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Abstract Dam breach width significantly influences peak breach outflow, inundation

levels, and flood arrival time, but uncertainties inherent in the prediction of its value for

embankment dams make its accurate estimation a challenging task in dam risk assess-

ments. The key focus of this paper is to provide a fuzzy logic (FL) model for estimating the

average breach width of embankment dams as an alternative to regression equations (RE).

The FL approach is capable of handling nonlinear behavior, imprecision in discrete

measurements, and parameter uncertainty. Historical data from 69 embankment dam

failures are used in the development and testing of the FL model. Application of the FL

model is also presented for estimating average breach widths of two case studies that have

adequately documented data. The accuracy of the FL rule-based model is investigated

using uncertainty analysis: the mean prediction error between the FL estimates and the

observed average breach widths is very small (=0.03) and comparable to that achieved

using the best available RE. Moreover, the FL uncertainty band is found to be approxi-

mately ±0.51 order of magnitude smaller than the ±0.56 order of magnitude achieved with

the best available RE. The simulation results indicate the potential of the FL model to be

used as a predictive tool for estimating the average breach width of embankment dams.
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List of symbols
Bav Observed average breach width (m)

B̂av Estimated average breach width (m)

Cb A coefficient that depends on the reservoir volume

�e Mean prediction error

ei Individual prediction errors, log cycles

hb Breach height (m)

hd Dam height (m)

hw Depth of water above breach invert at time of failure (m)
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Ko 1.4 if there is overtopping, else 1 (in Froehlich 1995 equation)

Ko 1.3 if there is overtopping, else 1 (in Froehlich 2008 equation)

S Reservoir storage (m3)

S� Nondimensional reservoir storage = ðS=h3
bÞ

Se Standard deviation of the errors

SMAD Estimator of scale derived from the median of the absolute deviations analogous to

standard deviation

T Median of the errors, an estimator of location

Vw Volume of water stored above breach invert at time of failure (Mm3)

Zi Standardized error

1 Introduction

Embankment dams (earthfill or rockfill) are the most commonly built type of dams in many

countries. Their construction is preferred under certain circumstances, especially when

sufficient materials are available near the dam site, the foundation is pervious, and the ratio

of dam length to height is high. The main problem facing this kind of dam is piping or

overtopping that may cause erosion of materials and ultimately breaching of the

embankment. Accurate estimations of breach characteristics are needed as a basis in dam

risk assessments. In order to carry out an embankment failure analysis, the average breach

width in the dam is one of the key parameters that should be accurately estimated because

it influences the severity of failure and affects the magnitude of the peak discharge. Singh

and Snorrason (1984) used DAMBRK and HEC-1 models on 8 hypothetical breached

dams and assessed that changes in breach width were more significant for large dams

because it produced larger changes (35–87 %) in peak outflow than for smaller reservoirs

(6–50 %). The breach shape of an embankment dam is assumed to vary from triangular to

trapezoidal as the breach progresses (Wahl 1998). Historic embankment failure data report

either the breach width at the top and bottom of the breach section or simply the average

breach width resulting from passage of the complete breach hydrograph. The average

breach width (Bav) is one-half the sum of the trapezoid top and bottom widths. Methods of

estimating Bav are based on either case study data from past dam failures or physically

based numerical models. Case study methods include parametric models, regression

equations (RE), and analysis by comparison. Most of these methods are based on small

dams having heights of\15 m. Parametric models (e.g. NWS DAMBRK by Fread 1977)

use empirical observations of previous dam failures to develop the outflow hydrograph.

Physically based models such as BREACH (Fread 1988), BEED (Singh and Scarlatos

1985), and FLDWAV (Fread 1993) relay on sediment erosion and water flow formulas and

generally suffer from insufficient understanding of breach development (Wahl 1998).

However, recent researches considering hydrodynamics and soil mechanics for embank-

ment erosion are offering opportunities to better understand and model breach mechanisms

(e.g. Froehlich 2004; Hanson et al. 2005). In practice, the most widely applied methods to

predict Bav are based on regression analysis of recoded data from embankment dam fail-

ures, for example, the Bureau of Reclamation (1988), Von Thun and Gillette (1990), and

Froehlich (1995). RE provide simple and convenient algorithms, especially in cases of

strong linear relationships between the input and output variables and when detailed

simulations are not required. The results of the available RE vary widely depending on the
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assumptions and subsets of data used in their formulation and internal uncertainties that are

not taken explicitly into consideration. The linear regression approach assumes that the

scatter of points around the best-fit line is approximately Gaussian and has the same

standard deviation all along the line, the data points are independent of one another, and

any imprecision in measuring the values of the independent variables is very small com-

pared to the variability in the values of the dependent variable. If these assumptions are

violated, then the linear regression approach leads to biased relationships. In practice, the

breach extent depends on the embankment and the reservoir geometry in addition to other

factors such as embankment material, type of protective cover, and mode of failure. Many

of the available RE assumed the breach width as a linear function of only the dam (or the

