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Abstract
In 2012, Censor et al. (Extensions of Korpelevich’s extragradient method for the vari-
ational inequality problem in Euclidean space. Optimization 61(9):1119–1132, 2012b) 
proposed the two-subgradient extragradient method (TSEGM). This method does not 
require computing projection onto the feasible (closed and convex) set, but rather the two 
projections are made onto some half-space. However, the convergence of the TSEGM 
was puzzling and hence posted as open question. Very recently, some authors were able 
to provide a partial answer to the open question by establishing weak convergence result 
for the TSEGM though under some stringent conditions. In this paper, we propose and 
study an inertial two-subgradient extragradient method (ITSEGM) for solving mono-
tone variational inequality problems (VIPs). Under more relaxed conditions than the 
existing results in the literature, we prove that proposed method converges strongly to 
a minimum-norm solution of monotone VIPs in Hilbert spaces. Unlike several of the 
existing methods in the literature for solving VIPs, our method does not require any line-
search technique, which could be time-consuming to implement. Rather, we employ a 
simple but very efficient self-adaptive step size method that generates a non-monotonic 
sequence of step sizes. Moreover, we present several numerical experiments to demon-
strate the efficiency of our proposed method in comparison with related results in the lit-
erature. Finally, we apply our result to image restoration problem. Our result in this paper 
improves and generalizes several of the existing results in the literature in this direction.

Keywords Variational inequalities · Two-subgradient extragradient method · Self-
adaptive step size · Inertial technique · Minimum-norm solutions · Image restoration
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1 Introduction

Let H be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and induced norm || ⋅ ||. Let C be 
a nonempty, closed and convex subset of H,   and let A ∶ H → H be a mapping. The 
variational inequality problem (VIP) is formulated as finding a point p ∈ C such that

We denote the solution set of the VIP (1.1) by VI(C, A). In the recent years, the VIP 
has received great research attention due to its wide areas of applications, such as in 
structural analysis, economics, optimization theory (Alakoya and Mewomo 2022; Aubin 
and Ekeland 1984; Ogwo et  al. 2022), operations research, sciences and engineering 
(see Baiocchi and Capelo 1984; Censor et al. 2012a; Godwin et al. 2023; Kinderlehrer 
and Stampacchia 2000 and the references therein). The VIP is an important mathematical 
model that has been widely utilized to formulate and investigate a plethora of competitive 
equilibrium problems in various disciplines, such as traffic network equilibrium problems, 
spatial price equilibrium problems, oligopolistic market equilibrium problems, financial 
equilibrium problems, migration equilibrium problems, environmental network and 
ecology problems, knowledge network problems, supply chain network equilibrium 
problems, internet problems, etc., see, e.g., Geunes and Pardalos (2003), Nagurney 
(1999), Nagurney and Dong (2002) for further examples and details. The study of VIPs 
in finite dimensional spaces was initiated independently by Smith (1979) and Dafermos 
(1980). They set up the traffic assignment problem in terms of a finite dimensional VIP. 
On the other hand, Lawphongpanich and Hearn (1984), and Panicucci et  al. (2007) 
studied the traffic assignment problems based on Wardrop user equilibrium principle via 
a variational inequality model. Since then, several other economics related problems like 
Nash equilibrium problem, spatial price equilibrium problems, internet problems, dynamic 
financial equilibrium problems and environmental network and ecology problems have 
been investigated via variational inequality problem (see Aussel et al. 2016; Ciarciá and 
Daniele 2016; Nagurney et al. 2007; Scrimali and Mirabella 2018).

There are two common approaches to solving the VIP, namely: the regularised 
methods and the projection methods. In this study, our interest is in the projection 
methods. The earliest and simplest projection method for solving the VIP is the pro-
jected gradient method (GM), which is presented as follows:

Algorithm 1.1 (Gradient Method (GM))

for each n ≥ 1, where PC denotes the metric projection map. Observe that the GM 
requires calculating only one projection per iteration onto the feasible C. However, 
the method only converges when the cost operator A is �-strongly monotone and 
L-Lipschitz continuous, where � ∈

(
0,

2�

L2

)
. These stringent conditions greatly limit 

the scope of applications of the GM (1.2).
In order to relax the conditions for the convergence of the GM to a solution of the 

VIP, Korpelevich (1976) and Antipin (1976) independently proposed the following 
extragradient method (EGM) in finite-dimensional Euclidean space:

(1.1)⟨x − p,Ap⟩ ≥ 0, ∀ x ∈ C.

(1.2)xn+1 = PC(xn − �Axn),
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Algorithm 1.2 (Extragradient Method (EGM))

where � ∈ (0,
1

L
) , A ∶ ℝ

n
→ ℝ

n is monotone and L-Lipschitz continuous. If the solu-
tion set VI(C, A) is nonempty, the EGM (1.3) generates a sequence that converges to 
a solution of the VIP.

Observe that the EGM needs to compute two projections onto the feasible set C 
and two evaluations of the operator A per iteration. In general, computing projection 
onto an arbitrary closed and convex set C is complicated. This limitation can affect 
the efficiency of the EGM. In the recent years, the EGM has attracted the attention of 
researchers, who improved it in various ways (see, e.g., Ceng et al. 2021; Duong and 
Gibali 2019; Godwin et al. 2022; He et al. 2019) and the references therein. One of the 
major areas of improvement of the method is to minimize the number of projections 
onto the feasible set C per iteration (Thong et al. 2020; Uzor et al. 2022). Censor et al. 
(2011) initiated an attempt in this direction by modifying the EGM and replacing the 
second projection with a projection onto a half-space. The resulting method requires 
only one projection onto the feasible set C and is known as the subgradient extragradi-
ent method (SEGM). The SEGM is presented as follows:

Algorithm 1.3 (Subgradient Extragradient Method (SEGM))

Censor et al. (2011) obtained weak convergence result for the SEGM (1.4) under 
the same assumptions as the EGM (1.3). Since there is an explicit formula to calculate 
projection onto an half-space, the SEGM can be considered as an improvement over 
the EGM. However, we observe that the SEGM still requires computing one projection 
onto the closed convex set C per iteration. This can still be a great barrier to the imple-
mentation of the SEGM.

