIM procedure to prefer a 
slightly larger plane, with the centre shifted south-westward.

As for the 28 July 1883 earthquake, we used the observed macroseismic intensi-
ties obtained in the present study consisting in 26 data points with intensities ranging 
between VI and XI. The macroseismic epicentre obtained by using BOXER is 40.746°N 
(± 0.5  km) 13.893°N (± 1.2  km), the best azimuth 86° (± 30°), very similar to those 
resulting for the 2017 and 1881 events. The surface fault projection extent is an almost 
squared plane with dimensions 2.5 × 3.4 km2, whose larger extension is the N-S direc-
tion. Following the same modelling strategy described above, we used EXSIM code and 
obtained the best models listed in Table 3 (MB83) and represented in Fig. 6. For this 
earthquake as well, PGA- and PGV-derived intensities indicate distinct values for all 
the parameters and, also in this case, the PGA simulation provides better fit to the data. 

Fig. 3   Best model solution for the August 27, 2017, Mw = 3.9, earthquake. The lower left panel depicts the 
observed macroseismic data and the surface fault projection of the fault geometry proposed by De Novellis 
et al. (2018). The upper left panel shows the intensity values as obtained by converting PGAs in intensi-
ties, the upper right panel those obtained by using the PGVs. The lower right panels show the observed 
intensities as function of the hypocentral distance (grey circles), the computed intensities (crosses) and the 
computed intensities corrected by the site effects (squares) (upper for PGVs and lower for PGAs) (See also 
Table 1 model M1-A-V)
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The PGA best solution is associated with a 1 × 1 km2 vertical plane, centred 500 m to 
the south and to the east with respect to the BOXER epicentre, while a 2 × 2 km2 fault, 
dipping north 70°, results for PGV, with fault centre coincident with the BOXER one.

It should be remarked that, although associated with a higher magnitude, the 1883 
fault dimension resulted to be smaller than 1881 but with the same stress drop. This result 
derives from the apparently different intensity distribution for the two events (Fig.  8, 
Appendix), displaying a definitely stronger gradient in the epicentral area for the 1883 
(Fig. 2). We speculate that this might be related to differences in the slip distribution, pos-
sibly smoother for the 1881 earthquakes.

As for the maximum PGA and PGV values for the 1881 event, we obtain 6.7 m/s2 (0.7 g) 
and 0.30 m/s, while for the 1883 event 14.3 m/s2 (1.5 g) and 0.80 m/s, respectively. For both 
the events, the simulated PGA values, while reproducing the observed macroseismic intensi-
ties, significantly exceed the range of values (0.1, 0.2) g (corresponding to the 16th and 80th 

Fig. 4   Best model solution for the August 27, 2017, MW = 3.9, earthquake for uniform slip distribution, 
using distinct fault reference points. The lower left panel depicts the observed macroseismic data and the 
surface fault projection obtained by using BOXER (grey box). The black star in all the panels identifies the 
macroseismic epicentre. The upper left panel shows the intensity values as obtained by converting PGAs in 
intensities and the inferred fault geometry (black box) (see Table 1), the upper right panel those obtained 
by using the PGVs. The lower right panels show the observed intensities as function of the hypocentral dis-
tance (grey circles) and the computed intensities (crosses) (upper for PGVs and lower for PGAs) (See also 
Table 1 model MB17-A-V)
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percentile, respectively) prescribed in the official hazard map as reference for the design of 
civil structures. It should be noted that the g values obtained from the PGA and PGV values 
are theoretical and also represent the maximum at the epicentre for the two historical events. 
In particular for the 1883 event, the g theoretical value is six times the value for the 2017 
(0.25 g), recorded 800 m away from the epicentre, while the inferred magnitude is about 1 
degree larger than the 2017 event.

Fig. 5   Best model solution for the 4 March 1881, MW = 4.1, earthquake for uniform slip distribution, using 
distinct fault reference points. The lower left panel depicts the observed macroseismic data and the surface 
fault projection obtained by using BOXER (grey box). The black star in all the panels identifies the mac-
roseismic epicentre. The upper left panel shows the intensity values as obtained by converting PGAs in 
intensities and the inferred fault geometry (black box), the upper right panel those obtained by using the 
PGVs. The lower right panels show the observed intensities as function of the hypocentral distance (grey 
circles) and the computed intensities (crosses) (upper for PGVs and lower for PGAs) (See also Table  3 
model MB81-A-V)
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5 � Discussion

The above elaborations indicate that the seismogenic sources associated with the 1881, 1883, and 
2017 earthquakes are located along the northern rim of the Mt. Epomeo resurgent structure with 
strike roughly in the E-W direction. The fault dimensions resulting for the three events ranges 
between 1 × 1 km2 and 2 × 2 km2, associated with vertical or almost vertical planes, possibly dip-
ping south. According to the island volcano-tectonics, the system of faults along the northern 
sector was moved with a thrust mechanism during the resurgence, while the latter was inverted as 
a normal one, during the subsidence phase (Acocella and Funiciello 1999; Acocella et al. 2001).