breach) height and/or the reservoir volume. This assumption may be valid for small

embankments having similar geometry and soil characteristics. As the material changes,

more uncertainties become included in the overall breaching process. In the regression line,

fitting such a distinction is not considered and each point in the scatter diagram is treated

equally in fixing the best straight line. Uncertainty is also included in determining the

reservoir water volume and the breach height at the time of failure that will be used to

predict the breach width. It is not possible to consider such variations in the coefficients

through regression analysis. The fuzzy approach, on the other hand, can provide an

alternative methodology for considering such uncertainties through vaguely defined

membership functions. Fuzzy logic (FL) modeling is effectively utilized in applications

ranging over perhaps all branches of engineering. However, there is currently no solution

to predict Bav using this technique. A FL model is a logical-mathematical procedure based

on linguistic variables (e.g., low, high, wide, etc.) and a system of IF–THEN rules that

mimics the human way of thinking in computational form: an overall process called fuzzy

inference. The idea behind fuzzy inference is to interpret (fuzzify) the crisp values of the

system variables to express them in linguistic terms and, based on a set of IF–THEN rules,

to assign values to the output vector. For each rule, inferencing looks up some membership

values according to the condition of the rule and an implication method is employed to

combine the IF and the THEN parts. The outputs of each rule are aggregated to produce a

single fuzzy set that must be converted (defuzzified) to a crisp number representing the

desired output. More details about the FL approach will be given in subsequent sections.

The main objective of the present paper is the development of a FL model to predict Bav

as an alternative to the RE. This general objective includes: (1) developing a Mamdani’s

FL inference system for predicting Bav, (2) comparing the results of the FL model with

those of the best RE for predicting Bav, (3) performing an uncertainty analysis for the

results of the FL model and the RE, and (4) applying the FL model on some of the

available case studies that have adequate data.

The available case studies of embankment dam failures presented by Froehlich (2008)

constitute the basis for the development of this FL rule-based model. The FL system

becomes more complex when many inputs and outputs are chosen for a single imple-

mentation. This adds to the difficulty of building the IF–THEN rules that control the

system. For this reason, the present FL system is selected to have two inputs and one

output. Since the height of water above the breach invert (breach base) at the dam at time

of failure (hw) and the volume of water stored above the breach invert at time of failure

(Vw) have been documented and used in a number of prediction equations, they are taken as

the input parameters in the development of the present FL model for estimating Bav. Even

with these parameters, there is vagueness in the data (imprecision in discrete measurements

and parameter uncertainty), FL set theory is especially well suited for handling such

vagueness. The construction of the conditional statements ‘IF–THEN rules’ and the

Nat Hazards (2013) 68:229–248 231

123



membership functions, based on the observed measurements and the relation between the

input and the output variables, are the things that make FL useful and capable of repre-

senting the actual system behavior.

2 Review of available approaches

Several physically based models are available in literature to simulate the breach of

embankment dams. The majority of those models are based on different erosion and

sediment transport formulas that in turn assume different flow conditions (quasi-steady

state or unsteady-state that may lead to numerical instability). Some researchers used 1-D

cross-section-averaged flow models (e.g., Cristofano 1965; Brown and Rogers 1977; Ponce

and Tsivoglou 1981; Fread 1984; Visser 1998; Hanson et al. 2005), while others used 2-D

depth average flow models (e.g., Froehlich 2004). Although physically based models can

provide better understanding and extensive information about the breach, they are com-

plex, require several assumptions and inputs, make use of empirical coefficients to describe

material and flow resistance, and the results of some of them do not adequately simulate

observed case studies. For more practical and easily applied models, many researchers

gathered detailed case studies of breached embankment dams and developed expressions to

predict the characteristics and consequences of the breach. From those studies, Johnson and

Illes (1976) were the first to predict the breach shapes for earth fill dams assuming that the

breach begins as a triangle and ends as a trapezoid. They recommended a range for the

breach width as a linear function of the dam height (hd). Similarly, Singh and Snorrason

(1984) plotted the breach widths versus dam heights for 20 case studies and stated a range

for the breach width as a linear function of hd . MacDonald and Langridge-Monopolis

(1984) used 42 case studies and suggested that the breach shape could be trapezoidal or

triangular depending on whether the breach has reached the bottom of the dam or not. The

Federal Energy Regulatory Commission (FERC 1987) also proposed a range for the breach

width as a function of hd. Froehlich (1987) used nondimensional analysis and developed an

equation that estimates the average breach width as a function of the non-dimensional

reservoir storage (S�). Froehlich realized that overtopping causes the most breach exten-

sion, which erodes at a higher rate than by any other mode of failure. The Bureau of

Reclamation (1988) developed an equation for breach width of earthen dams depending on

the height measured from the initial reservoir water level to the breach bottom elevation.