In order to address this limitation, Censor et al. (2012b) also proposed the following 
method called the two-subgradient method (TSEGM):

Algorithm 1.4 (Two-Subgradient Extragradient Method (TSEGM))

(1.3)

⎧
⎪⎨⎪⎩

x1 ∈ C

yn = PC(xn − �Axn)

xn+1 = PC(xn − �Ayn),

(1.4)

⎧⎪⎨⎪⎩

x1 ∈ H,

yn = PC(xn − �Axn),

Tn = {z ∈ H ∶ ⟨xn − �Axn − yn, z − yn⟩ ≤ 0},

xn+1 = PTn
(xn − �Ayn).

(1.5)

⎧⎪⎨⎪⎩

x1 ∈ H,

yn = PCn
(xn − �Axn),

Cn ∶= {x ∈ H ∶ c(wn) + ⟨�n, x − wn⟩ ≤ 0},

xn+1 = PCn
(xn − �Ayn),
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where �n ∈ �c(xn). Here, �c(x) denotes the sub-differential of the convex function 
c(⋅) at x defined in (2.2).

The idea behind the TSEGM is in that any closed and convex set C can be 
expressed as

where c ∶ H → ℝ is a convex function. For instance, we can let c(x) ∶= dist(x,C), 
where “ dist ” is the distance function. We observe that the two projections in the 
TSEGM (1.5) are made onto an half-space, which makes it easier to implement. 
However, the convergence of the TSEGM (1.5) was puzzling and was therefore 
posted as an open question by Censor et al. (2012b).

At this point, we briefly discuss the inertial technique. The inertial algorithm is 
based on a discrete version of the second-order dissipative dynamical system, which 
was first proposed by Polyak (1964). The main feature of the inertial-algorithm 
is that the method uses the previous two iterates to generate the next iterate. It is 
worth mentioning that this small change can greatly improve the convergence rate 
of an iterative method. In the recent years, many researchers have constructed very 
fast iterative methods by employing the inertial technique, see, e.g., Alakoya and 
Mewomo (2022), Alakoya et al. (2022), Gibali et al. (2020), Godwin et al. (2023), 
Wickramasinghe et al. (2023) and the references therein.

In 2019, Cao and Guo (2020) partially answered the open question posted by 
Censor et  al. (2012b). by combining the inertial technique with the TSEGM and 
obtained a weak convergence result for the proposed algorithm (Algorithm  7.1) 
under the assumptions that the cost operator A is monotone, Lipschitz continuous, 
the convex function c ∶ H → ℝ in (1.6) is continuously differentiable and the G ̂a
teaux differential c�(⋅) is Lipschitz continuous.

We need to point out at this point that all the above methods are not applicable when 
the Lipschitz constant of the cost operator is unknown because the step size of the algo-
rithms depends on prior knowledge of the Lipschitz constant of the cost operator. We also 
note that the ITSEGM proposed by Cao and Guo (2020) requires prior knowledge of the 
Lipschitz constant of the G ̂ateaux differential c�(⋅) of c(⋅). In most cases, the Lipschitz 
constants of these operators are unknown or difficult to calculate. All of these drawbacks 
may hinder the implementation of these algorithms. Moreover, all the above methods 
only give weak convergence results under these stringent conditions.

Bauschke and Combettes (2001) pointed out that in solving optimization problems, 
strong convergent iterative methods are more applicable, and hence more desirable than 
their weak convergent counterparts. Thus, it is important to develop algorithms that gen-
erate strong convergence sequence when solving optimization problems.

Very recently, Ma and Wang (2022) tried to improve on the results of Cao and Guo 
(2020) by proposing a new TSEGM (Algorithm 7.2), which uses a self-adaptive step 
size such that the implementation of their algorithm does not require prior knowledge 
of the Lipschitz constant of the cost operator. However, we note that the implementa-
tion of their result also requires knowledge of the Lipschitz constant of the G ̂ateaux 
differential c�(⋅) of c(⋅). Moreover, the authors were also only able to obtain weak con-
vergence result for their proposed algorithm.

(1.6)C = {x ∈ H | c(x) ≤ 0},
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Considering the above review, it is pertinent to ask the following research questions:

Can we construct a new inertial two-subgradient extragradient method, which is 
applicable when the Lipschitz constant of the cost operator A and/or when the 
Lipschitz constant of the Gâteaux differential c�(⋅) of c(⋅) are unknown? Can we 
obtain a strong convergence result for this method?

In this paper, we provide affirmative answers to the above questions. More precisely, 
we introduce a new inertial two-subgradient extragradient method which does not require 
knowledge of the Lipschitz constant of the cost operator nor knowledge of the Lipschitz 
constant of the G ̂ateaux differential c�(⋅) of c(⋅). This makes our results applicable to a 
larger class of problems. Moreover, we prove that the sequence generated by our proposed 
algorithm converges strongly to a minimum-norm solution of the VIP. In many practical 
problems, finding the minimum-norm solution is very important and useful. All of the 
above highlighted properties are some of the improvements of our proposed method over 
the results of Ma and Wang (2022), and Cao and Guo (2020). In addition, the proof of 
our strong convergence theorem does not rely on the usual “two cases approach” widely 
employed by authors to prove strong convergence results. We also point out that unlike sev-
eral of the existing results in the literature, our method does not involve any linesearch tech-
nique which could be computationally expensive to implement (e.g., see Cai et al. 2022; 
Peeyada et al. 2020; Suantai et al. 2020) nor does it require evaluating any inner product 
function which is not easily evaluated unlike the norm function (see Muangchoo et  al. 
2021, Corollary 4.4). Rather, we employ a simple but very efficient self-adaptive step size 
technique, which generates a non-monotonic sequence of step sizes with less dependency 
on the initial step size. This makes our method more efficient and less expensive to imple-
ment. Moreover, we present several numerical experiments to demonstrate the computa-
tional advantage of our proposed method over the existing methods in the literature. Finally, 
we apply our result to image restoration problem. The results of the numerical experiments 
show that our method is more efficient than several of the existing methods in the literature. 
Clearly, our proposed method is economically viable and our results improve and generalize 
several of the existing results in the literature in this direction.

