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Abstract In this study, soil response was carried out for the Greater Delhi region. A

folded Proterozoic formation was identified as Delhi ridge, passes through its central part

along SSW–NNE direction, and appears to be a main geomorphic feature for the study

area. The Delhi ridge is an exposed quartzite rock of about 10–100 m wide and *25 km

long with gentler dipping both toward east and west. We have considered the exposed part

as an outcrop side near the ridge axis and the dipping area as rigid base away from the

ridge axis for ground motion study during the occurrence of the 25 November 2007

earthquake with magnitude ML 4.3 (Richter scale) that occurred at Delhi–Haryana State

boundary. The degree of shaking was very strong and reported major cracks in the

buildings near the epicenter area. We have studied the soil response parameters at the

surface level, considering horizontally stratified soil layers above rigid base. The equiva-

lent linear method was used for soil response analysis at 25 sites in Greater Delhi area. The

peak amplification factors vary from 3.2 to 5.9 and peak resonance frequency varies from

1.2 to 5.3 Hz. The correlation among the peak amplification factor (A) and frequency (f)

was empirically established as A = 0.36f ? 3.60. Increasing peak amplification factor was

found at sites with increasingly thicker alluvium deposit with lower frequency contains

ground motion and vice versa. Seismic zoning map was also reconstructed for peak

amplification factors and predominant periods for the study area for the mitigation pur-

poses of earthquake damage. The average shear wave velocity up to 30 m soil depth is also

obtained for site classification. The average velocity to 30 m [Vsð30Þ] is a widely used

parameter for classifying sites for predicting their potentiality to amplify seismic shaking.

A lower value [Vsð30Þ] thus yields a more conservative estimate of ground motion, which

generally increases as Vsð30Þdecreases. Present estimate of Vsð30Þvaries from 315 to

419 m/s. In this study, we have identified two site classes C and D, as per National

Earthquake Hazard Reduction Program. The city planner or engineers can directly use

these data for site-specific assessment during retrofitting of the existing structure,
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demolition of the old buildings and design a new structure to avoid major destruction of the

buildings due to future earthquake.

Keywords Acceleration � Delhi ridge � Soil model � Amplification factor � Peak

frequency � Predominant period

1 Introduction

Delhi comes under the governance of the National Capital Territory (NCT) and is located

in the northwest part of India (Figs. 1, 2) and covers an area of *1,483 km2 with a total

population of more than *17 million. With globalization, the population along with

infrastructure and economy of this city has grown tremendously over the last few years.

Delhi is situated in a highly earthquake prone belt near the active Himalayan region. The

heavily populated city with a number of artificial structures could be highly prone to

damage during incidences of moderate magnitude earthquake from near-field sources. The

seismic hazard in Delhi is normally controlled by two tectonic domains with different

recurrence characteristics viz. the local domain, occasionally induced by the convergence

tectonics along the Himalayan region and largely the western Himalayan tectonic domain.

The Delhi region experienced several damaging earthquakes in the historical past. As per

the record (Iyengar 1999), Varaha Mihira, who lived in fifth to sixth century, has men-

tioned the northern India, including Delhi and its surroundings are the significant felt

region of severe earthquakes. Oldham (1883) reported that the walls of the fortress and

many houses in Delhi were destroyed during the occurrence of the 15 July 1720 Sohna

earthquake. He also noted that the aftershock sequences of this earthquake were continued

for several weeks to few months. The most disastrous 1803 earthquake having magnitude

*7.0 near Mathura (Oldham 1883) was believed to be associated with Mathura Fault,

created havoc damage in Delhi area. Tandon and Choudhury (1966) and Iyanger (2000)

have also mentioned damage to the Qutub Minar in Delhi during this 1803 earthquake.