This equation assumes a linear relationship between Bav and hw. Von Thun and Gillette

(1990) used the data of MacDonald and Langridge-Monopolis (1984) and Froehlich (1987)

and proposed a relation for estimating Bav knowing the depth of water at the dam at time of

failure (hw) and a coefficient (Cb) that depends on the reservoir storage. Later on, Froehlich

(1995) published a revised equation that has better estimated coefficients to predict Bav.

The independent variables in this equation are the volume of water stored above the breach

invert at time of failure (Vw), the breach height (hb), and a factor (Ko) that accounts for

failure mode. Wahl (1998, 2004) provided a summary of the available RE for predicting

the breach width, performed an uncertainty analysis, and compared state-of-the-art pre-

diction equations. Wahl stated that Froehlich’s (1995) equation had the best prediction

performance for cases with observed breach widths \50 m. In 2008, Froehlich proposed

another equation that will likely be accurate enough in application to estimate Bav as a

function of V1=3
w and Ko. Most of the previous RE relate Bav to one or more characteristics

of the dam and reservoir at failure, such as hw (some investigators used hd or hb) and Vw or
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combination of the two. Based on the above cited researches, it can be inferred that models

based on conventional mathematical tools (e.g., regression) require several assumptions to

deal with nonlinear and uncertain systems. Hence, application of FL modeling offers an

alternative that allows the modeler to include imprecise data and parameters without the

need for any assumption.

3 Data used in developing the FL model

The ability of the FL rule-based model to accurately predict Bav depends upon the amount

of the available historical data and experience in ‘IF–THEN’ rules construction. Generally,

Bav is one of the most documented breach parameters in dam failure case studies. Froehlich

(2008) presented tabulated information about 74 breached embankment case studies

compiled from numerous sources in the literature. The development of the present FL

model is mainly based on this information. Since the breach width is missing from four

case studies and the reservoir volume is missing from another, the data set that is used in

the FL model and the RE consists of the measured values of Vw, hw, hb and Bav given in the

remaining 69 case studies. This data set is subdivided into two sets without any special

selection process. The bigger set, consisting of 51 case studies, is used in the training phase

of the FL model. The smaller set, consisting of 18 case studies, is used in the testing phase

of the FL model. In order to save the space in this paper, these sets will be presented later

in the training and testing phases of the FL model. The ‘estimated’ average breach widths

are presented under the symbol B̂av. The developed FL model is also applied to two

embankment dam failures cited in recent publications (i.e., Jamestown and Big Bay dams).

4 Methodology (fuzzy sets, membership functions, and FL inference system)

As classical logic is based on classical set (crisp set) theory, FL is based on fuzzy set

theory. An element x in a crisp set A from a given universe X may be defined by a

membership function lA where 8
x2X

lAðxÞ ¼ 1, x 2 A and lAðxÞ ¼ 0, x 62 A. This

notation shows that crisp sets allow only full membership or no membership at all. Zadeh

(1965) stated that in many systems, very precise numerical inputs are not always required,

yet highly acceptable outputs are feasible. For this reason, Zadeh introduced the concept of

the fuzzy set by defining partial membership, thus extending the degree of membership

from {0, 1} to the continuous interval [0, 1]. A fuzzy set A in a universe of discourse U

may be represented by a set of ordered pairs consisting of a generic element x and its

degree of membership to the fuzzy set A, that is, A ¼ fðx; lAðxÞÞ : x 2 U; lAðxÞ 2 ½0; 1�g.
The notation A ¼ fðx1; 0:8Þ; ðx2; 0:25Þ; ðx3; 0Þg, for example, denotes the fact that ele-

ments x1 and x2 belong to a corresponding degree (0.8 and 0.25) to the fuzzy set A, while

element x3 does not belong to A. The function that defines to what degree an element x

belongs to the fuzzy set A is called the membership function, which is essentially a curve

that can be selected as triangular, trapezoidal, or Gaussian, etc. The shape is generally less

important than the number of curves and their placement. From 3 to 7 curves are generally

appropriate to cover the required range of an input or an output variable (Ross 1995). In

order to process the input to get the output reasoning, there are three main steps involved in

the development of a FL inference system: fuzzification, rules processing, and defuzzifi-

cation. The fuzzification step allows the system inputs and outputs to be expressed in
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linguistic terms (e.g., low, medium, high, etc.). Using membership functions, crisp input

data are converted (fuzzified) against the appropriate linguistic fuzzy terms thus generating

membership degrees for a fuzzy variable. The degree(s) of membership of an input

parameter is determined by plugging the value of that input into the horizontal axis

(universe of discourse) of the desired variable, projecting vertically to the upper boundary

of the membership function(s) and then reading the corresponding membership degree(s)

from the vertical axis representing the continuous interval [0, 1]. The output also has a set

of membership functions that define the possible responses and outputs of the system. The

rules processing step calculates the response from the system inputs according to the

constructed rule base under which the FL system will operate. The rule base consists of IF–

