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Abstract
Loess landslides have complicated deformation mechanisms. Accurately describing the 
internal failure deformation of loess landslides and establishing a theoretical method of 
landslide instability evaluation for the prevention of subsequent landslides have become 
important topics in western development project construction in China. This paper pre-
sents a case study of the Zhonglou Mountain landslide in Shaanxi Province, China. Based 
on field investigation results, a two-dimensional stability analysis model was constructed 
using the finite element method. Taking the deformation characteristics of the landslide 
as the research basis, the distribution laws of the displacement, stress, and shear strain of 
this landslide were identified with the strength reduction finite element numerical simula-
tion method. Additionally, the safety factor was evaluated under normal and storm condi-
tions. The numerical simulation results show that the horizontal tensile stress of the land-
slide was mainly distributed in the middle and upper parts of the landslide under normal 
conditions, while the vertical tensile stress was distributed near the sliding surface. Under 
heavy rainfall, the sliding force increased, and the anti-sliding force and anti-sliding sec-
tion decreased; the location of the maximum shear strain shifted down from the middle 
and upper parts of the landslide body to the area with a shear crack, and the plastic shear 
strain area expanded along nearly the entire the sliding surface, leading to the occurrence 
of a landslide. Thus, the use of anti-slide piles to stabilize the landslide was proposed and 
tested. Monitoring points were arranged along the sliding surface to evaluate the displace-
ment, stress, and strain responses. The on-site observation results agreed with the modeling 
results. The use of anti-slide piles was demonstrated to be an effective stabilization method 
for the Zhonglou Mountain landslide.
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1 Introduction

Loess is an aeolian sediment formed by the accumulation of fine sand, silt, and clay 
deposits in arid and semiarid regions. In China, loess covers an area of approximately 
640,000 km2, which is equivalent to approximately 4.4% of the total land area of China. 
The Loess Plateau is located in the upper and middle reaches of the Yellow River and has 
an area of approximately 317,000 km2, which represents the majority of the bulk accumu-
lation of loess worldwide (Zhuang et al. 2018; Li et al. 2018); additionally, approximately 
300 million people live in the Loess Plateau region (Peng et al. 2016). The structure of the 
present-day loess is a result of long-term deposition and loessification, which has led to the 
formation of typical loess landforms with numerous intensively incised vertical or near-
vertical ravines (Li 2018). These ravines are predominantly composed of weakly cemented, 
silt-sized particles arranged in a metastable, highly porous structure (Hailong and Xie 
2015; Xie et  al. 2018a; Li et  al. 2019) and are highly susceptible to erosion by flowing 
water and extensive irrigation (Zhang et  al. 2013; Xu et  al. 2011), and loess landslides 
frequently occur owing to this water sensitivity (Xu et al. 2018; Li et al. 2016; Xie et al. 
2018b; Derbyshire 2001; Dijkstra et al. 1994). Such situations have extensively jeopardized 
lives and property in the area and have also adversely affected the stability of numerous 
types of infrastructures. Zhuang et al. (2018) reported that each year, approximately one-
third of the geohazards in China occur on the Loess Plateau, resulting in the loss of human 
life and damage to infrastructure facilities.

The stabilization of loess slopes remains a key issue in geotechnical engineering, par-
ticularly in China. To ensure a safe engineering environment in the loess region, studies 
have been conducted to evaluate the loess landslide mechanisms, thereby establishing 
effective prevention and mitigation measures to combat loess instability (Qiu et al. 2016). 
Chen et al. (2019a, b) studied the effects of internal seepage and other parameters on land-
fill stability and subsequently proposed two failure modes. Crawford et al. (2019a, b) pro-
posed a constitutive equation that can be applied to dynamic hydrological monitoring for 
landslide detection and verified its feasibility. Rainfall plays an important role in loess 
slope failure. Wei et al. (2019) proposed a model for estimating the rainfall threshold of 
a deep-seated landslide based on the genetic algorithm-back-propagation neural network 
(GA-BPNN) and the genetic algorithm-support vector machine (GA-SVM) methods. To 
optimize the design scheme for landslide prevention and mitigation, Zhang et  al. (2015) 
conducted a series of centrifuge model tests to investigate the behaviors and mechanisms 
of slope failure, considering soil behavior, slope inclination, and loading condition param-
eters. Xu et al. (2018) conducted a reliability analysis on slopes reinforced with piles and 
concluded that the stabilizing piles should intersect with all the representative slip surfaces 
with significant failure probabilities to maximize the slope stabilization effectiveness. They 
evaluated unfavorable site conditions and potential construction weaknesses and studied 
critical construction procedures and variables, ultimately developing a final optimal imple-
mentation scheme for a project.