This earthquake was felt in a very large area and even took 23 human lives in Bulandshahar

in western Uttar Pradesh. Another event known as Gurgaon earthquake with magnitude

*6.0 that occurred on 27 August 1960 near Sohna (Srivastava and Somayajulu 1966)

caused minor damages to property and injuries to about 50 persons in Delhi region. On 28

July 1994, an event of local magnitude 4.0 caused minor damage to the minarets of Jamma

Masjid (Iyengar and Ghosh 2004). Delhi was not only affected by local earthquakes,

regional moderate to large magnitude earthquakes occasionally also created damages to

buildings as reported by Mahajan et al. (2010).

Various efforts were undertaken at government level; many studies in the past have

been carried out for the estimation of seismic hazard and microzonation of the Delhi

region. Most of the seismic hazard studies involved the estimation of peak ground

acceleration (PGA) using various ground motion prediction equations (GMPEs). PGA

values for 475 years of return period estimated by Agrawal and Chawla (2006) were

reported to be in the range of 0.12–0.17 g and by Sharma et al. (2003) for 225 years of

return period between 0.15 and 0.34 g. Iyengar and Ghosh (2004) estimated the PGA

values for 2,500 years of return period between 0.18 and 0.24 g, which was the highest in

the northwest part of Delhi. Apart from these studies, informations involving the ground

shaking site-effects studies by Mukhopadhyay et al. (2002), site-specific microzonation

study through 2D modeling of SH and P-SV waves by Parvez et al. (2004), estimation of

earthquake hazard in Greater Delhi area by Iyengar and Ghosh (2004), seismic
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microzonation studies by Rao and Satyam (2005), and first-order seismic microzonation

map using GIS by Mohanty et al. (2007) provided extensive database for seismic hazard

assessment for Delhi and adjoining regions. However, no detail studies were ever being

performed for understanding the frequency-dependent soil response as well as the site

classification in compliance with the National Earthquake Hazard Reduction Program

(NHERP 2000) of USA. This study is significant because of the drastic amplification of the

seismic waves in the overlying low-velocity zone those are coming through the interface of

strong velocity contrast from the underlying high-velocity zone. It was appreciated in the

literature (Kanai et al. 1956; Gutenberg 1957) that the amplitude of seismic waves

Fig. 1 Map illustrating the detailed tectonic setup of Delhi and surrounding regions (after Joshi and Sharma
2011). MBT Main Boundary Thrust, MCT Main Central Thrust, MFT Main Frontal Thrust, MDF
Mahendragarh–Dehradun Fault—Delhi–Hardwar ridge, GBF Great Boundary Fault, ISZ Indus Suture Zone,
Mor-Fault, Moradabad Fault; Son-Fault, Sohna Fault, DHR Delhi–Hardwar Ridge; Mat-Fault, Mathura
Fault
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approaching the Earth’s surface is magnified by passage through surficial layers of low

impedance (Fig. 3). Layer resonances and near-surface impedance gradients are the main

factors that cause soil amplification in a simple horizontally layered structure (Haskell

1960; Murphy et al. 1971; Shearer and Orcutt 1987). The importance of soil amplification

has clearly been demonstrated for the Mexico earthquake of 19 September 1985 by Seed

et al. (1988). Significant damage during the 17 October 1989 Loma Prieta (California)

earthquake occurred in areas of San Francisco and Oakland underlain by poor soil

Fig. 2 Map showing the seismotectonic setup of Delhi and surroundings regions (after Dasgupta et al.
2000). Note the locations of the main localities viz. Delhi, Rohotak, Sonepat, Gurgaon, Meerut, and Panipat
in respect of Delhi ridge, elongated along NNE–SSW and passing near the center of Delhi territory. Also
note the locations of the major fault (e.g., Mehendragardh–Dehradun) and many lineaments (L) crossing the
Capital Delhi. Small dots represent the locations of historical earthquakes with magnitude 2.0 \ M B 4.0.
The beach balls indicate the fault plane solutions of the earthquakes. Red star indicates the epicenter of 25
November 2007 an earthquake of magnitude ML 4.3 that ruptured along the lineament L1 (i.e., Sonha fault)
in the Broader of Delhi and Haryana State. The gray triangle is a Strong Motion Accelerogram (SMA)
recording station near Delhi ridge (light green)
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conditions (Borcherdt and Glassmoyer 1992). Benuska (1990) reported that deep clay

deposits in the underlying layers caused severe damage in San Francisco Bay and Oakland

area through amplification of ground motion. Generally, the seismically induced dynamic

loading to the soft soil leads to nonlinear soil behavior, and moreover, the dependence of

soil response on strain amplitude became a standard assumption in the geotechnical field