THEN conditional statements that relate the input to the desired output. The IF-part of a

rule is called the antecedent, while the THEN-part is called the consequent. The fuzzified

inputs are applied to the antecedents of the fuzzy rules. In case the fuzzy rule has multiple

antecedents, the fuzzy AND or OR logical operators are used in order to obtain ‘a single

number’ that represents the result of the antecedent for that rule. For most applications, the

fuzzy membership function for a given rule with the AND operator is obtained with the

minimum implication as proposed by Mamdani (1977) and given as: lA\BðxÞ ¼
min½lAðxÞ; lBðxÞ�. This single number will then be used in shaping (clipping) the conse-

quent membership function (implication from the antecedent to the consequent). Impli-

cation occurs for each rule. The outputs of each rule are then unified (aggregated) into a

single fuzzy set. Thus, the input of the aggregation process is the list of clipped consequent

membership functions and the output is a single fuzzy set. The defuzzification step then

chooses the desired output crisp number from this aggregate fuzzy set. However, there are

several defuzzification methods (centroids, bisectors, middle of maximum, etc.). The most

popular method is the centroid calculation, which returns the center of area under the curve

of the aggregate fuzzy set, thereby moving from a fuzzy set to a crisp number representing

the desired output (Ross 1995).

5 Development and implementation of the present FL inference system

In order to develop a FL inference system, it is essential to decide the inputs, outputs, each

of their domains, input and output membership functions, overlap between these functions,

fuzzy inference rules, implication and aggregation methods, and the defuzzification

method. The inputs to the present FL model are hw and Vw, while the output is the

estimated Bav. The ranges ‘‘universe of discourse’’ of the fuzzy input and output subsets in

the present study are identified based on the available data of 69 breached embankment

dams taken from Froehlich (2008). Statistical analysis of this data shows that there are no

obvious trends between the input variables and the output, and the correlation coefficient

between each of hw, Vw, hb, and Bav is around 0.58. This enhances the applicability of the

FL model for the considered database to give better results for estimating Bav in com-

parison with the RE. That is because FL modeling can control nonlinear systems that are

difficult to model mathematically, does not require any assumption of linearity, and are

capable of handling imprecision in discrete measurements and parameter uncertainty. The

numbers and ranges of the fuzzy subsets of the input and output variables are proposed

after classification of their data (i.e., arranging the data of each variable in an ascending

order, considering only one data point from those values having similar magnitudes and

drawing the ascending bar chart of the remaining values of that variable). Figure 1a, for

example, is drawn after classification of the available heights of water (hw). Similarly,
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Fig. 1b, c is drawn using the volumes of water (Vw) and the average breach widths (Bav),

respectively.

The horizontal axis in each of these figures represents the names of the embankments,

which are omitted to save space. Such data distribution may help the modeler to get an

overview of the data and identify obvious separations or clusters to be used in creating the

possible number of fuzzy subsets with their ranges for the input and output variables. The

proposed fuzzy sets and their spans for the input and output variables are given in Table 1.

The term set of the first input variable (hw) is selected as {short (SH), medium (M), high

(H)} in the universe of discourse [1.68–77.4] in meters. The term set of the second input

(Vw) is {very low (VL), low (L), low medium (LM), medium (M), high medium (HM),

high (H)} in the universe of discourse [0.0139–310], which represents the minimum and

maximum storage volumes above breach invert at time of failure in Mm3. Similarly, the

term set of the output variable (Bav) is selected as {very tight (VT), tight (T), medium (M),

wide (W), very wide (VW)} in the universe of discourse [2.29–183] in meters. The present

FL model for estimating the average breach width is implemented in MATLAB 6.5.1 (ITU

Computer Center) using Mamdani’s (1977) inference method, which expects the output to

be fuzzy sets. The MATLAB fuzzy toolbox allows for the creation of input membership

functions, fuzzy rules, and output membership functions through a graphical user interface.

Based on the data of Table 1, the membership functions of the input and output variables

are drawn using the Membership Function Editor. The membership functions should

overlap to allow smooth mapping of the system. Straight line functions (e.g., triangular

membership functions) are commonly used because they are the simplest and easiest to

implement. In the present model, triangular membership functions are selected for the

input variables (hw and Vw) and the output variable (Bav), as shown in Fig. 2a–c, respec-

tively. In order to easily repeat the process by other users, it is preferred to show these

figures as originally obtained from the framework of MATLAB. It is to be noted that the

fuzzy terms of some membership functions (e.g., VL, L and LM in Fig. 2b) are written

over each other by MATLAB because of their very small ranges.

Each particular input or output can be interpreted from such fuzzy sets and a degree of

membership is read. For example, using Fig. 2a, an input with hw = 10 m will have about

a 15 % membership in the SH function and about a 35 % membership in the M function.

Once the input and output membership functions are defined, the fuzzy rules that control

the system can now be prepared using the Rule Editor. The fuzzy rules are in the form of

IF–THEN statements that look at both inputs (hw and Vw) and determine the desired output

(B̂av). For each output, several different rules will usually be used since the inputs will

usually be in more than one membership function. For the present FL model, the rule base
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Fig. 1 Distribution of input and output variables: a for input variable hw, b for input variable Vw, and c for
output variable Bav
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contains all linguistic rules that are extracted from the available numeric data processed in

Excel worksheets and provided by experience as follows:

1. Type the values of hw, Vw, and Bav in an Excel worksheet in vertical order in three

separate columns (say columns B, D, and F).