Stability analysis is the basis of landslide control engineering. At present, the meth-
ods used for slope stability analysis primarily include the conventional limit equilibrium 
approach based on the rigid body limit equilibrium theory and modern numerical analysis 
techniques such as the finite element method (FEM) (Liu et al. 2015; Agam et al. 2016). 
The conventional limit equilibrium method currently plays a leading role in landslide 
stability analysis because it generally provides an acceptable safety factor (SF) in a rela-
tively fast and low-cost manner and with a clear physical meaning. However, as indicated 
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by Adhikary and Dyskin (2007), the limit equilibrium method considers rock and soil as 
rigid bodies, and it does not consider the stress–strain relationship of the soil and the cou-
pled deformation of the soil structure. Therefore, it cannot accurately represent the interac-
tion between loess soil and retaining structures, which limits its application, particularly 
in the analysis of large landslides (Zheng et  al. 2018). The FEM offers a unique advan-
tage because it considers the elastoplastic constitutive relation of soil and the influence of 
deformation on landslide stability. The stress and strain distribution in a sliding body and 
the influence of retaining structures on slope deformation and stability can be reasonably 
obtained with this method (Feng et al. 2017; Alemdag et al. 2015). Although loess land-
slides have often been reported, their failure mechanisms and mitigation measures have 
not been thoroughly studied using a numerical approach. In this paper, a case study of the 
Zhonglou Mountain loess landslide in Qingjian County of Yulin, Shaanxi Province, China 
(Fig.  1), is presented. Based on the results of our field investigation, a two-dimensional 
stability analysis model of the landslide was developed using finite element analysis. The 
stability of the studied landslide before and after remediation was comprehensively studied 
under normal and storm conditions. The SF values were derived using a strength reduc-
tion method, and based on the analysis, the corresponding remediated retaining structure 

Fig. 1  The geographical position and plane form of Zhonglou Mountain landslide
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was analyzed in detail under different conditions. Moreover, the relations between the sup-
porting structure and the stress, strain, and deformation of the loess slope were accurately 
evaluated.

2  Background

The reported landslide occurred in July 2013 as a result of heavy rainfall. As illustrated in 
Figs. 1 and 2, the basal surface of the landslide was concave, and the landslide occurred 
on a southeast-facing slope and was approximately 80  m wide, 50  m deep, and 110  m 
long, thereby mobilizing a total volume of approximately 3.5 × 103 m3. The dip direction 
of the landslide was 62°SE. According to Zhuang et al. (2018), the landslide examined in 
this study appeared to follow a typical pattern commonly found on the Loess Plateau. As 
illustrated in Fig. 2, section A–A′ of the landslide was selected as the typical section for 
analysis. A site survey indicated that the collapsed material consisted of yellowish gray 
and yellow soil and was mainly composed of Quaternary loess and Triassic siltstone, while 
the rupture surface was identified in the loess layer. Its upper part was found to be upper 
Pleistocene aeolian loess, mainly silt and silty clay with vertical joints. Furthermore, the 
lower part of the landslide was found to be composed of Hujiacun plutonium siltstone of 
the Upper Triassic  (T3fc). The Upper Triassic lithology is dark purple, grayish green/light 
red layered feldspar sandstone and muddy siltstone. The surface of the site has eroded sig-
nificantly, resulting in the formation of numerous ravines and sinkholes. Transverse tension 
cracks and radial shear deformation were identified in the depletion zone, distributed verti-
cally throughout this zone. Moreover, the failure deformation characteristics and borehole 
information of the Zhonglou Mountain landslide are shown in Fig. 3, including the charac-
teristics of the back edge, the tensile cracks caused by the landslide, and the shear cracks.

The information obtained from borehole ZK1, the test pit, and the exposed shear-
ing zone revealed that the thickness of the eroded mass was approximately 15.5–17.5 m, 
and the soil structure appeared to be highly disturbed by folding and fracturing. Site 

Fig. 2  Geological profile of section A–A′
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observations indicated that the landslide was highly correlated with the occurrence of 
heavy rainfall, which is indicative of the important role that water plays in the evolution of 
landslide deformation and failure. Rainfall is a common triggering factor for landslides in 
most loess areas. On the Loess Plateau, concave surfaces are particularly susceptible to the 

Fig. 3  Failure deformation characteristics and borehole information of the landslide
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occurrence of shallow landslides (Zhuang et al. 2018). The occurrence of sliding can be 
attributed to the concurrent effects of gravity and hydrostatic pressure.