The rest of the paper is organized as follows: In Section 2, we recall some definitions 
and lemmas employed in the paper. In Section 3, we present our proposed algorithm 
and highlight some of its features. Convergence analysis of the proposed method is dis-
cussed in Section 4. In Section 5 we present some numerical experiments and apply our 
result to image restoration problem. Finally, in Section 6 we give a concluding remark.

2  Preliminaries

In what follows, we assume that C is a nonempty, closed and convex subset of a real 
Hilbert space H. We denote the weak and strong convergence of a sequence {xn} to 
a point x ∈ H by xn ⇀ x and xn → x , respectively and w�(xn) denotes set of weak 
limits of {xn}, that is,

w�(xn) ∶= {x ∈ H ∶ xnj ⇀ x for some subsequence {xnj} of {xn}}.
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Let H be a real Hilbert space, for a nonempty closed and convex subset C of H, 
the metric projection PC ∶ H → C (Taiwo et al. 2021) is defined, for each x ∈ H, as 
the unique element PCx ∈ C such that

It is known that PC is nonexpansive and has the following properties (Alakoya and 
Mewomo 2022; Uzor et al. 2022): 

1. ��PCx − PCy��2 ≤ ⟨PCx − PCy, x − y⟩ for all x, y ∈ C;

2. for any x ∈ H and z ∈ C, z = PCx if and only if 

3. for any x ∈ H and y ∈ C,

4. for any x, y ∈ H with y ≠ 0, let Q = {z ∈ H ∶ ⟨y, z − x⟩ ≤ 0}. Then, for all u ∈ H, 
PQ(u) is given by 

 which gives an explicit formula for calculating the projection of any given point 
onto a half-space.

Lemma 2.1 Let H be a real Hilbert space. Then the following results hold for all 
x, y ∈ H and � ∈ ℝ ∶

 (i) ��x + y��2 ≤ ��x��2 + 2⟨y, x + y⟩;
 (ii) ��x + y��2 = ��x��2 + 2⟨x, y⟩ + ��y��2;
 (iii) ||�x + (1 − �)y||2 = �||x||2 + (1 − �)||y||2 − �(1 − �)||x − y||2.

Definition 2.2 An operator A ∶ H → H is said to be 

 (i) �-strongly monotone, if there exists 𝛼 > 0 such that 

 (ii) �-inverse strongly monotone ( �-cocoercive), if there exists a positive real num-
ber � such that 

 (iii) monotone, if 

||x − PCx|| = inf{||x − z|| ∶ z ∈ C}.

(2.1)⟨x − z, z − y⟩ ≥ 0 for all y ∈ C;

||PCx − y||2 + ||x − PCx||2 ≤ ||x − y||2;

PQ(u) = u −max
�
0,

⟨y, u − x⟩
��y��2

�
y,

⟨x − y,Ax − Ay⟩ ≥ �‖x − y‖2, ∀ x, y ∈ H;

⟨x − y,Ax − Ay⟩ ≥ ���Ax − Ay��2, ∀ x, y ∈ H;

⟨x − y,Ax − Ay⟩ ≥ 0, ∀ x, y ∈ H;
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 (iv) L-Lipschitz continuous, if there exists a constant L > 0 such that 

It is known that if A is �-strongly monotone and L-Lipschitz continuous, then A is 
�

L2
-inverse strongly monotone. Furthermore, �-inverse strongly monotone opera-

tors are 1
�
-Lipschitz continuous and monotone but the converse is not true.

Definition 2.3 Bauschke and Combettes (2017) A function c ∶ H → ℝ is said to 
be G ̂ateaux differentiable at x ∈ H, if there exists an element denoted by c�(x) ∈ H 
such that

where c�(x) is called the G ̂ateaux differential of c at x. Recall that if for each x ∈ H , 
c is G ̂ateaux differentiable at x, then c is G ̂ateaux differentiable on H.

Definition 2.4 Bauschke and Combettes (2017) A convex set c ∶ H → ℝ is said to 
be subdifferentiable at a point x ∈ H if the set

is nonempty. Each element in �c(x) is called a subgradient of c at x. We note that 
if c is subdifferentiable at each x ∈ H , then c is subdifferentiable on H. It is also 
known that if c is G ̂ateaux differentiable at x, then c is subdifferentiable at x and 
�c(x) = {c�(x)}.

Definition 2.5 Let H be a real Hilbert space. A function c ∶ H → ℝ ∪ {+∞} is said 
to be weakly lower semi-continuous (w-lsc) at x ∈ H, if

holds for every sequence {xn} in H satisfying xn ⇀ x.

Lemma 2.6 Bauschke and Combettes (2017) Let c ∶ H → ℝ ∪ {+∞} be convex. 
Then the following are equivalent: 

 (i) c is weakly sequential lower semi-continuous;
 (ii) c is lower semi-continuous.

Lemma 2.7 He and Xu (2013) Assume that the solution set VI (C,A) of the VIP 
(1.1) is nonempty, and C is defined as C ∶= {x ∈ H | c(x) ≤ 0} , where c ∶ H → ℝ 
is a continuously differentiable convex function. Given p ∈ C . Then p ∈ VI (C,A) if 
and only if either 

1. Ap = 0, or

||Ax − Ay|| ≤ L||x − y||, ∀ x, y ∈ H;

lim
h→0

c(x + hv) − c(x)

h
= ⟨v, c�(x)⟩, ∀ v ∈ H, h ∈ [0, 1],

(2.2)�c(x) = {� ∈ H � c(y) ≥ c(x) + ⟨� , y − x⟩, ∀y ∈ H}

c(x) ≤ lim inf
n→∞

c(xn)
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2. p ∈ �C and there exists 𝜂p > 0 such that Ap = −�pc
�(p), where �C denotes the 

boundary of C.

Lemma 2.8 Dong et al. (2018) Let C be a nonempty closed and convex subset of H. 
Let A ∶ C → H be a continuous, monotone mapping and z ∈ C , then

Lemma 2.9 Tan and Xu (1993) Suppose {�n} and {�n} are two nonnegative real 
sequences such that

If 
∑∞

n=1
𝜙n < +∞, then lim

n→∞
�n exists.