2. Fix a particular function in the in between columns (i.e., columns C, E, and G) in front

of the values of each variable in order to produce linguistic variables for each value

depending on the boundaries of the previously selected membership functions.

Suppose that the values of hw are entered in the cells B2:B52, then fix the following

function at the cell C2 and scroll down to the cell C52.

¼ IFðANDðB2� 1:68; B2� 12:3Þ; ‘‘SH’’; IFðANDðB2 [ 6:5; B2� 27:3Þ;
‘‘M’’; IFðANDðB2 [ 25:5; B2� 77:4Þ; ‘‘H’’ÞÞÞ

3. Repeat step 2 for Vw and Bav in order to produce linguistic variables for each of them.

Recognize that the functions for Vw and Bav will have different forms depending on the

selected boundaries and number of membership functions for each.

By doing so, and looking at the resulting linguistic variables line by line (i.e., for each

embankment dam), one can build an idea concerning the possible IF–THEN rules that may

control the available numeric data. This can be achieved by selecting those rules that are

most repeated for each category of linguistic variables. However, one may find that some

of the rules contradict each other, that is, although the linguistic variables in the ‘IF’ part of

some rules are identical, the output linguistic variables in the ‘THEN’ part of the same

rules are very different. For such reasons, the modeler has to modify some of the rules and

exclude others from the whole list, taking into consideration the overlap between the

membership functions, the possibility that some data may not trigger the rules, and the

strength of some rules. This process depends on trial and error and experience and becomes

tedious and difficult in the case of a very large number of rules. The full set of rules in the

Table 1 Fuzzy terms and corresponding ranges of input and output variables

Input no. 1: hw (m)

Fuzzy terms Short Medium High

Fuzzy symbols SH M H

Fuzzy range 1.68–12.30 6.50–27.30 25.50–77.40

Input no. 2: Vw (Mm3)

Fuzzy terms Very low Low Low medium Medium High medium High

Fuzzy symbols VL L LM M HM H

Fuzzy range 0.01–0.33 0.29–1.60 1.10–6.35 5.50–31.20 26.20–92.70 55.00–310.00

Output: Bav (m)

Fuzzy terms Very tight Tight Medium Wide Very wide

Fuzzy symbols VT T M W VW

Fuzzy range 2.29–28.60 13.80–32.40 29.50–51.00 38.50–118.00 91.00–183.00
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present FL model is stated as shown in Table 2. The number of rules in this study is 18,

where the ‘AND’ fuzzy operator is used in the formation of the antecedents of those rules.

The fuzzy membership function for a given rule using the ‘AND’ fuzzy operator is

obtained with the minimum implication as proposed by Mamdani (1977). It determines the

degree to which the antecedent is satisfied for each rule. This is illustrated in Fig. 3, which

assumes that rules 5 and 6 are activated when the two inputs hw = 5 m and Vw = 80 Mm3

are considered. If it is assumed that the AND operator (min at work) evaluating the

antecedent of rule 5 (hw is SH and Vw is HM) yielded the fuzzy membership degrees 0.6

and 0.4, respectively, then the fuzzy AND operator simply selects the minimum of the two

values, 0.4, and the fuzzy operation for that rule is complete. This minimum value, 0.4, is

then used in clipping the output membership function (Bav is W) as shown in Fig. 3.

Each activated rule will provide a particular clipped membership function for the output

variable; see also the output of rule 6. The clipped membership functions of all the
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Fig. 2 Membership functions: a for input variable hw, b for input variable Vw, and c for output variable Bav
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activated rules are combined together (aggregated) into a single fuzzy set. In Fig. 3, the

process proceeds from the inputs in the upper left, then across each rule line by line and

then down the rule outputs to finish with a single fuzzy set in the lower right that should be

defuzzified, or resolved to a single number representing the desired output. This can be

done in many ways, but the most common method used is the center of gravity of that

single set. If one value (singleton position, Bavi
) is associated with each level (i ¼ 1; . . .; n)

in the single fuzzy set of the output instead of a range of values, the centroid (B̂av) can be

approximated by B̂av ¼
Pn

i¼1 Bavi
lðBavi

Þ=
Pn

i¼1 lðBavi
Þ.

