Skip to main content

Advertisement

Log in

Tsunami intensity scale based on wave amplitude and current applied to the French Riviera: the case study of local seismicity

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The French–Italian Riviera faces several geophysical hazards, including recurrent earthquakes and underwater landslides that can be tsunamigenic. The stakes are high since this is a densely populated and touristic area. Several studies have already been carried out, in particular to map tsunami hazard resulting from the near-field seismicity of the North Ligurian Faults System, which is located a short distance off the coast. In our most recent study, runup maps were developed together with local analyses of tsunami-induced current fields. However, no conclusions were drawn, based on these results, as of the associated tsunami risk along the coast. Here, to this effect, we apply a recently proposed tsunami intensity scale to the simulation results obtained in our previous work (maximum values of tsunami depths and currents). This intensity scale (7 levels) is mapped over the entire coastal area, and its site-specific values are discussed. The scale allows quantifying the potential damage inland and at sea, based on a standard coastal vulnerability that has been assessed through different records. It thus represents a useful tool to help improving our preparedness to tsunami hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source elevation computed using Okada’s (1985) method for rupture scenarios: S1887 (a); SHyp (b); and STot (c) (Fig. 2; Table 2). Positive elevation of the sea level corresponds to seafloor uplift and negative elevation (i.e., depression) to subsidence. The black curves represent the nodal points (zero-elevation)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alasset PJ, Hébert H, Maouche S, Calbini V, Meghraoui M (2006) The tsunami induced by the 2003 Zemmouri earthquake (MW = 6.9, Algeria): modelling and results. Geophys J Int 166:213–226. https://doi.org/10.1111/j.1365-246X.2006.02912.x

    Article  Google Scholar 

  • Béthoux N, Fréchet J, Guyoton F, Thouvenot F, Cattaneo F, Nicolas M, Granet M (1992) A closing Ligurian sea. Pure Appl Geophys 139:179–194

    Article  Google Scholar 

  • Boschetti L, Ioualalen M (2019) Integrated tsunami intensity scale based on maxima of tsunami amplitude and induced current. Natural Hazards, submitted as a companion paper

  • Denza F (1887) Alcune notizie sul terremoto del 23 febbraio 1887. Torino

  • Déverchère J, Yelles K, Domzig A, Mercier de Lépinay B, Bouillin J, Gaullier V, Bracène R, Calais E, Savoye B, Kherroubi A, Le Roy P, Pauc H, Dan G (2005) Active thrust faulting offshore Boumerdes, Algeria, and its relations to the 2003 Mw 6.9 earthquake. Geophys Res Lett 32(4):L04311. https://doi.org/10.1029/2004GL021646

    Article  Google Scholar 

  • Eva C, Rabinovich AB (1997) The February 23, 1887 tsunami recorded on the Ligurian coast, western Mediterranean. Geophys Res Lett 24:2211–2214

    Article  Google Scholar 

  • Eva E, Solarino S, Spallarossa D (2001) Seismicity and crustal structure beneath the western Ligurian Sea derived from local earthquake tomography. Tectonophysics 339:495–510. https://doi.org/10.1016/S0040-1951(01)00106-8

    Article  Google Scholar 

  • Ferrari G (1991) The 1887 Ligurian earthquake: a detailed study from contemporary scientific observations. Tectonophysics 193:131–139

    Article  Google Scholar 

  • Glimsdal S, Lovholt F, Harbitz CB, Romand F, Lorito S, Orefice S, Brizuela B, Selva J, Hoechner A, Volpe M, Babeyko A, Tonini R, Wronna M, Omira R (2019) A new approximate method for quantifying tsunami maximum inundation height probability. Pure Appl Geophys 176:3227–3246. https://doi.org/10.1007/s00024-019-02091-w

    Article  Google Scholar 

  • Grilli ST, O'Reilly C, Harris JC, TajalliBakhsh T, Tehranirad B, Banihashemi S, Kirby JT, Baxter CDP, Eggeling T, Ma G, Shi F (2015) Modeling of SMF tsunami hazard along the upper US East Coast: Detailed impact around Ocean City MD. Nat Hazards 76(2):705–746. https://doi.org/10.1007/s11069-014-1522-8