(Finn 1991). Evidence of nonlinear site response in seismological observations has

appeared over the last 10 years due to an increase in the number of permanent strong

motion arrays and an improvement in data quality. Delhi, the capital city is not only

situated in the earthquake prone area, but also lies on the thick alluvium soil deposit of

river Yamuna. On 25 November 2007, an earthquake of local magnitude ML 4.3 (Richter

scale) occurred in the early morning (11:13 UTC) in the Border region of Delhi–Haryana

(Fig. 6). The degree of shaking was so strong that most of the buildings located on the

thick alluvium sites and near to the epicentral region suffered cracks. This earthquake has

been recorded by a strong motion recorder at a site of about 20 km far from the epicentral

region at Delhi Seismic Observatory Ridge. It is understood that the degree of shaking

normally depends upon the variable soil layer thickness overlying engineering bedrock

rocks (Fig. 3). We thus considered the earthquake as the outcrop source for input ground

motion in soil response analysis at 25 different sites using equivalent linear method to

compute soil frequency–dependent amplification characteristic over the study area. This

study, we have thus addressed the soil amplification with frequencies using geotechnical

model, that is, equivalent linear method (ELM). We also have examined the site behavior

considering average velocity for 30 m thick soil using National Earthquake Hazard

Reduction Program (NHERP-2000) of USA (Table 4).

2 Seismotectonics

Delhi is located between latitude 28.24� and 28.87�N and longitude 76.50� and 77.33�E

(Figs. 1, 2) to the southwest of the western Himalaya. The terrain of Delhi is flat in general

except for the NNE–SSW trending elevated ridge, which is an extension of the Aravalli hill

and buried under the Yamuna alluvium in the northern parts of Delhi. River Yamuna is

another prominent feature of Delhi, enters the city from north and flows southward with an

eastern bend near Okhla. This path forms a tri-junction with the Lahore–Delhi, and the

Fig. 3 Diagram represents the seismic wave approaching the earth surface through different geological and
geomorphologic medium (after Kramer 1996). It indicates that earthquake rupture takes place at a depth in
higher velocity medium, and the released seismic wave propagates through a medium of high-velocity layer

(3,500 m/s) to engineering bedrock of average shear wave velocity layer (i.e., 400 m=s\Vs� 750 m=s).
This finally reaches at the top surface through low-velocity soil layers resulting deformation of surficial soil
layers and disaster on surface structures
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Delhi–Haridwar ridges. The areas associated with these extended ridges are seismically

active and shows sporadic seismicity aligned in NNE–SSW direction, nearly perpendicular

to the Himalayan arc. The nearest point from the Main Boundary Thrust (MBT) to Delhi is

around 160 km.

A seismotectonic map of Delhi and its surrounding was reconstructed after the Atlas

map of Geological Survey of India (Dasgupta et al. 2000) (Fig. 2). The area is charac-

terized by a major fault (F) and few Lineaments (L). The Mahendragardh–Deharadun fault

(F) extends toward northwest up to the Himalaya foot hill. Prominent lineaments in the

region display three distinct trends viz. NE–SW, NW–SE, and N–S direction. Since 1963,

the area around Delhi has been experiencing a series of earthquakes of mild intensity.