6 Results of the training phase of the FL model

In the training phase of the FL model, more work needs to be done before it becomes

available in its final form for estimating the average breach width. The model should be

Table 2 List of fuzzy rules
Rule no. Rule

1 If hw (m) is SH and Vw (Mm3) is VL then Bav (m) is VT

2 If hw (m) is SH and Vw (Mm3) is L then Bav (m) is T

3 If hw (m) is SH and Vw (Mm3) is LM then Bav (m) is M

4 If hw (m) is SH and Vw (Mm3) is M then Bav (m) is W

5 If hw (m) is SH and Vw (Mm3) is HM then Bav (m) is W

6 If hw (m) is SH and Vw (Mm3) is H then Bav (m) is VW

7 If hw (m) is M and Vw (Mm3) is VL then Bav (m) is VT

8 If hw (m) is M and Vw(Mm3) is L then Bav (m) is T

9 If hw (m) is M and Vw (Mm3) is LM then Bav (m) is M

10 If hw (m) is M and Vw (Mm3) is M then Bav (m) is W

11 If hw (m) is M and Vw (Mm3) is HM then Bav (m) is W

12 If hw (m) is M and Vw (Mm3) is H then Bav (m) is VW

13 If hw (m) is H and Vw (Mm3) is VL then Bav (m) is T

14 If hw (m) is H and Vw (Mm3) is L then Bav (m) is T

15 If hw (m) is H and Vw (Mm3) is LM then Bav (m) is VW

16 If hw (m) is H and Vw (Mm3) is M then Bav (m) is W

17 If hw (m) is H and Vw (Mm3) is HM then Bav (m) is VW

18 If hw (m) is H and Vw (Mm3) is H then Bav (m) is VW

Rule 5

Rule 6 minimu

minimu

Input 1, wh = 5 m Input 2, wV = 80 Mm3

Output , avB̂ = 90 m

SH

SH
HM

H

W

VW

1.68
Rules 
aggregation 

77.4 0.014 310

2.29 183

Fig. 3 Schematic representation showing the FL inference process
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trained with the measured data through several simulations. In each simulation, one should

evaluate the results and tune the model until satisfactory outputs are obtained. Tuning the

model can be done by changing some of the rules consequents or strengths, changing the

centers of the input and/or output membership functions, or slightly adjusting the ranges of

the input and/or output membership functions. Table 3 shows the estimated and calculated

average breach widths resulting from the final accepted training phase of the present FL

model and some of the available RE. From Table 3, it is seen that in general the observed

‘measured’ average breach widths are successfully estimated by implementing the present

FL approach. Moreover, the FL estimates are either close to the observed values or to those

calculated by Froehlich’s (1995) regression equation. Since breach formation depends on

numerous factors (material properties, construction conditions, protective cover, etc.), the

available data show contradiction in the outputs at some dams, although they have

approximately the same height and the reservoir volume as inputs.

7 Results of the testing phase of the FL Model

For the testing phase of the developed FL model, a subset of eighteen dams is randomly

selected from the database (Table 4) and used as a means of providing a comparison for

assessing the performance of the FL model. Data from the same subset are also tested in

some of the available RE for predicting average breach width. Table 4 summarizes the

simulation results of this phase. From the values presented in Table 4, it is seen that the FL

model gives comparable estimates to the observed average breach widths. The other

notable feature in Table 4 is that the fuzzy estimates in most of the cases are approximately

equal to those calculated by Froehlich’s (1995) regression equation.

Figure 4a, b presents visual inspection of the results in order to compare the relations of

the estimates of the FL model and Froehlich (1995) equation with case study data as

obtained from the training and testing phases, respectively. While there is a reasonable

match between the estimates of the FL model and the Froehlich (1995) equation at some

dam sites (e.g., Hatchtown-Utah, Lake Avalon-N.M., Prospect-Colo., Wheatland No.

1-Wyo. in the training phase and Butler-Ariz., Castlewood-Colo., Coedty-UK, Fogelman-

Tenn. in the testing phase), these estimates are different from the observed values. For the

FL model, this can be attributed to the rules that are built to suit the larger number of data

within a group of dams.

8 Uncertainty analysis of FL and RE estimates (testing phase)

Using the available equations, Wahl (2004) prepared log–log plots between the observed

and predicted breach widths and noticed that the data are scattered approximately evenly

above and below the lines of perfect prediction, suggesting that uncertainties would best be

expressed as a number of log cycles on either side of the predicted value. He stated that the

available RE for predicting breach width had absolute mean prediction errors\1/10th of an

order of magnitude, indicating that on average their predictions are on target with the

Froehlich (1995) equation having the smallest uncertainty.

An uncertainty analysis on the FL estimates (B̂av) resulted from the testing phase is

performed with a similar procedure to that conducted by Wahl (2004). Application of the
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uncertainty analysis, for the same database considered in this phase, is also illustrated for

the breach widths calculated by Froehlich (1995), Bureau of Reclamation (1988), and Von

Table 4 Estimated average breach widths (testing phase)

Dam hw

(m)
Vw

(Mm3)
hb

(m)
Observed
breach width
Bav (m)

Estimated average breach widths B̂av (m)

FL
model

Froehlich
(1995)

Bureau of
Reclamation
(1988)

Von Thun
and Gillette
(1990)

Apishapa,
Colo.

28.00 22.800 31.10 93.0 78.6 78.4 84.0 112.7

Baldwin
Hills,
Calif.