    Article  Google Scholar 

  • Gailler A, Hébert H, Schindelé F, Reymond D (2018) Amplification laws for the French tsunami warning center: numerical modeling and fast estimate of tsunami wave along the French Riviera. Pure Appl Geophys 175:1429–1444

    Article  Google Scholar 

  • Ioualalen M, Migeon S, Sardoux O (2010) Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. Geophys J Int 181(2):724–740

    Google Scholar 

  • Ioualalen M, Larroque C, Scotti O, Daubord C (2014) Tsunami mapping related to local earthquakes on the French–Italian Riviera (western Mediterranean). Pure Appl Geophys 171(7):1423–1443

    Article  Google Scholar 

  • Jamelot A, Reymond D (2015) New tsunami forecast tools for the French Polynesia tsunami warning system. Part II: numerical modeling and tsunami height estimation. Pure Appl Geophys 172(3–47):805–819

    Article  Google Scholar 

  • Lambert J, Terrier M (2011) Historical tsunami database for France and its overseas territories. Nat Hazards Earth Syst Sci 11:1037–1046

    Article  Google Scholar 

  • Larroque C, Béthoux N, Calais E, Courboulex F, Deschamps A, Deverchère J, Stéphan JF, Ritz JF, Gilli E (2001) Active and recent deformation at the Southern Alps-Ligurian basin junction. Neth J Geosci Geologie en Mijnbouw 80:255–272

    Google Scholar 

  • Larroque C, Delouis B, Godel B, Nocquet J-M (2009) Active deformation at the southwestern Alps-Ligurian basin junction (France-Italy boundary): evidence for recent change from compression to extension in the Argentera massif. Tectonophysics 467:1–4. https://doi.org/10.1016/j.tecto.2008.12.013

    Article  Google Scholar 

  • Larroque C, Mercier de Lépinay B, Migeon S (2011) Morphotectonic and fault-earthquake relationships along the northern Ligurian margin (Western Mediterranean) based on high resolution multibeam bathymetry and multichannel seismic-reflection profiles. Mar Geophys Res 32:163–179. https://doi.org/10.1007/s11001-010-9108-7

    Article  Google Scholar 

  • Larroque C, Scotti O, Ioualalen M (2012) Reappraisal of the 1887 Ligurian earthquake (western Mediterranean) from macroseismicity, active tectonics and tsunami modelling. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2012.05498.x

    Article  Google Scholar 

  • Lynett PJ, Borrero J, Son S, Wilson R, Miller K (2013GL) Assessment of the tsunami-induced current hazard. Geophys Res Lett 41:2048–2055. https://doi.org/10.1002/2013GL058680

    Article  Google Scholar 

  • Manchuel K, Traversa P, Baumont D, Cara M, Nayman E, Durouchoux C (2017) The French seismic CATalogue (FCAT-17). Bull Earthq Eng. https://doi.org/10.1007/s10518-017-0236-1

    Article  Google Scholar 

  • Nemati F, Grilli ST, Ioualalen M, Boschetti L, Larroque C, Trevisan J (2019) High-resolution coastal hazards assessment along the French Riviera from coseismic tsunamis generated in the Ligurian fault system. Nat Hazards. https://doi.org/10.1007/s11069-018-3555-x

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75(4):1135–1154

    Google Scholar 

  • Papadopoulos GA (2003) Quantification of tsunamis: a review. In: Yalçiner AC, Pelinovsky E, Okal E, Synolakis CE (eds) Submarine landslides and tsunamis, nato science series (Series IV: Earth and environmental sciences), vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0205-9_30

  • Papadopoulos GA, Imamura F (2001) A proposal for a new tsunami intensity scale Internat. In: Tsunami symposium 2001 proceedings Seattle, Washington, pp 569–577

  • Pophet N, Kaewbanjak N, Asavanant J, Ioualalen M (2011) High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Comput Fluids 40:258–268

    Article  Google Scholar 

  • PPFR (1999) Plans de prévention des risques naturels (PPR)—Risques d’inondation—Guide méthodologique. La documentation Française, p 126, ISBN: 2-11-004402-0