Considering the uncertainties in the intensity estimate—either for the observed data points or 
for the PGA and PGV converted values (± 0.35 and ± 0.26, respectively; Faenza and Michelini 
2010)—and in the modelling procedure (propagation and site effects), we consider that, based on 
the available data, stress drop and Mach number estimates are hardly constrainable with a lower 
degree of uncertainty. On the other hand, also taking into account the local geology and inde-
pendent results from analysis of the 2017 earthquake (De Novellis et al. 2018), we conclude that 
the results about the fault geometry and extent can be considered realistic and reliable within the 
sampling step of the parameters used in our analysis. The seismogenic source resulting from our 
study is compatible with the faults system bordering the northern rim of the resurgent structure. 

Fig. 6   Same as Fig. 3 but for the 28 July 1883, MW = 4.8, earthquake. (See also Table 3 model MB83-A-V)
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The lateral extension of this fault system is structurally limited by the extension of the active part 
of the resurgent block, about 2 km in length (Acocella and Funiciello 1999; Carlino et al. 2006; 
Di Giuseppe et al. 2017; Sbrana and Toccaceli 2011). This limit encloses the fault plane (De 
Novellis et al. 2018) and the observed coseismic fractures (Nappi et al. 2018) of the 2017 events 
and seems to represent the maximum possible extent of seismogenic sources in the northern sec-
tor of the island. Moreover, the maximum depth at which the fragile shear failure can occur is 
limited by the brittle-ductile transition of rocks, which is located at a depth of about 2 km beneath 
the Mt. Epomeo (Carlino et al. 2012; Castaldo et al. 2017; Carlino 2018). This depth also corre-
sponds to the cut-off depth of seismicity recorded in the island (D’Auria et al. 2018).

Furthermore, the macroseismic field for the 1881, 1883, and 2017 events shows that the most 
damaged areas for the three events have similar shape and are strikingly coincident (Fig. 7). The 
obtained 1881 and 1883 epicentre locations and that of 2017 are very close to each other, with 
maximum separation of ~ 600 m. These observations suggest a single seismic source as respon-
sible for the destructive earthquakes of Ischia Island, whose reactivation is likely associated with 
a local stress field variation (Trasatti et al. 2020). The latter hypothesis is also supported by other 
observations: (i) the absence of significant (M > 1.5) seismic events outside the northern sec-
tor of the island; (ii) the absence of regional seismogenic structures crossing the island; (iii) the 

Fig. 7   Summary of results of this study. Circles represent the maximum isoseims of the earthquakes (I0 
VIII-IX 1881, I0 X-XI 1883, and I0 VII-VIII 2017) obtained from the interpolation of intensity data, while 
coloured lines are the surface projection of the fault plane solutions obtained from EXSIM (blue and red) 
and from De Novellis et al. (2018) (green). White star is the instrumental epicentre of 2017 event
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occurrence of very few aftershocks associated with the 2017 event (less than 30) and localized 
along the slipped zone (De Novellis et al. 2018); (iv) the presence of faults system around the Mt. 
Epomeo structure, which does not show a preferential regional pattern orientation, and whose 
formation is associated with the resurgence process and to the progressive failure of the brittle 
curst (Sbrana et al. 2009; Carlino 2012; Di Giuseppe et al. 2017).

On the basis of the above observations and of the result of the simulations, the seismogenic 
fault of 1881 and 1883 does not exceed 2 × 2 km2. Given that this source area is actually confined 
by the structural evolution of Mt. Epomeo and the brittle-ductile transition below  the island, we 
suggest that this specific seismogenic fault can provide a magnitude that is unlikely to exceed the 
range 5.0 ± 0.3, assuming empirical relations between rupture area and magnitude (Wells and 
Coppersmith 1994; Somerville et al. 1999).

Furthermore, the results obtained from the BOXER and EXSIM elaborations, which agree 
with a roughly E-W strike of the seismogenic fault, locate this latter along the most strained zone 
of the Mt. Epomeo (Acocella and Funiciello 1999), where the maximum load of the resurgent 
block is exerted during the present subsidence phase. The subsidence possibly took place since 
ancient Roman Age at least (Buchner et  al. 1996), therefore the historical earthquakes likely 
occurred in a geodynamic context similar to the present one. This makes the vertical loading of 
the Mt. Epomeo the predominant stress (σ1) of the area (Manzo et al. 2006; De Martino et al. 
2011; Castaldo et al. 2017; De Novellis et al. 2018; Trasatti et al. 2020). Moreover, the minimum 
tensional stress acting at regional scale, is approximately NNW-SSE oriented (Hippolyte et al. 
1994), favouring normal faulting along the roughly E-W seismogenic structure of the north of 
Mt. Epomeo (Lowrie 2007; Zoback 2010).