Lemma 2.10 Saejung and Yotkaew (2012) Let {an} be a sequence of nonnegative 
real numbers, {�n} be a sequence in (0, 1) with the condition: 

∑∞

n=1
�n = ∞ and {bn} 

be a sequence of real numbers. Assume that

If lim supk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying the condition:

then limk→∞ an = 0.

3  Proposed Method

In this section, we present our proposed method and discuss some of its important 
features. We begin with the following assumptions under which our strong conver-
gence result is obtained.

Assumption 3.1 Suppose that the following conditions hold: 

1. The set C is defined by 

 where c ∶ H → ℝ is a continuously differentiable convex function such that 
c�(⋅) is L1-Lipschitz continuous (however, prior knowledge of the Lipschitz con-
stant is not required).

2. (a) A ∶ H → H is monotone and L2-Lipschitz continuous (however, 
prior knowledge of the Lipschitz constant is not needed).

(b) There exists K > 0 such that ‖Ax‖ ≤ K‖c�(x)‖ for all x ∈ �C.

(c) The solution set VI(C, A) is nonempty.

z ∈ VI(C,A) ⟺ ⟨Ax, x − z⟩ ≥ 0, ∀ x ∈ C.

�n+1 ≤ �n + �n, ∀n ≥ 1.

an+1 ≤ (1 − �n)an + �nbn, ∀n ≥ 1.

lim inf
k→∞

(ank+1 − ank ) ≥ 0,

(3.1)C = {x ∈ H | c(x) ≤ 0};
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3. {�n}
∞
n=1

, {�n}
∞
n=1

 and {�n}∞n=1 are non-negative sequences satisfying the following 
conditions: 

(a) �n ∈ (0, 1), lim
n→∞

𝛼n = 0,
∑∞

n=1
𝛼n = ∞, lim

n→∞

𝜉n

𝛼n
= 0, 𝜃 > 0, 𝜆1 > 0.

(b) {𝛽n} ⊂ [a, b] ⊂ (0, 1 − 𝛼n), 𝛿 ∈

�
0,−K +

√
1 + K2

�
.

(c) Let {�n} be a nonnegative sequence such that 
∑∞

n=1
𝜙n < +∞.

Algorithm 3.2

Step 0.  Select two arbitrary initial points x0, x1 ∈ H and set n = 1.

Step 1.  Given the (n − 1)th and nth iterates, choose �n such that 0 ≤ 𝜃n ≤ �̂�n with 
�̂�n defined by 

Step 2.  Compute 

Step 3.  Construct the half-space 

 and compute 

 If c(yn) ≤ 0 and either wn − yn = 0 or Ayn = 0, then stop and yn is a solution of the 
VIP. Otherwise, go to Step 4.

Step 4.  Compute 

(3.2)�̂�n =

�
min

�
𝜃,

𝜉n

‖xn−xn−1‖
�
, if xn ≠ xn−1,

𝜃, otherwise.

wn = xn + �n(xn − xn−1),

Cn = {x ∈ H ∶ c(wn) + ⟨c�(wn), x − wn⟩ ≤ 0},

yn = PCn
(wn − �nAwn)

zn = PCn
(wn − �nAyn)

xn+1 = (1 − �n − �n)wn + �nzn.
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Step 5.  Compute 

 Set n = n + 1 and go back to Step 1.

Remark 3.3 

• Observe that unlike the results of Cao and Guo (2020) and Ma and Wang (2022) 
knowledge of the Lipschitz constant of the cost operator A and knowledge of 
the Lipschitz constant of the G ̂ateaux differential c�(⋅) of c(⋅) are not required to 
implement our algorithm.

• Moreover, we need to point out that our algorithm does not require any line-
search technique, rather we employ a more efficient step size rule in (3.3) which 
generates a non-monotonic sequence of step sizes. The step size is constructed 
such that it reduces the dependence of the algorithm on the initial step size �1.

• We also remark that our proposed algorithm generates a strong convergence 
sequence, which converges to a minimum-norm solution of the VIP.

Remark 3.4 

 (i) Observe that by the definition of C in (3.1) and the construction of Cn, we have 
C ⊂ Cn.

 (ii) By Assumption 3.1 3(a), it can easily be verified from (3.2) that 

Remark 3.5 Observe that by (3.1) and Lemma 4.5 together with the formulation of 
the variational inequality problem, it is clear that if c(yn) ≤ 0 and either wn − yn = 0 
or Ayn = 0, then yn is a solution of the VIP.

4  Convergence Analysis

First, we establish some lemmas which will be needed to prove our strong conver-
gence theorem for the proposed algorithm.

(3.3)

�n+1 =

�
min

�
�‖wn−yn‖

‖Awn−Ayn‖+‖c�(wn)−c
�(yn)‖ , �n + �n

�
, if ‖Awn − Ayn‖ + ‖c�(wn) − c�(yn)‖ ≠ 0,

�n + �n, otherwise .

lim
n→∞

�n||xn − xn−1|| = 0 and lim
n→∞

�n

�n
||xn − xn−1|| = 0.
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Lemma 4.1 Let {�n} be a sequence generated by Algorithm  3.2. Then, we have 
lim
n→∞

�n = �, where � ∈

[
min {

�

L2+L1
, �1}, �1 + Φ

]
 for some positive constant M and 

Φ =
∞∑
n=1

�n.