  • PPFR-Thau (2012) Plan de prévention des risques naturels d’inondation—Bassin versant de l’Etang de Thau, Commune de Villeveyrac. Direction Départementale des Territoires et de la Mer – Service Eau et Risques, Préfecture de l’Hérault, p 54

  • Reymond D, Okal E, Hébert H, Bourdet M (2012) Rapid forecast of tsunami wave height from a data base of pre-computed simulations, and application during the 2011 Tohoku tsunami in French Polynesia. Geophys Res Lett 30(11):L11603

    Google Scholar 

  • Sahal A, Roger J, Allgeyer S, Lemaire B, Hébert H, Schindelé F, Lavigne F (2009) The tsunami triggered by the 21 May 2003 Boumerdès-Zemmouri (Algeria) earthquake: field investigations on the French Mediterranean coast and tsunami modelling. Nat Hazards Earth Syst Sci 9:1823–1834. https://doi.org/10.5194/nhess-9-1823-2009

    Article  Google Scholar 

  • Schambach L, Grilli ST, Kirby JT, Shi F (2018) Landslide tsunami hazard along the upper US East Coast: effects of slide rheology, bottom friction, and frequency dispersion. Pure Appl Geophys. https://doi.org/10.1007/s00024-018-1978-7

    Article  Google Scholar 

  • Schindelé F, Gailler A, Hébert H, Loevenbruck A, Gutierrez E, Monnier A, Roudil O, Reymond D, Rivera L (2015) Implementation and challenges of the tsunami warning system in the western Mediterranean. Pure Appl Geophys. https://doi.org/10.1007/s00024-014-0950-4

    Article  Google Scholar 

  • Shuto N (1991) Tsunami intensity and disasters. In: Tinti S (ed) Tsunamis in the World. Kluwer Academic Publishers, Dordrech, pp 197–216. https://doi.org/10.1007/978-94-017-3620-6_15

  • Stucchi M, Rovida A, Gomez-Capera AA et al (2012) The SHARE European earthquake catalogue (SHEEC) 1000–1899. J Seismol. https://doi.org/10.1007/s10950-012-9335-2

    Article  Google Scholar 

  • Taramelli T, Mercalli G (1888) Il terremoto ligure del 23 febbraio 1887. Annali dell’Ufficio Centrale Meteorologico e Geodinamico Italiano II 8(4):331–626

    Google Scholar 

  • Tehranirad B, Harris JC, Grilli AR, Grilli ST, Abadie S, Kirby JT, Shi F (2015) Far-field tsunami impact in the north Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano La Palma. Pure Appl Geophys 172(12):3589–3616. https://doi.org/10.1007/s00024-015-1135-5

    Article  Google Scholar 

  • Tinti S, Maramai A, Graziani L (2004) The new catalogue of Italian tsunami. Nat Hazards 33:439–465

    Article  Google Scholar 

  • Wei G, Kirby JT (1995) A time-dependent numerical code for extended Boussinesq equations. J Waterw Port Coast Ocean Eng 121:251–261

    Article  Google Scholar 

  • Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A Fully Nonlinear Boussinesq model for surface waves. Part1. highly nonlinear unsteady waves. J Fluid Mech 294:71–92

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

Download references

Acknowledgements

L. Boschetti, M. Ioualalen and J.-X. Dessa acknowledge support from: (1) the European Commission under the project “Assessment, STrategy And Risk Reduction for Tsunamis in Europe,” ASTARTE (Grant No. 603839) and (2) the French government, through the UCA-JEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01. F. Nemati and S. Grilli acknowledge support for this work from the US National Science Foundation Grant CMMI-15-35568. Finally, the authors acknowledge with appreciation one anonymous reviewer who helped improve the first draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ioualalen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boschetti, L., Ioualalen, M., Nemati, F. et al. Tsunami intensity scale based on wave amplitude and current applied to the French Riviera: the case study of local seismicity. Nat Hazards 102, 219–248 (2020). https://doi.org/10.1007/s11069-020-03921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-03921-0

Keywords

Navigation