These are generally followed by thundering sound and many of them were felt at Rohtak,

Sonepat, Delhi, Gurgaon, Meerut, and close to Panipat surrounding Delhi. The epicentral

locations of these earthquakes lie along the Mahendragardh–Dehradun fault (F) and along

the lineaments (L). The fault plane solutions of few earthquakes are shown in Fig. 2. These

minor shocks have been studied by Singh (1964), Hukku (1964), Sharma (1965), Sri-

vastava and Somayajulu (1966) and Tandon and Choudhury (1966). Most of the shocks

were interpreted to be of shallow focus with epicenter in most cases located west,

southwest, and south of Delhi (Delhi–Haryana broader) region. Singh (1964) interpreted

these were due to water-logging as a result of which the sandy beds did not permits the

subsoil vapor to pass out and cause eruption in the superficial layer leading to frequent

tremor. Hukku (1964) attributes these shocks to collapse of limestone cavern that may exist

along fault zones in Vindhyan limestones covering the basement rocks. Srivastava and

Somayajulu (1966) show that the Sonepat–Delhi–Sohna dislocation is responsible for the

frequent earthquakes in and around Delhi city. The open circles in Fig. 6 indicate the

epicentral locations of 654 earthquakes with magnitude B3.0 occurred in NCT, Delhi and

surrounding areas (i.e., National Capital Territory) during the period 2000–2010. These

earthquakes were precisely monitored by a Network called Delhi Seismic Telemetry

Network run by India Meteorological Department (IMD) since the year 2000.

3 Dynamic soil response analysis

The ground is assumed to be composed of elastic material; however, the ground shows

nonlinear behavior due to earthquakes loading, and the resulting soil exhibits nonlinear

behavior from the small strain (*10-3). The nonlinear characteristic of the soil is usually

called dynamic deformation characteristic. Seed and Idriss (1970) and Hardin and

Drenevich (1972a, b) expressed nonlinear characteristic of soil is caused by cyclic loading.

Thus, earthquake response analysis widely done on computer code SHAKE (Schnabel

et al. 1972), which based on multiple reflection theory and nonlinearity of soil behavior,

considered as equivalent linear method where the stress–strain relationship must be linear

in solving the equation of motion in frequency domain. Nonlinear hysteretic stress–strain

behavior of cyclically loaded soils (Fig. 4) can be approximated by equivalent linear soil

properties when the strain level is not large. Since the linear approach requires that the

shear modulus and damping ratio be constant for each soil layer, the problem becomes one

of determining the values that are consistent with the level of strain induced in each layer.

Since the time history of shear strain for a typical earthquake motion is highly irregular

with peak amplitude that may only be approached by a few spikes in the record. The

harmonic record represents a more severe loading condition than transient record, when

their peak values are identical. It is common to characterize the strain level of the transient
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record in the terms of an effective shear strain that has been empirically found to be around

65 % of the maximum shear strain.

As the calculated strain level depends on the values of the equivalent linear properties,

an iterative procedure is required to ensure that properties used in the analysis are com-

patible with the calculated strain levels in all layers. To achieve this condition, the fol-

lowing procedure is adopted. Initial estimates of G and h are made for each layer using the

following empirical relations.

G ¼ qV2
s ð1Þ

h ¼ 1

2Q
ð2Þ

where G the shear modulus at low strain, q the Bulk density, Vs the shear wave velocity, h

the damping ratio and Q the quality factor of shear wave. Equation 1 is widely used and

was established from well-log data. Equation 2 was empirically deduced by Fukushima

and Midorikawa (1994) for estimating the damping ratio. The estimated G and h values are

used to calculate the ground response including time history of shear strain for each layer.

The effective shear strain in each layer is determined by the estimated maximum shear

strain. For jth layer, the effective shear strain can be defined as

cðiÞeffective;j ¼ RcðiÞmax;j ð3Þ

where R is the ratio of effective shear strain to the maximum shear strain. The effective

estimated shear strain allows to be chosen as new equivalent linear values Gðiþ1Þ and hðiþ1Þ

Fig. 4 Plot represents a typical stress–strain relationship for soil in cyclic shear deformation (after
Mohammadioun and Pecker 1984). Initial loading curve has a hyperbolic form (broken line). Subsequent
unloading and reloading phases track a hysteretic path. Two hysteresis loops constructed according to
Massing rules (Erdik 1987) are shown, where A and B mark the Reversal points with the loop. The
maximum shear modulus (Gmax) and the secant shear modulus (Gsec) are obtained from the tangent of
stress–strain curve (dotted line). Tangent was drawn between points of origin (low strain) and maximum
strain due to failure stress of the sample
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for the next iteration, and the iteration process is continued until the difference between

computed shear modulus and damping ratio values in two successive iterations fall below

predetermined allowable error (typically 5 %) in all layers (Fig. 5). This procedure

(Schnabel et al. 1972) using the computer code SHAKE is commonly used for one-

dimensional ground response analysis.