Proof Since A is L2-Lipschitz continuous and c�(⋅) is L1-Lipschitz continuous, then 
for the case ‖Awn − Ayn‖ + ‖c�(wn) − c�(yn)‖ ≠ 0 for all n ≥ 1 we have

Thus, by the definition of �n+1, the sequence {�n} has lower bound min{
�

L2+L1
, �1} 

and upper bound �1 + Φ. By Lemma 2.9, we have that lim
n→∞

�n exists and denoted by 
� = lim

n→∞
�n. It is clear that � ∈

[
min{

�

L2+L1
, �1}, �1 + Φ

]
.  ◻

Lemma 4.2 Let {xn} be a sequence generated by Algorithm 3.2 under Assumption 
3.1. Then, the following inequality holds for all p ∈ VI(C,A) ∶

Proof From (3.3), we have

which implies that

Let p ∈ VI(C,A). For convenience, we set vn = wn − �nAyn and we have 
zn = PCn

(vn). Since p ∈ C ⊂ Cn, then by applying (2.1) we obtain

Observe that

�‖wn − yn‖
‖Awn − Ayn‖ + ‖c�(wn) − c�(yn)‖ ≥

�‖wn − yn‖
L2‖wn − yn‖ + L1‖wn − yn‖

=
�

L2 + L1
.

(4.1)‖zn − p‖2 ≤ ‖wn − p‖2 −
�
1 − �2

�2
n

�2
n+1

− 2�K
�n

�n+1

�
‖wn − yn‖2.

�n+1 = min
� �‖wn − yn‖
‖Awn − Ayn‖ + ‖c�(wn) − c�(yn)‖ , �n + �n

�

≤
�‖wn − yn‖

‖Awn − Ayn‖ + ‖c�(wn) − c�(yn)‖ ,

(4.2)‖Awn − Ayn‖ + ‖c�(wn) − c�(yn)‖ ≤
�

�n+1
‖wn − yn‖, ∀n ≥ 1.

(4.3)‖zn − p‖2 = ‖PCn
(vn) − p‖2 ≤ ‖vn − p‖2 − ‖vn − PCn

(vn)‖2.
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Since yn = PCn
(wn − �nAwn) and zn ∈ Cn, it follows from (2.1) that

Applying Young’s inequality and (4.2), we get

Furthermore, by the monotonicity of A,  we get

Now, applying (4.4)-(4.7) in (4.3) we get

Now, we consider the following two cases: 

(4.4)

‖vn − p‖2 − ‖vn − PCn
(vn)‖2

= ‖(wn − p) − �nAyn‖2 − ‖(wn − zn) − �nAyn‖2
= ‖wn − p‖2 − 2�n⟨wn − p,Ayn⟩
− ‖wn − zn‖2 + 2�n⟨wn − zn,Ayn⟩

= ‖wn − p‖2 − ‖wn − zn‖2 + 2�n⟨p − zn,Ayn⟩
= ‖wn − p‖2 − �‖wn − yn‖2 + ‖yn − zn‖2
+ 2⟨wn − yn, yn − zn⟩

�
+ 2�n⟨p − yn,Ayn⟩

+ 2�n⟨yn − zn,Ayn⟩
= ‖wn − p‖2 − ‖wn − yn‖2 − ‖yn − zn‖2
+ 2�n⟨p − yn,Ayn⟩ + 2⟨zn − yn,wn − �nAyn − yn⟩

= ‖wn − p‖2 − ‖wn − yn‖2 − ‖yn − zn‖2
+ 2�n⟨p − yn,Ayn⟩ + 2⟨zn − yn,wn − �nAwn − yn⟩
+ 2�n⟨zn − yn,Awn − Ayn⟩.

(4.5)⟨wn − �nAwn − yn, zn − yn⟩ ≤ 0.

(4.6)

2�n⟨zn − yn,Awn − Ayn⟩ ≤ ‖zn − yn‖2 + �2
n
‖Awn − Ayn‖2

≤ ‖zn − yn‖2 + �2
�2
n

�2
n+1

‖wn − yn‖2.

(4.7)⟨p − yn,Ayn⟩ ≤ ⟨p − yn,Ap⟩

(4.8)‖zn − p‖2 ≤ ‖wn − p‖2 −
�
1 − �2

�2
n

�2
n+1

�
‖wn − yn‖2 + 2�n⟨p − yn,Ap⟩.
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Case 1  : Ap = 0. If Ap = 0, then from (4.8) the desired inequality (4.1) follows.
Case 2  : Ap ≠ 0. By Lemma 2.7, p ∈ �C and there exists 𝜂p > 0 such that 

Ap = −�pc
�(p). Since p ∈ �C, then c(p) = 0. By the sub-differential ine-

quality (2.2), we have 

 From the last inequality we obtain

Since yn ∈ Cn, we obtain

Again, by the sub-differential inequality (2.2), we get

Adding (4.10) and (4.11), we have

From (4.9) and (4.12), we get

Observe that by Assumption 3.1 2(b)

Hence, we have

Applying (4.2), (4.13) and (4.15) in (4.8), we obtain

c(yn) ≥ c(p) + ⟨c�(p), yn − p⟩
=

−1

�p
⟨Ap, yn − p⟩.

(4.9)⟨p − yn,Ap⟩ ≤ �pc(yn).

(4.10)c(wn) + ⟨c�(wn), yn − wn⟩ ≤ 0.

(4.11)c(yn) + ⟨c�(yn),wn − yn⟩ ≤ c(wn).

(4.12)c(yn) ≤ ⟨c�(yn) − c�(wn), yn − wn⟩.

(4.13)⟨p − yn,Ap⟩ ≤ �p⟨c�(yn) − c�(wn), yn − wn⟩.

(4.14)�p ≤ K.

(4.15)

2�n�p⟨c�(yn) − c�(wn), yn − wn⟩
≤ 2�n�p‖c�(yn) − c�(wn)‖‖yn − wn‖
≤ 2�nK‖c�(yn) − c�(wn)‖‖yn − wn‖.
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which is the required inequality (4.1).  ◻

Since the limit of {�n} exists, lim
n→∞

�n = lim
n→∞

�n+1. Hence, by the conditions on the 
control parameters we have

Therefore, there exists n0 ≥ 1 such that for all n ≥ n0 we have

Thus, from (4.1) we have that for all n ≥ n0,

Lemma 4.3 Let {xn} be a sequence generated by Algorithm 3.2 under Assumption 
3.1. Then, {xn} is bounded.