3  Finite element modeling

The failure mechanism and treatment measures were studied using Midas GTS, which is 
a finite element program. Based on a careful review of site conditions, slope cutting com-
bined with the use of anti-slide piles was selected for treating the landslide. The use of 
piles to stabilize active slope failure has become one of the most common slope stabiliza-
tion techniques in recent decades (Ardalan and Ashour 2013). However, owing to the site 
constraints associated with the local residences and their occupants, only a limited amount 
of the slope near the head area was removed to reduce the sliding mass weight. The anti-
slide piles were installed at locations in which the maximum shear strain was observed. 
They penetrated through the slip plane and were embedded in the bedrock to achieve the 
maximum sliding resistance. As illustrated in Fig. 4, Midas GTS was used to analyze sec-
tion A–A′ as a representative area to develop a model for the analyses. The boundary con-
ditions included the restraint of the horizontal displacement on both sides of the slope, 
while the horizontal and vertical displacements were restrained at the bottom of the slope.

The processes that occurred at the site were simulated step by step, namely the tran-
sition from initial landslide conditions (original slope) to those for the treated slope (a 
cut slope with anti-slide piles). Both normal and storm conditions were studied using a 
strength reduction method. The SF values were derived for each case, and the stress–strain 
distributions and slope stability variations before and after treatment were examined. The 
relation between the anti-slide piles and landslide deformation was evaluated effectively 
and accurately.

The soil mass was analyzed using the Mohr–Coulomb model. This linear elastic, per-
fectly plastic model requires five basic input soil parameters: Young’s modulus (E), Pois-
son’s ratio (μ), cohesion (c), friction angle (φ), and unit weight (γ). According to the stra-
tigraphy observed at the site, six different material types were identified. Table 1 displays 
their properties based on the laboratory investigation results. Moreover, because numerous 
ruptures can be observed in the slope, soils lying 50 cm below the surface and the slip zone 
were considered to be saturated under storm conditions.

To analyze the behavior of the piles and the pile–soil interface, an anti-slide pile was 
simulated using elastic material and discretized as a beam element, while the contact 
between the pile and soil was considered to be a frictional interface. In this study, the anti-
slide pile was designed with a rectangular section with a width and length of 3 and 27 m, 
respectively, and the piles were placed 4 m apart. The parameters for the pile analysis col-
lected from a previous design are also presented in Table 1.

4  Results and discussion

4.1  SF

The SF values for the target slope before and after treatment under different stress levels 
and normal and storm conditions were 1.06 and 0.74, respectively. The simulations indi-
cated that the slope stability was marginal under its own weight. Complete sliding was 
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probable; however, local collapse and/or caving was highly likely. The slope stability wors-
ened during rainfall, which consequently could trigger slope failure. Adopting the combi-
nation of landslide mitigation measures of slope cutting and anti-slide piles, the SF values 
were 1.41 and 1.34 under the normal and storm conditions, respectively, indicating that the 
control scheme effectively improved the slope stability.

4.2  Discussion of numerical results

The numerical analysis provided insight into slope stability before and after treatment 
under normal and storm conditions. For example, the stress–strain distributions, displace-
ment variations, soil-pile interactions, and tendencies of the slope stability could be evalu-
ated effectively. Detailed discussions are presented in the following subsections.

Fig. 4  Generalized slope model and finite element mesh
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4.2.1  Displacement

Figure 5 illustrates the displacement variations in the X- and Y-directions before and after 
the slope treatment under the normal and storm conditions. As indicated in Fig. 5, the max-
imum displacement in the X-direction of the initial slope occurred around the lower third 
of the slope (elevation of 870 m) directly behind a retaining wall, regardless of the applied 
stress conditions. The maximum displacement in the Y-direction occurred somewhat lower 
(in front of the retaining wall) and exhibited substantially smaller magnitudes. For the 
treated slope, the maximum displacement in the X- and Y-directions appeared to be larger 
than that of the initial slope because of the constraint associated with the anti-slide piles. 
However, all the slope displacements indicated uplifting behind the pile, indicating that the 
sliding thrust of the slope was effectively counterbalanced.