The site classes assessed from shallow shear wave velocity models are important in

deriving strong motion prediction equations (Boore et al. 1997), for the reconstruction of

maps in compliance of National Earthquake Hazard Reduction Program (NEHRP) site

classes (Wills et al. 2000), and moreover, in applications of building codes to specific sites.

The average shear wave velocity of the top 30 m of the Earth, that is, Vsð30Þ was computed

through division of 30 m by the travel time, and the method is widely used in classifying

sites in recent building codes and loss estimation (Dobry et al. 2000; BSSC 2001). The

Vsð30Þ is obtained from the definition of NEHRP site classes as follows,

Vsð30Þ ¼ 30
Pn

i¼1
Hi

Vi

ð4Þ

where Hi and Vi are the thickness and velocity for the ith layer and n is the total number of

layers.

4 Data

A time series acceleration recorded at India Meteorological Department (IMD) Seismic

Observatory Ridge (SOR), NCT Delhi (Fig. 7) was used under the study. The maximum

Fig. 5 Flow chart of
computational program for soil
response analysis using
equivalent linear method (after
Seed and Idriss 1969). Gmax and
hmin are the initial shear modulus
and damping for very low strain
under in situ soil condition. ug

amplitude of input waveform at
the outcrops. The program stops
iteration if the difference of shear
modulus and damping ratio
between previous and current
analyses are within the specific
range less than 5 % else
continued the loop
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PGA value with 15–20 s duration in the horizontal component is noted 0.015 g. The full

40.96 s waveform is used for the estimation. The vertical lithologs and physical soil

properties are prepared by integrating the existing borehole report, geophysical survey and

the earlier work done by Iyanger (2000), Iyengar and Ghosh (2004), Parvez et al. (2004)

and Rao and Satyam (2005). Every 1 km interval sites are selected to find the soil

amplification or de-amplification characteristics in a microscale. The more detailed 25 site

locations along (1) East–West direction of spread length *13 km and (2) North–South

direction spread length 10 km were chosen (Fig. 6). The soil classification is done as per

geotechnical soil code cited as ML for sandy-silt, ML-SM for silty sand, SM for sand,

Wt-Qrtz. for weather quazite and Rock for hard rock formation. The physical parameters

viz., layer thickness (H-m), shear wave velocity (Vs-m/s), density (g/cm3), quality factors

(Qs), damping (h %) and shear modulus are listed in Tables 1 and 2 for East–West and

North–South profile, respectively. The minimum damping of in situ soil samples is

obtained from the inverse of twice of the quality factor (Fukushima and Midorikawa 1994).

The maximum in situ shear modulus (G0) at very low strain (usually 10-6) is obtained

Fig. 6 Map showing the few important localities in NCT Delhi. The red star indicates shallow focal depth
local earthquake of magnitude ML 4.3 (in Richter scale) occurred on 25th November, 2007 at 11:13 h UTC
near the Delhi–Haryana border. Red triangle shows the location with an earthquake recording Seismic
Observatory on Delhi ridge. The other triangles of small size are located about 1-km interval indicate the
places where the soil samples down to the depth of 100 m were taken along two E–W and N–S profiles. The
few important locations in greater Delhi are Inter State Bus Terminal (ISBT), Chowri Bazar, Tilak Bridge
(TB), New Delhi Railway Station (NDLS), Boat Club, Sajahan Road (Sajahan RD), Jawahar Lal Nehru
Stadium (JLNS), Mandi House (MH), Connaught Place (CP), Pusha Road (PR), Patel Road (Patel RD),
Punjabi Bagh (PB) and Rohini. Blue line shows the N–S flow of Yamuna River. The small open circles
illustrate the locations of epicenters of local earthquakes with magnitude ML \ 3.0 occurred during the
period 2000–2010 in Delhi and surrounding regions
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using the empirical relation of shear wave velocity (Vs) and density (q). Average velocity

up to 30 m is calculated for site classification for all 25 sites shown in Table 3.