Proof Let p ∈ VI(C,A). Then, by the definition of wn we have

By Remark 3.4 (ii.), there exists M1 > 0 such that

(4.16)

‖zn − p‖2 ≤ ‖wn − p‖2 −
�
1 − �2

�2
n

�2
n+1

�
‖wn − yn‖2

+ 2�nK‖c�(yn) − c�(wn)‖‖yn − wn‖

≤ ‖wn − p‖2 −
�
1 − �2

�2
n

�2
n+1

�
‖wn − yn‖2

+ 2�K
�n

�n+1
‖wn − yn‖2

= ‖wn − p‖2 −
�
1 − �2

�2
n

�2
n+1

− 2�K
�n

�n+1

�

‖wn − yn‖2,

(4.17)lim
n→∞

[
1 − 𝛿2

𝜆2
n

𝜆2
n+1

− 2𝛿K
𝜆n

𝜆n+1

]
=
[
1 − 𝛿2 − 2𝛿K

]
> 0.

lim
n→∞

[
1 − 𝛿2

𝜆2
n

𝜆2
n+1

− 2𝛿K
𝜆n

𝜆n+1

]
> 0.

(4.18)‖zn − p‖ ≤ ‖wn − p‖.

(4.19)

‖wn − p‖ = ‖xn + �n(xn − xn−1) − p‖
≤ ‖xn − p‖ + �n‖xn − xn−1‖
= ‖xn − p‖ + �n

�n

�n
‖xn − xn−1‖.

�n

�n
‖xn − xn−1‖ ≤ M1, ∀ n ≥ 1.
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Thus, it follows from (4.19) that

By the definition of xn+1, we have

Applying Lemma 2.1(ii) and using (4.18) we have

which implies that

Now, applying (4.20) and (4.22) in (4.21), we have for all n ≥ n0

Hence, {xn} is bounded. Consequently, {wn}, {yn} and {zn} are all bounded.  ◻

(4.20)‖wn − p‖ ≤ ‖xn − p‖ + �nM1, ∀n ≥ 1.

(4.21)
‖xn+1 − p‖ = ‖(1 − �n − �n)(wn − p) + �n(zn − p) − �np‖

≤ ‖(1 − �n − �n)(wn − p) + �n(zn − p)‖ + �n‖p‖.

‖(1 − �n − �n)(wn − p) + �n(zn − p)‖2
= (1 − �n − �n)

2‖wn − p‖2
+ 2(1 − �n − �n)�n⟨wn − p, zn − p⟩
+ �2

n
‖zn − p‖2

≤ (1 − �n − �n)
2‖wn − p‖2

+ 2(1 − �n − �n)�n‖wn − p‖‖zn − p‖
+ �2

n
‖zn − p‖2

≤ (1 − �n − �n)
2‖wn − p‖2

+ (1 − �n − �n)�n
�‖wn − p‖2

+ ‖zn − p‖2� + �2
n
‖zn − p‖2

= (1 − �n − �n)(1 − �n)‖wn − p‖2
+ �n(1 − �n)‖zn − p‖2

≤ (1 − �n − �n)(1 − �n)‖wn − p‖2
+ �n(1 − �n)‖wn − p‖2

= (1 − �n)
2‖wn − p‖2,

(4.22)‖(1 − �n − �n)(wn − p) + �n(zn − p)‖ ≤ (1 − �n)‖wn − p‖.

‖xn+1 − p‖ ≤ (1 − �n)‖wn − p‖ + �n‖p‖
≤ (1 − �n)

�‖xn − p‖ + �nM1

�
+ �n‖p‖

≤ (1 − �n)‖xn − p‖ + �n
�‖p‖ +M1

�

≤ max
�‖xn − p‖, ‖p‖ +M1

�

⋮

≤ max
�‖xn0 − p‖, ‖p‖ +M1

�
.
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Lemma 4.4 Suppose {xn} is a sequence generated by Algorithm  3.2 such that 
Assumption 3.1 holds. Then, the following inequality holds for all p ∈ VI(C,A) ∶

Proof Let p ∈ VI(C,A). Then, by applying Lemma 2.1(ii) together with the Cauchy-
Schwartz inequality we have

where M2 ∶= supn∈ℕ{‖xn − p‖, 𝜃n‖xn − xn−1‖} > 0.

Next, by applying (4.2) together with the nonexpansiveness of PCn
 we have

Using (4.23) and applying Lemmas 2.1 and 4.2, we have

‖xn+1 − p‖2 ≤ (1 − �n)
2‖xn − p‖2 + 3M2�n(1 − �n)

2
�n

�n
‖xn − xn−1‖

− �n(1 − �n)

�
1 − �2

�2
n

�2
n+1

− 2�K
�n

�n+1

�
‖wn − yn‖2 + 2�n⟨p, p − xn+1⟩.

(4.23)

‖wn − p‖2 = ‖xn + �n(xn − xn−1) − p‖2
= ‖xn − p‖2 + �2

n
‖xn − xn−1‖2 + 2�n⟨xn − p, xn − xn−1⟩

≤ ‖xn − p‖2 + �2
n
‖xn − xn−1‖2 + 2�n‖xn − xn−1‖‖xn − p‖

= ‖xn − p‖2 + �n‖xn − xn−1‖(�n‖xn − xn−1‖ + 2‖xn − p‖)
≤ ‖xn − p‖2 + 3M2�n‖xn − xn−1‖
= ‖xn − p‖2 + 3M2�n

�n

�n
‖xn − xn−1‖,

(4.24)

‖zn − wn‖ ≤ ‖zn − yn‖ + ‖wn − yn‖
= ‖PCn

(wn − �nAyn) − PCn
(wn − �nAwn) + ‖wn − yn‖

≤ �n‖Awn − Ayn‖ + ‖wn − yn‖
≤ �

�n

�n+1
‖wn − yn‖ + ‖wn − yn‖

=

�
1 + �

�n

�n+1

�
‖wn − yn‖.
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which is the required inequality.  ◻

Lemma 4.5 Let {wn} and {yn} be two sequences generated by Algorithm 3.2 under 
Assumption 3.1. If there exists a subsequence {wnk

} of {wn}, which converges weakly 
to x∗ ∈ H and lim

k→∞
‖wnk

− ynk‖ = 0, then x∗ ∈ VI(C,A).