12.20 0.910 21.30 25.0 23.5 26.0 36.6 36.6

Bearwallow
Lake, NC

5.79 0.049 6.40 12.2 11.5 11.4 17.4 20.6

Buckhaven
No. 2,
Tenn.

6.10 0.025 6.10 4.7 11.1 9.1 18.3 21.4

Bullock
Draw
Dike, Utah

3.05 0.740 5.79 12.5 22.9 26.6 9.2 13.7

Butler, Ariz. 7.16 2.380 7.16 62.5 40.2 40.3 21.5 36.2

Castlewood,
Colo.

21.60 6.170 21.30 44.2 69.5 67.2 64.8 72.3

Caulk Lake,
Ky.

11.10 0.698 12.20 35.1 23.5 21.5 33.3 33.9

Clearwater
Lake, Ga.

4.05 0.466 3.78 22.8 23.0 21.2 12.2 16.2

Coedty, UK 11.00 0.311 11.00 42.7 23.7 22.8 33.0 33.6

East Fork
Pond
River, Ky.

9.80 1.870 11.40 17.2 39.0 29.1 29.4 42.8

Elk City,
Okla.

9.44 1.180 9.14 36.6 25.3 33.7 28.3 41.9

Emery,
Calif.

6.55 0.425 8.23 10.8 22.0 17.0 19.7 22.5

Fogelman,
Tenn.

11.10 0.493 12.60 7.6 23.0 20.0 33.3 33.9

French
Landing,
Mich.

8.53 3.870 14.20 27.4 39.0 38.3 25.6 39.6

Frenchman
Creek,
Mont.

10.80 16.000 12.50 54.6 76.0 82.4 32.4 81.9

Grand
Rapids,
Mich.

6.40 0.026 6.40 19.0 11.2 9.2 19.2 22.1

Haas Pond,
Conn.

2.99 0.023 3.96 10.7 10.3 5.9 9.0 13.6
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Thun and Gillette (1990) equations. The uncertainty analysis method consists of the fol-

lowing steps:

1. Compute ei ¼ log10ðB̂av=BavÞ, where ei’s are individual prediction errors in terms of

the number of log cycles separating the estimated and observed value, B̂av and Bav are

the estimated and the observed average breach widths, respectively.

2. Apply the outlier-exclusion algorithm to the series of prediction errors computed in

step 2. The algorithm is described by Rousseeuw (1998):

• Determine the estimator of location, T ¼ medianðeiÞ.
• Compute the deviations from the median and determine the median of these

absolute deviations, MAD ¼ median T � eij j.
• Compute an estimator of scale, SMAD ¼ 1:483� ðMADÞ. The 1.483 factor makes

SMAD comparable to the standard deviation, which is the usual scale parameter of a

normal distribution. Compute a Z score for each observation, Zi ¼ ðei � TÞ=SMAD,

then reject any observations for which Zj j[ 2:5: If the samples are from a perfect

normal distribution, this method rejects at the 98.7 % probability level.

3. Compute the mean, �e, and the standard deviation, Se, of the remaining prediction

errors. If the mean value is negative, it indicates that the prediction equation
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Fig. 4 a Comparison of FL and Froehlich (1995) estimates with measured data in the training phase.
b Comparison of FL and Froehlich (1995) estimates with measured data in the testing phase
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underestimated the observed values, and if positive the equation overestimated the

observed values. A confidence band around the predicted value is expressed using the

values of �e and Se, as B̂av � 10��e�2Se ; B̂av � 10��eþ2Se
� �

. The use of 	2Se approximately

yields a 95 % confidence band.

Table 5 summarizes the results of the performed uncertainty analysis on the FL and RE

estimates from the testing phase. From Table 5, it can be seen that the FL model and the

Froehlich (1995) equation predicted the average breach widths with equal mean prediction

error of �e = ?0.03; however, the fuzzy uncertainty band of ±2Se = ±0.51 order of

magnitude is slightly smaller than the ±2Se = ±0.56 order of magnitude obtained by the

Froehlich (1995) equation. The results suggest that the FL model could be a good tool for

estimating average breach width, although not replacing the best available regression

equation of Froehlich (1995), but complementing it with extra information that may help

the modeler. The FL approach provides the modeler with the capability to express the

uncertainty inherent in such real systems, especially when confidence intervals of uncer-

tainty concerning the data and the parameters are unknown. It also allows the modeler to

use his intelligence, understanding, and descriptive capabilities for making decisions to

solve nonlinear systems without complex mathematical formulation. Moreover, the FL

model provides a comparatively effective tool for estimating the breach width.

Moreover, the uncertainty analysis showed that the FL approach and Froehlich (1995)

equation yielded average breach widths with comparatively less mean prediction error than

other RE. In light of the results presented in Tables 3, 4, and 5, one can conclude that the

FL model can give reliable estimations for the average breach widths of embankment dams

in comparison with the available RE. Linear regression methods performed well in case of

strong linear relationship between the inputs and output. However, as the data and their

functional relationships possess nonlinear behavior, the modifications become necessary

for regression analysis. In contrast, the fuzzy approach can offer an alternative for con-

sidering such nonlinearity through vaguely defined membership functions.