As regards the causes of the subsidence, two possible main processes have been suggested in 
the recent literature. The first process could be associated with the depressurization of a shallow 
magmatic system (Trasatti et al. 2020), the second one foresees the persistence of a stress field 
associated with the loading of Mt. Epomeo, and the coupling action of volcano loading and crust 
rheology (Castaldo et al. 2017; De Novellis et al. 2018). For both scenarios, the subsidence of the 
Mt. Epomeo represents the mechanism that accumulated strain energy along the seismic fault 
and for which only normal fault mechanism can occur.

6 � Conclusions

In this study, we attempted at reassessing the location and magnitude of two important histori-
cal earthquakes of Ischia Island (1881 and 1883) and their possible relation with the recent 21 
August 2017 event. We analysed the available macroseismic data and derived quantitative infor-
mation about the source parameters of the three earthquakes, verifying the similarities of their 
seismic sources. Although intrinsic approximations and uncertainties are associated with the 
adopted procedure, the results obtained initially by modelling the data of the 2017 earthquake 
validates our approach, demonstrating its effectiveness in retrieving consistent information on the 
source of earthquakes in the northern sector of Ischia Island from macroseismic data. Our results 
suggest that:

•	 a single seismogenic structure is likely to be responsible for the known destructive 
earthquakes on the island, located on the northern slope of Mt. Epomeo. The plane has 
a roughly E-W strike, it is dipping vertically or possibly southwards at high angle, as 
already evidenced by Acocella et al. (1999) from geological survey and by De Novellis 
et al. (2018) and Trasatti et al. (2020) for the 21 August 2017 event;
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•	 the data of both historical and recent earthquakes, joined with geological and geophysical 
information, indicate a fault dimension of about 2 × 2 km2. The maximum magnitude for 
earthquakes in the northern sector Ischia Island cannot exceed ~ 5.0;

•	 the magnitude of the 1881 and of the 1883 events are evaluated around 4.1 and 4.8, respec-
tively, with the latter value possibly affected by cumulative damage;

•	 the simulated PGA values for the 1881 and 1883 events significantly exceed the PGA val-
ues,  also referring to the 84th percentile, with probability of exceeding equal to 10% in 
50 years reported in the official national seismic hazard map.

We cannot exclude that further seismogenic sources can be activated in the island, although 
this appears an unlikely scenario, in consideration of the thickness of the fragile crust (which is 
larger in the northern sector of the island) (Carlino et al. 2006) and of the structural dynamic of 
Mt. Epomeo. Finally, this work highlights the complexity of the processes leading to the seis-
mic energy accumulation and release in such resurgent calderas and the necessity of refining 
the national seismic hazard map at a smaller local scale—possibly using a single fault-based 
approach—and integrating recorded and simulated PGA and PGVs values.

Appendix

See Fig. 8.
See Tables 4, 5  and 6

Fig. 8   Comparison of location and distribution of intensity points obtained from this study (a and c) and 
reported in the CPTI15 (Rovida et al. 2019) (b and d)
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Table 6   Intensity data for the 1883 earthquake obtained in this work (see main text for details). Coordinates 
are UTM (zone 33 N)

33 N easting 33 N northing Intensity MCS Locality

406,977 4,510,831 XI Maio-Casamennella-Montecito
407,783.30811481 4,510,838.0519914 X Bagni
406,146.72233829 4,510,874.9986406 X Fango
407,190.34445716 4,511,128.3819839 IX Sentinella
407,651.84189878 4,511,148.3731966 IX Margherita_est
406,306.58656741 4,511,618.2759022 IX Lacco_est
404,983.01943954 4,510,543.977835 IX Baiola
407,929.3553968 4,511,417.1853011 VIII Marina
406,983.96338296 4,511,570.4740082 VIII Marina_ovest
404,512.2115859 4,507,839.9275328 VIII Panza
403,657.32295363 4,509,910.8644273 VIII Forio
408,654.0933111 4,511,455.3249717 VII Perrone
405,773.00819576 4,512,049.8371005 VII Marina-S.Montano
406,941.84527635 4,508,199.9204528 VII Fontana
406,482.27952837 4,507,120.1490408 VII Serrara
405,789.9335643 4,506,193.5714781 VII Succivo
405,718.87355089 4,507,245.9917786 VII Ciglio
408,712.04139946 4,506,953.7704396 VII Barano-Testaccio
407,978.64920513 4,507,484.1817893 VII Buonopane-Terzano
409,549.70049883 4,508,576.523612 VII Fiaiano
409,229.9355335 4,507,700.7609321 VII Piedimonte-Casabona
410,950.53303198 4,508,185.5648735 VII Campagnano
406,483.19002899 4,505,694.5479251 VI S.Angelo
410,927.53023529 4,510,698.956571 VI Ischia_porto
409,838.69560846 4,510,850.696791 VI Quercia
412,022.81857414 4,509,385.7740881 VI Ponte

http://www.soest.hawaii.edu/gmt
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