4.2.2  Shear strain distributions

The shear strain distributions for the slope under normal and storm conditions before and 
after landslide treatment are presented in Fig. 6. Similar to the results presented in Fig. 5, 
the shear strain distributions exhibited an identical trend from the toe of the slip plane to a 
location directly behind the anti-slide pile. The maximum shear strain of the treated slope 
also displayed a substantially smaller value than that of the initial slope, decreasing from 
1.03 to 0.37 under storm conditions. As can be observed in the figure, the anti-slide pile 
apparently impeded the shear stress induced by the sliding mass and successfully main-
tained the overall slope in a stable state, particularly under storm conditions.

Table 1  Material properties for all parameters used for analyses

Lithology Material properties

c (kPa) ϕ (°) γ (kN/m3) E (kPa) μ

Upper Lishi loess 28.4 30.6 15.2 350 0.26
Paleosol 37 35.5 16 450 0.23
Lower Lishi loess 29.1 31.6 15.5 380 0.24
Sandstone 113 37 21.3 40,000 0.21
Slip zone soil
Normal 17.5 19.5 14.9 250 0.29
Storm 10.8 13.6 18.9 80 0.29
Q4

del cumulose soil
Normal 20.3 23.6 14.5 300 0.27
Storm 13.5 15.6 18.5 120 0.3

Material γ (kN/m3) E (kPa) μ C (kPa) ϕ (°.) Kn (kPa) Kt ((kPa)

Pile 24 30,000 0.167 – – – –
Pile–soil interface – – – 120 48 600,000 60,000
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Fig. 5  Variations of displacement in X and Y directions before and after treatment under normal and storm 
conditions
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Fig. 5  (continued)
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4.2.3  Stress variations

Figure 7 illustrates the stress variations in the X- and Y-directions for slopes under differ-
ent conditions. The tensile stresses are indicated in black in the figure. For the analysis, the 
Midas GTS program assigned tensile stress as positive and compressive stress as negative. 
As illustrated in Fig. 7, both horizontal and vertical stresses developed along the rupture 
surface after slope failure was initiated. Under normal conditions, the tensile stress was 
mainly distributed in the upper and toe regions of the slip zone. However, under storm 
conditions, the region of tensile stress expanded along the entire rupture surface, resulting 
in the development of tension cracks and causing the slope to collapse. When the combina-
tion of cutting and anti-slide piles was adopted for stabilization, the rupture surface became 
a compressive zone, preventing the tension cracks from expanding and triggering extensive 
failure. Moreover, the tensile stress shifted upward to the middle of the slope behind the 
anti-slide pile, where a tensile stress concentration zone was formed. However, the maxi-
mum tensile stress of the treated slope was lower than that of the initial slope. An anti-slide 
pile was considered an elastic beam element. The stress acting on the pile resulted in an 

Fig. 5  (continued)
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Fig. 6  Shear strain distribution for slope under normal and storm conditions before and after landslide treat-
ment
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opposite reaction on the soil in a direction against the sliding thrust, thereby improving the 
slope stability.

4.2.4  Comparison and validation of results

Based on the monitoring data of the deep deformation collected with a borehole tiltmeter, 
Li et al. (2006) found that the deformation of the landslide, originating from the rupture 
zone, progressively and slowly accumulated from the bottom to the top. Most of the intra-
aggregate pores were saturated with water, even at the residual suction value. Xie (2004) 
successfully conducted field monitoring and a numerical simulation analysis to study the 
stress–strain relationships of a highly reinforced embankment. Based on previous experi-
ence, 150 equally spaced monitoring points were installed from the top to the bottom along 
the slip surface (Fig. 8). The distributions of the displacement, stress, and strain were col-
lected, compared, and analyzed for all the applied conditions.

Figures 9 and 10 illustrate the monitored variations in displacement of the slide surface 
in the X- and Y-directions for all the conditions analyzed. The maximum displacements 
obtained for the initial slope under storm conditions were 30 and 20  cm in the X- and 
Y-directions, respectively. However, the deformation of the slide surface decreased sharply 
following treatment, dropping to 7 and 10  cm in the X- and Y-directions, respectively, 
under heavy rainfall conditions. These results indicate that the anti-slide piles were effec-
tive and decreased the slope movement.