A total duration of earthquake signal of 40.96 s with cutoff frequency of 20 Hz was

used for the analysis (Fig. 7). The trace of observed earthquake has been digitized over

sampling interval of Dt = 0.005 s and obtained 8,192 data points were used in the ELM.

The layer parameters, that is, thickness, Vs, Gmax, h (%) and G0 for five respective layers

including half space were used to yielding amplification factors for different layers. The

equivalent method is based on the principal stress and that is proportional to the strain.

The effective stress is read off from the stress–strain curve for 0.65 times of strain value.

The acceleration time history is put at weathered quartzite rock for which the shear

velocity is 1,000 m/s comparable with that of an engineering bed rock. The engineering

bedrock is defined as B class site (Table 4) with shear wave velocity varying between 760

and 1,500 m/s as per the National Earthquake Hazard Reduction Program (NEHRP).

Figure 3 shows that seismic waves, generated due to an earthquake through faulting at

seismological bedrock depth, are propagating upward with high shear wave velocity

3,500 m/s and further penetrating the engineering bedrock at velocity between 760 and

1,500 m/s. The propagating seismic wave encountered both reflection and refraction when

it reaches the very low-velocity fluvial deposits near the surface (i.e., 30 m depth). This

was used as input ground motion for all the layers in the analysis. Finally, a high amplitude

Table 3 The table represents the
average shear wave velocity up to

30 m depth, Vsð30Þ at 25 sites for
two profiles, that is, sl. no. 1 to 11
for N–S profile and 12–25 for
E–W profile, respectively

Sl No. Latitude (�) Longitude (�) Vsð30Þ m/s

1 28.701 77.202 359

2 28.691 77.195 381

3 28.682 77.211 347

4 28.673 77.184 369

5 28.662 77.185 345

6 28.653 77.201 419

7 28.641 77.175 366

8 28.632 77.215 315

9 28.623 77.192 336

10 28.612 77.189 375

11 28.603 77.222 377

12 28.681 77.213 388

13 28.675 77.201 398

14 28.682 77.192 349

15 28.665 77.183 387

16 28.681 77.171 368

17 28.685 77.162 364

18 28.675 77.153 372

19 28.682 77.142 319

20 28.675 77.131 341

21 28.685 77.123 346

22 28.675 77.114 359

23 28.685 77.102 365

24 28.680 77.091 333

25 28.685 77.082 319
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and longer duration waveform at ground surface caused high-velocity contrast associated

with loose alluvium deposits overlying engineering bedrock depth was obtained. Similar

procedure was followed for evaluating soil responses at all sites.

5 Results

The site amplification factor was studied for the frequency ranges from 0.1 Hz (low

frequency) to 20 Hz (high frequency). A combined plot of amplification verses frequency

factor for all 11-sites along North–South profile and 14-sites along East–West profile are

shown in Fig. 8, respectively. Variation of amplification factor peak frequency is noted for

both the North–South and East–West profiles. We also assessed the Curve Topology

(shape) and found similar patterns for sites located at 1-km and 2-km south of ISBT

(Fig. 9b, c), and further for sites located at 5-km and 6-km south of ISBT (Fig. 9f, g). This

has reduced the 11 sites responses into main 3 classes as denoted by type-I (Fig. 9a, d, e, h–k),

type-II (Fig. 9b, c) and type-III (Fig. 9f, g). Similar classification was done for responses

along the East–West profiles (Fig. 8), and this has reduced the 14 generic ground condi-

tions into 5 basic ground amplification patterns as designated by IV, V, VI, VII, and VIII

(Fig. 10a–e), respectively. This has altogether has reduced 25-sites responses into 8 basic

types of curve topology (Table 5).