‖xn+1 − p‖2 = ‖(1 − �n − �n)(wn − p) + �n(zn − p) − �np‖2
≤ ‖(1 − �n − �n)(wn − p) + �n(zn − p)‖2

− 2�n⟨p, xn+1 − p⟩
= (1 − �n − �n)

2‖wn − p‖2 + �2
n
‖zn − p‖2

+ 2�n(1 − �n − �n)⟨wn − p, zn − p⟩
+ 2�n⟨p, p − xn+1⟩

≤ (1 − �n − �n)
2‖wn − p‖2 + �2

n
‖zn − p‖2

+ 2�n(1 − �n − �n)‖wn − p‖‖zn − p‖
+ 2�n⟨p, p − xn+1⟩

≤ (1 − �n − �n)
2‖wn − p‖2 + �2

n
‖zn − p‖2

+ �n(1 − �n − �n)
�‖wn − p‖2 + ‖zn − p‖2�

+ 2�n⟨p, p − xn+1⟩
≤ (1 − �n − �n)(1 − �n)‖wn − p‖2

+ �n(1 − �n)‖zn − p‖2 + 2�n⟨p, p − xn+1⟩
≤ (1 − �n − �n)(1 − �n)‖wn − p‖2

+ �n(1 − �n)‖wn − p‖2

− �n(1 − �n)

�
1 − �2

�2
n

�2
n+1

− 2�K
�n

�n+1

�

‖wn − yn‖2 + 2�n⟨p, p − xn+1⟩
= (1 − �n)

2‖wn − p‖2

− �n(1 − �n)

�
1 − �2

�2
n

�2
n+1

− 2�K
�n

�n+1

�

‖wn − yn‖2 + 2�n⟨p, p − xn+1⟩
≤ (1 − �n)

2��xn − p��2

+ 3M2�n(1 − �n)
2
�n

�n
‖xn − xn−1‖

− �n(1 − �n)

�
1 − �2

�2
n

�2
n+1

− 2�K
�n

�n+1

�
‖wn − yn‖2

+ 2�n⟨p, p − xn+1⟩,
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Proof Suppose {wn} and {yn} are two sequences generated by Algorithm 3.2 with 
subsequences {wnk

} and {ynk}, respectively such that wnk
⇀ x∗. Then by the hypoth-

esis of the lemma we have ynk ⇀ x∗. Also, since ynk ∈ Cnk
, then by the definition of 

Cn we have

Applying the Cauchy-Schwartz inequality, we obtain from the last inequality

Since c�(⋅) is continuous and {wnk
} is bounded, then {c�(wnk

)} is bounded, that is, 
there exists a constant M > 0 such that ‖c�(wnk

)‖ ≤ M for all k ≥ 0 . Then, from 
(4.25) we obtain

Since c(⋅) is continuous, then it is lower semi-continuous. Also, since c(⋅) is convex, 
by Lemma 2.6 c(⋅) is weakly lower semi-continuous. Hence, it follows from (4.26) 
and the definition of weakly lower semi-continuity that

which implies that x∗ ∈ C. By property (2.1) of PCn
 , we obtain

Since A is monotone, we have

Letting k → ∞ in the last inequality, and applying lim
k→∞

||ynk − wnk
|| = 0 and 

lim
k→∞

𝜆nk = 𝜆 > 0, we have

Applying Lemma 2.8, we obtain x∗ ∈ VI(C,A).  ◻

At this point, we state and prove the strong theorem for our proposed algorithm.

Theorem  4.6 Let {xn} be a sequence generated by Algorithm  3.2 under 
Assumption 3.1. Then {xn} converges strongly to x̂ ∈ VI(C,A), where 
x̂ = min{‖p‖ ∶ p ∈ VI(C,A)}.

Proof Since x̂ = min{‖p‖ ∶ p ∈ VI(C,A)}, we have x̂ = PVI(C,A)(0). From Lemma 
4.4, we have

c(wnk
) + ⟨c�(wnk

), ynk − wnk
⟩ ≤ 0.

(4.25)c(wnk
) ≤ ‖c�(wnk

)‖‖wnk
− ynk‖.

(4.26)c(wnk
) ≤ M‖ynk − wnk

‖.

(4.27)c(x∗) ≤ lim inf
k→∞

c(wnk
) ≤ lim

k→∞
M‖ynk − wnk

‖ = 0,

⟨ynk − wnk
+ 𝜆nkAwnk

, z − ynk⟩ ≥ 0, ∀ z ∈ C ⊆ Cnk
.

0 ≤ ⟨ynk − wnk
, z − ynk⟩ + �nk⟨Awnk

, z − ynk⟩
= ⟨ynk − wnk

, z − ynk⟩ + �nk⟨Awnk
, z − wnk

⟩ + �nk⟨Awnk
, wnk

− ynk⟩
≤ ⟨ynk − wnk

, z − ynk⟩ + �nk⟨Az, z − wnk
⟩ + �nk⟨Awnk

, wnk
− ynk⟩.

⟨Az, z − x∗⟩ ≥ 0, ∀ z ∈ C.
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where bn = 3M2(1 − 𝛼n)
2 𝜃n

𝛼n
‖xn − xn−1‖ + 2⟨x̂, x̂ − xn+1⟩. Now, we claim that the 

sequence {‖xn − x̂‖} converges to zero. To establish this, by Lemma 2.10 it suffices 
to show that lim sup

k→∞

bnk ≤ 0 for every subsequence {‖xnk − x̂‖} of {‖xn − x̂‖} 
satisfying

Suppose that {‖xnk − x̂‖} is a subsequence of {‖xn − x̂‖} such that (4.29) holds. 
Again, from Lemma 4.4 we obtain

Applying (4.29), Remark 3.4 and the fact that lim
k→∞

�nk = 0, we get

By the conditions on �nk , �nk and (4.17), we have

Consequently, from (4.24) we get

By Remark 3.4 (ii.), we have

Next, applying (4.31) and (4.32) we have

Now, using (4.32), (4.33) and the fact that lim
k→∞

�nk = 0 we obtain

(4.28)

‖xn+1 − x̂‖2 ≤ (1 − 𝛼n)‖xn − x̂‖2 + 𝛼n

�
3M2(1 − 𝛼n)

2
𝜃n

𝛼n
‖xn − xn−1‖ + 2⟨x̂, x̂ − xn+1⟩

�

= (1 − 𝛼n)‖xn − x̂‖2 + 𝛼nbn,

(4.29)lim inf
k→∞

�‖xnk+1 − x̂‖ − ‖xnk − x̂‖� ≥ 0.