9 Application

For validation of the FL model, two embankment failure case studies cited in recent

publications are used. These are the risk assessment study for the Jamestown embankment

dam, conducted in January 2001 by the Bureau of Reclamation, and the Big Bay dam

failure that occurred on March 12, 2004. The Jamestown dam is a zoned-earth fill with a

height of 24.7 m above the original streambed. The crest length is 432 m at an elevation of

Table 5 Uncertainty estimates of average breach widths from FL model and some RE (testing phase)

Parameter FL
model

Froehlich
(1995)

Bureau of
Reclamation (1988)

Von Thun and
Gillette (1990)

Estimator of location, T -0.01 -0.01 -0.03 0.13

Median of absolute
deviations, MAD

0.17 0.20 0.19 0.09

Estimator of scale, SMAD 0.26 0.29 0.28 0.14

Mean prediction error, �e 0.03 0.03 0.04 0.10

Two standard deviations, ±2Se 0.51 0.56 0.56 0.28
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448.36 m, the crest width is 9.14 m, and assumed initial elevation of piping failure is

423.7 m, Wahl (2004). One potential reservoir water surface elevation at failure is con-

sidered in this study, that is, the top-of-flood-space with elevation 443.18 m and reservoir

capacity of about 273.3 9 106 m3. The Big Bay embankment is approximately 576 m long

and 15.6 m high. A pool elevation of 84.89 m, which corresponds to storage of 17.5 9 106

m3, was used in the analysis. Site survey indicated an average breach width of 83.2 m,

original ground elevation of 71.3 m, and assumed initial piping elevation of 71.3 m

(Yochum et al. 2008).

Application of the FL model for estimating the breach width is illustrated for the

mentioned data in these case studies. Two simulation runs for the FL model were made

using the interactive View Rule option. The FL model requires the input data related to the

water height and the reservoir storage in these case studies. Table 6 presents the results of

these case studies using the present FL model and some of the available RE.

Using some error criteria such as the mean absolute error MAE ¼ 1
N

PN
i¼1 B̂avi

� Bavi

�
�

�
�,

mean relative error MRE ¼ 1
N

PN
i¼1 100

ðB̂avi
�Bavi

Þ
Bavi

, and mean square error MSE ¼ 1
N

PN
i¼1

ðB̂avi
� Bavi

Þ2, where N is the total number of predicted outputs, B̂avi
is the ith average

breach width estimated by FL model or RE, and Bavi
is the corresponding ith observation,

can help in comparisons between measured versus estimated average breach widths

obtained using the FL model and the RE, (Table 7). In Table 7, the error values from RE

are higher than those obtained from the FL model. The results show that the FL approach

provides quite reasonable estimates for the observed average breach widths of these case

studies compared with the applied RE. Moreover, the FL model and the Froehlich (1995)

equation gave more accurate estimates for the average breach widths of these case studies

than the other available RE.

Table 6 Estimated breach widths for Jamestown and Big Bay dams using the FL model and some RE

Reference Estimated average breach widths B̂av (m)

Jamestown dam
top-of-flood-space,
ElE. 443.18 m

Big Bay dam

FL model 155.0 78.1

Froehlich (1995) B̂av ¼ 0:1803K0ðVwÞ0:32ðhbÞ0:19 158.8 61.45

Bureau of Reclamation (1988) B̂av ¼ 3hw 58.5 40.50

Von Thun and Gillette (1990) B̂av ¼ 2:5hw þ Cb 104.0 88.65

Recommended or observed values 165.0 83.20

Table 7 Error criteria using the estimates of the FL model and some RE (application phase)

Error
criteria

FL
model

Froehlich
(1995)

Bureau of
Reclamation (1988)

Von Thun and
Gillette (1990)

MAE 7.6 14.0 74.6 33.2

MRE -6.1 -14.9 -57.9 -15.2

MSE 63.0 255.8 6,582.8 1,875.4
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10 Conclusions

This paper presented a FL rule-based model to estimate average breach widths of

embankment dams. It provides an alternative solution to treat uncertainty and imprecision

of breach data through the vaguely defined membership functions. The model is based on

Mamdani’s inference system, which expects the output to be a fuzzy set and is very good

for the representation of human reasoning to describe systems in linguistic terms rather

than in terms of complex relationships. Two data sets of 51 dams and 18 dams were used in

the training and testing phases of the FL model, respectively. After performing an

uncertainty analysis for its estimates, the developed FL model is applied through simu-

lation of two case studies. Simulation results of the testing and application phases indicated

that the proposed FL model exhibits reasonable accuracy and its estimates are in good

agreement with the observed measurements and the results of the best available regression

equation. The FL model offers a good tool that can be effectively used to predict the

average breach width. Although the application of FL for estimating average breach width

is promising, the proposed FL model can further be adjusted by searching for optimum key

parameters and membership functions and modifying the rules accordingly.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.
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