The varied amplification factors between 3.2 and 5.9 with peak frequency changes of

1.2–5.3 Hz allowed us to establish the an empirical relation between amplification factors

Fig. 7 Observed acceleration
time history at Seismic Ridge
Observatory (SOR) sites in NCT
Delhi during incidence of 25
November 2007 an earthquake
with magnitude ML 4.3 occurred
at the Delhi–Haryana Border.
Total duration of recording trace
was about 40.96 s, and the
digitized sampling points were
8,192 (sample interval 0.005 s)
used in this study. The unit of
acceleration is in g (gravity)

Table 4 This illustrates the NEHRP Site Classes based onVsð30Þ, the average shear wave velocity up to
30 m depth (after BSSC, 2001)

Site class Range of Vsð30Þ (m/s)

A 1,500 \ Vsð30Þ
B 760 \ Vsð30Þ1,500

C 360 \ Vsð30Þ 760

D 180 \ Vsð30Þ360

E Vsð30Þ\180

In this study, two site classes were identified as Site class C (365 m=s�Vsð30Þ� 420 m=s) at Delhi ridge

axis and site class D (315 m=s�Vsð30Þ\365 m=s) beyond the Delhi ridge axis
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and peak frequencies as A = 0.36f ? 3.60 for the entire study area (Fig. 11). The estab-

lished amplitude–frequency relationship may be useful for the engineering design, and

moreover, someone can predict the soil amplification using peak frequency or ground

motion period computed from seismic microzonation map for a particular site. This means

that the ground amplification will be more at high frequency for deep alluvium deposit and

vice versa. Figure 12a indicates a spatial variation of peak amplification factors over the

study area. A maximum amplification factor of 5.9 is found in the deeper alluvium site and

comparative low amplification of 3.2 obtained at the rock site. These observations clearly

correlate with those of Iyanger (2000), Parvez et al. (2004) and Rao and Satyam (2005) for

the Delhi area. Figure 12b indicates the spatial variation of predominant periods T for the

study area. A maximum predominant period of 0.64 s was observed on thick alluvium soil

that decreases toward Delhi ridge and becomes minimum of *0.14 s near the ridge axis.

The computed average shear wave velocity for 30 m depth soil column [Vsð30Þ] has

demarcated the minimum sites over the study area as per National Earthquake Hazard

Reduction Program. Table 4 shows the classification of Vsð30Þ for different 25 locations.

These data were further used for the mapping of Vsð30Þ at contour interval of 5 m/s

(Fig. 12c). Vsð30Þvaries between 315 and 419 m/s. This allowed us to identify two site

classes (1) site class C, whose Vsð30Þ varies from 365 to 419 m/s, and the area is

demarcated by dotted line encompassing the ridge. While site class D, whose Vsð30Þ varies

from 315 to 365 m/s, isolates thick alluvium sites beyond the ridge axis.

6 Discussion and conclusions

The high-resolution amplification factors determined over a very close 1-km spacing using

equivalent linear method led to understanding the frequency-dependent variation of soil

Fig. 8 The combined plot illustrating the amplification factor with respect to frequency along E–W and
N–S profiles for a total of 14 and 11 sites with 1-km separation, respectively
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parameter. The amplification factors varying from 3.2 to 5.9 for the entire area over the

frequency range 0–20 Hz is well corroborated with the results of Iyanger (2000) as

reported for two soil sites in Delhi using Himalayan earthquake. The empirical linear

Fig. 9 Plots represent the individual site amplification with respect to frequency along N–S profile starting
from ISBT, that is, a–k for a total 11 sites

Nat Hazards (2014) 70:93–118 111

123



relationship between amplification factors and frequency (i.e., from 1.2 to 5.1 Hz) so

derived for all soil classes over the area may have a direct application for sites charac-

terization. The present study also reveals that thicker soil deposit away from the Delhi

ridge axis produces more amplification with respect to engineering bedrock depth and at

relatively less frequency contains found along the ridge axis. Mukhopadhyay et al. (2002)

and Parvez et al. (2004) reported the soil amplification is more at soil sites in Delhi than

that of ridge rock sites. The empirical equation (i.e., A = 0.36f ? 3.60) may be used to

improve the building code over the study area.