Figure  9 further indicates that the displacement of the initial slope before treatment 
exhibited a strong tendency to increase from the top to the toe of the slip surface. The 
displacement increment and rate of increase at the sliding surface at monitoring points 
10–20, which were located on the upper platform of the slope, were quite large under nor-
mal conditions. Beyond the 20th monitoring point, the rate of increase decreased, and the 
displacements of the middle and lower parts of the slope maximized at monitoring points 
100–110. Thereafter, the displacement decreased steadily to the toe of the slope, the sliding 
surface displacement decreased rapidly near monitoring point 130, and the displacement 

Fig. 6  (continued)
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Fig. 7  Stress variations in X and Y directions for slope under normal and storm conditions before and after 
landslide treatment
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Fig. 7  (continued)
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Fig. 7  (continued)

Fig. 8  Location of monitoring points
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at the toe of the slope was approximately 15 cm. After the displacement at the end of the 
slope decreased to the minimum, it became stable at approximately 2 cm. Following treat-
ment, the displacement increment in the X-direction of the slope was approximately 2.5 cm 
under normal conditions. In the case of heavy rain, the displacements of the upper and 
central sliding surfaces of the slope exhibited a slight increase before the 70th monitor-
ing point. However, the displacement of the middle part of the slope rapidly decreased to 
approximately 3.5 cm and tended to stabilize at the 70th monitoring point. The observa-
tions demonstrate that the sliding surface deformation gradually stabilized after treatment 

Fig. 9  Monitored displacement variations in X-direction for all applied analytical conditions

Fig. 10  Monitored displacement variations in Y-direction for all applied analytical conditions
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under normal conditions. Although several local deformations occurred in the slope under 
storm conditions, the slope appeared to be stable.

Figure 10 illustrates the monitored displacement variations in the Y-direction for all the 
applied conditions. The maximum displacement observed in the Y-direction under normal 
conditions was approximately 15 cm, which was located at the head of the slope near the 
20th monitoring point. The maximum displacement observed in the Y-direction increased 
to approximately 20 cm under storm conditions, decreasing gradually toward the toe along 
the sliding surface. The tendency of these variations indicated that the sliding apparently 
caused the displaced material of the slope to move upward at the toe near monitoring point 
120. The upward movement worsened under storm conditions, and the total displacement 
increased to 10 cm near monitoring point 110. The displacement decreased significantly 
and the upward movement was terminated after the installation of the anti-slide piles. The 
maximum displacement of the landslide under normal and storm conditions decreased to 
5 and 10 cm, respectively. The displacement gradually decreased and finally converged to 
approximately 1 cm at the toe (monitoring points 110–150). Such results also indicate that 
the anti-slide piles provided sufficient support to stabilize the damaged slope. Figure 11 
illustrates the monitored shear strain of the slope before and after treatment. Although 
the trend varied to a certain degree, it was similar to those indicated in Fig. 9. The varia-
tions in the shear strain on the slip surface differed significantly because of the conditions 
encountered. For the initial conditions, the shear strain of the landslide increased and then 
decreased, with its maximum value of approximately 18% observed near monitoring point 
15. The upper part of the slope indicated that the shear deformation variations were highly 
correlated with the slope terrain. The shear strain then exhibited minor variations until it 
reached monitoring point 130, located near the toe of the slope, where it rapidly decreased 
to an insignificant value.

The applied storm conditions immediately caused the shear strain to increase up to 0.20, 
which remained nearly constant along the slip surface. The shear strain then exhibited a 
rapid increase from monitoring point 100, located in the middle and lower parts of the 
slope, and reached the maximum value of approximately 0.36 near monitoring point 130 

Fig. 11  Monitored shear strain variations in X-direction for all applied analytical conditions
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at the toe of the slope. As mentioned previously, rainfall is a common triggering factor for 
landslides in most loess areas. Numerous cavities, fissures, and cracks have been formed 
by erosion in these areas, allowing a large amount of rainwater to infiltrate; therefore, 
immediately after shearing begins, the pore water pressure increases sharply, triggering a 
landslide.

Based on the analysis performed in this study, the anti-slide piles installed at this loca-
tion for stabilization were found to be effective. As illustrated in Fig. 11, this arrangement 
successfully achieved the purpose of the treatment. The shear deformation of the slope 
became insignificant under normal conditions, and the maximum shear strain was reduced 
to approximately 0.06, even under storm conditions.

Figures 12 and 13 illustrate the monitored stress distributions in the X- and Y-directions 
of the slope for all applied conditions. Although the trends varied, the compressive stress 
generally increased along the sliding surface before treatment of the slope. A tension effect 
occurred, and the compressive stress gradually decreased in the middle to lower parts of 
the slope (monitoring points 60–110). Tension eventually controlled the slope, while trans-
verse ridges, tensile cracks, and upward ground movement were observed at the toe. The 
incremental changes in the stress under the storm conditions occurred more rapidly than 
those associated with the normal conditions. The findings agree well with those presented 
in Fig.  11. The installation of the anti-slide piles immediately transformed the tension 
stress into compressive stress, as indicated at monitoring point 100 in Fig. 13. Thus, the 
stabilization of the anti-slide piles was effective for improving the slope stability.