The present analysis of Vsð30Þ accounts for better site characterization in Delhi area.

Figure 10 illustrates the variation of average velocity of shear wave up to 30 m depth for

the study area. The minimum contour value of 315 m/s. is noted near the western part and

increases toward NE–SW direction and decreases toward the eastern part of the study area.

The Vsð30Þ lies between 365 and 425 m/s. near the central part of the study area and

oriented along *NE–SW direction apparently associated with the Delhi ridge. Vsð30Þ
ranges from 390 to 420 m/s for sites at ISBT, SOR, NDLS, and Boat Club those lie on

exposed weathered rock. A relatively low Vsð30Þ was identified at SJRD, JLNS, Patel

Fig. 10 Plot illustrating the relative variation of amplification factors with frequency in major 5-classes
selected on the similar curve pattern obtained from ELM for east–west profile
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Road, CP and Push Road where the ridge becomes weathered, and very low Vsð30Þ ranges

from 315 to less than 360 m/s indicates the fresh soil deposit away from the ridge axis. The

closure contour center of low Vsð30Þ values was correlated with a small basin structure.

The precise identification of such small existing basins or west deposit sites is very

important due to earthquake point of view.

The reconstructed seismic zoning maps involving the peak amplification factors and

predominant periods (Fig. 12a, b) for Greater Delhi area provides the basis for site-specific

risk analysis. This further may assist in the mitigation of earthquake damages. We thus

may infer that the areas near the Delhi ridge axis are safer from earthquake damages that

the areas away from it and seismically more hazardous. This entire research work may

provide a part of guidelines for the future construction of buildings by the engineers over

the study area. These results can also be extrapolated and applicable to the other part of

NCT Delhi, provided the lithological information up to 30 m depth for all the 25 sites is

more or less extendable.

7 Limitations of the methodology

The soil parameters vary with the thickness of soil deposits, geological ages, and type of

lithological deposition (e.g., sand, clay, and silt). Hence, the more detail identification of

geological and geomorphic features by generating high-resolution map over the study area

may vary with the present analysis. The engineering bedrock depth is another important

parameter for geotechnical soil response analysis, and thus, a precise demarcation of

engineering bedrock depth is needed to exact soil responses. The more detailed geotech-

nical and geophysical study may improve the result. The equivalent linear method (ELM)

is applicable only for the strain ranges from 10-4 to 10-2. The effective stress is calculated

from the stress–strain curved for 0.65 time of strain value. The present results were

evaluated from weak ground motion for earthquake magnitude ML 4.3 at epicentral dis-

tance of *20 km from the source, which may differ during very strong ground motion

generated by large earthquake at the same source location. The predictive parameters

evaluated by ELM may be violated from the actual one during nonlinear behavior of the

soil due to strong ground motion.

To estimate bedrock characteristics by 1D model and thickness of the soil by regression

method have become a state-of-an-art technique as recently carried out by Chowdhuri et al.

(2009) for Krishnagar Area of Nadia District, West Bengal, India. It is so because 1D

Fig. 11 Plot showing the
correlation of peak frequency
with amplification factors for all
categorized soil type at different
sites for maximum frequency of
5.1 Hz and amplification factor
5.9
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ground response analyses are based on the assumption that all boundaries are horizontal

and the response of a soil deposit is predominantly caused by SH-wave propagating

vertically from the underlying bedrock, the soil and bedrock surface assumed to be

extending infinitely in the horizontal direction. This process eliminates the influence of the

source effects. The frequency characteristics of the amplification factor for 1D two-layered

model can be obtained by solving a simple wave equation of sinusoidal input. The

amplification may help to estimate thickness of soft soil. This approach may be augmented

in future study to understand the soil characteristics of the area. Similar approach has been

made by Chowdhuri et al. (2011) for the Agartala city, capital of Tripura state of India.
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