The combination of cutting and anti-slide piles basically eliminated the tensile stress 
in the X- and Y-directions and caused the compressive stress to increase along the slide 
surface. This placed the slope in a balanced state of compressive stress distribution, which 
obviously enhanced its stability. The displacement and shear strain of the slide surface 
were significantly reduced owing to the resulting stabilization. The plastic deformation of 
the slide surface was effectively controlled, which indicates that the overall stability of the 
landslide was greatly improved. The quantitative analysis of the displacement and stress 

Fig. 12  Monitored stress variations in X-direction for all applied analytical conditions
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distributions at 150 monitoring points along the slide surface proved that the use of anti-
slide piles was effective and beneficial for the remediation of the loess landslide.

5  Conclusions

Based on the results of the analyses conducted in this study, the following conclusions can 
be drawn:

1. The Zhonglou Mountain landslide is a loess landslide that exhibits top extension and 
bottom shearing deformation. The landslide is mainly controlled by tectonic fractures 
and gravity-induced tensile fractures. The contact surface of the loess and paleosol is 
saturated, resulting in the formation of a soft sliding zone due to precipitation, which 
causes the landslide to slide under the action of gravity and rainfall.

2. The Zhonglou Mountain loess landslide was extensively studied using finite element 
numerical simulation. Prior to stabilization, the SF values of the initial slope were 
derived based on a strength reduction method and ranged from 1.06 to 0.74 for the 
normal and storm conditions. The slope collapsed because of heavy rainfall, indicating 
that the simulations agreed very well with the actual site observations.

3. According to the landslide shear strain distributions under normal and storm conditions, 
the plastic shear strain region under storm conditions was greater than that under nor-
mal conditions along the sliding surface and basically extended along the entire sliding 
surface. The maximum shear strain zone shifted down from the middle and upper parts 
of the landslide to the location of shear cracking. The position of the shear crack of the 
landslide under normal conditions also shifted down along the sliding surface under the 
circumstance of heavy rain.

4. The combination of cutting and anti-slide piles effectively reduced the amount of land-
slide displacement under both normal and storm conditions. The shear strain distri-
butions were also adequately controlled by shifting the strain upward to the location 

Fig. 13  Monitored stress variations in Y-direction for all applied analytical conditions
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directly behind the anti-slide piles, indicating that the slope stability was successfully 
improved by the treatment.

The results of this study clearly indicate that the stabilization successfully reversed 
the distributions of tensile stress to compressive conditions, eliminated the tension 
cracks, limited the amount of displacement, controlled the plastic deformation along 
the sliding surface, and thereby significantly improved the overall slope stability. The 
stabilization of the landslide was completed in 2016 based on the proposed remediation 
scheme developed in this research. The slope surface was well protected by vegetation 
and an effective drainage system. The slope has remained stable and become an area 
of eco-friendly development since the completion of remediation. This study reveals 
the landslide mechanism of typical loess mudstone through on-site investigation and 
numerical simulation, which can provide a theoretical reference for the prevention and 
control of similar landslides in loess regions.

Loess landslides occur frequently on the Loess Plateau and seriously threaten peo-
ple’s lives and property. They also affect the construction of hydropower, transporta-
tion, industrial, and agricultural facilities following the strategy of western development 
in China. The deformation mechanism of loess landslides is controlled by many fac-
tors. The potential instability of loess is determined by its typical characteristics, such 
as fragmented topography, loess macropore structure, vertical joint development, and 
water sensitivity. Dynamic external environmental factors such as earthquakes, rainfall, 
and human engineering activities continuously contribute to slope instability.

At present, experts in China and abroad have carried out two-dimensional and three-
dimensional numerical simulations of landslides as well as various studies on macro-
scopic and microscopic soil characteristics, greatly expanding the understanding of this 
topic. However, as a common geological hazard, the uncertainty and unpredictability 
of landslides are still great challenges to address. In future research, it is necessary to 
not only clarify the fundamental deformation mechanism of landslides but also provide 
a scientific basis for landslide prediction. At the same time, effective protective meas-
ures should be taken to reduce the occurrence of landslides. Notably, landslide control 
measures should be selected according to the local conditions, and landslide prevention 
methods should not be generalized.
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