𝛽nk (1 − 𝛼nk )

�
1−𝛿2

𝜆2
nk

𝜆2
nk+1

− 2𝛿K
𝜆nk

𝜆nk+1

�
‖wnk

− ynk‖2

≤ (1 − 𝛼nk )
2‖xnk − x̂‖2 − ‖xnk+1 − x̂‖2 + 3M2𝛼nk (1 − 𝛼nk )

2
𝜃nk

𝛼nk

‖xnk − xnk−1‖
+2𝛼nk⟨x̂, x̂ − xnk+1⟩.

�nk (1 − �nk )

�
1 − �2

�2
nk

�2
nk+1

− 2�K
�nk

�nk+1

�
‖wnk

− ynk‖2 → 0, k → ∞.

(4.30)‖wnk
− ynk‖ → 0, k → ∞.

(4.31)‖znk − wnk
‖ → 0, k → ∞.

(4.32)‖xnk − wnk
‖ = �nk‖xnk − xnk−1‖ → 0, k → ∞.

(4.33)‖xnk − znk‖ ≤ ‖xnk − wnk
‖ + ‖wnk

− znk‖ → 0, k → ∞.

(4.34)

‖xnk+1 − xnk‖ = ‖(1 − �nk − �nk )(wnk
− xnk ) + �nk (znk − xnk ) − �nxnk‖

≤ (1 − �nk − �nk )‖wnk
− xnk‖ + �nk‖znk − xnk‖ + �nk‖xnk‖ → 0, k → ∞.
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Since {xn} is bounded, then w�(xn) is nonempty. Let x∗ ∈ w�(xn) be an arbitrary ele-
ment. Then, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗ as k → ∞. It 
follows from (4.32) that wnk

⇀ x∗ as k → ∞. Moreover, by Lemma 4.5 and (4.30) 
we have x∗ ∈ VI(C,A). Consequently, we have w𝜔(xn) ⊂ VI(C,A).

Since {xnk} is bounded, there exists a subsequence {xnkj } of {xnk} such that xnkj ⇀ q 
and

Since x̂ = PVI(C,A)(0), we have

Hence, it follows from the last inequality and (4.34) that

Next, by Remark 3.4 (ii.), (4.31) and (4.35) we have lim sup
k→∞

bnk ≤ 0. Consequently, 

by invoking Lemma 2.10 it follows from (4.28) that {‖xn − x̂‖} converges to zero as 
required.  ◻

5  Numerical Examples

In this section, we present some numerical experiments to illustrate the performance 
of our method, Algorithm 3.2 in comparison with Algorithms 7.1, 7.2, 7.3, and 7.4. 
All numerical computations were carried out using Matlab version R2019(b).

In our computations, we choose �n =
2

3n+2
, �n =

1−�n

2
, �n = (

2

3n+2
)2, �n =

20

(2n+5)2
,   

� = 0.87, �1 = 0.93 in our Algorithm 3.2, we choose � = 0.0018, �n =
n

4n+1
 in Algo-

rithm  7.1, �−1 = 0.0018,� = 0.6,� = 0.8 in Algorithm  7.2, l = 0.018 in Algo-
rithm 7.3, and f (x) = 1

3
x in Algorithms 7.3 and 7.4.

Example 5.1 Let the feasible set C = {x ∈ ℝ
2 ∶ c(x) ∶= x2

1
+ x2 − 2 ≤ 0} and define 

the operator A ∶ ℝ
2
→ ℝ

2 by A(x) = (6h(x1), 4x1 + 2x2), where x = (x1, x2) ∈ ℝ
2 

and

Then, it can easily be verified that A is monotone and 2
√
9e2 + 5-Lipschitz continu-

ous. Also, c is a continuously differentiable convex function and c′ is 2-Lipschitz 

lim sup
k→∞

⟨x̂, x̂ − xnk⟩ = lim
j→∞

⟨x̂, x̂ − xnkj
⟩.

lim sup
k→∞

⟨x̂, x̂ − xnk⟩ = lim
j→∞

⟨x̂, x̂ − xnkj
⟩ = ⟨x̂, x̂ − q⟩ ≤ 0,

(4.35)lim sup
k→∞

⟨x̂, x̂ − xnk+1⟩ ≤ 0.

h(s) ∶=

⎧⎪⎨⎪⎩

e(s − 1) + e, if s > 1,

es, if − 1 ≤ s ≤ 1,

e−1(s + 1) + e−1, if s < −1.



1 3

Strong Convergent Inertial Two‑subgradient Extragradient…

continuous. Moreover, we have that K = 6
√
e2 + 1 (see He et al. 2018). Hence, we 

choose � = 0.025.

We test the algorithms for four different initial points as follows:
Case 1: x0 = (0.5, 1), x1 = (1, 0.7);

Case 2: x0 = (1.3, 0.2), x1 = (0.3, 1.5);

Case 3: x0 = (0.7, 0.9), x1 = (0.4, 0.8);

Case 4: x0 = (1.2, 0.3), x1 = (0.9, 1.1).

The stopping criterion used for this example is |xn+1 − xn| < 10−2 . We plot the 
graphs of errors against the number of iterations in each case. The numerical results 
are reported in Figs. 1, 2, 3, and 4 and Table 1.

Example 5.2 Let H = (𝓁2(ℝ), ‖ ⋅ ‖2), where �2(ℝ) ∶= {x = (x1, x2,… , xn,…),  xj ∈
ℝ ∶

∑∞

j=1
�xj�2 < +∞}, ��x��2 = (

∑∞

j=1
�xj�2)

1

2 and ⟨x, y⟩ = ∑∞

j=1
xjyj for all x ∈ �2(ℝ). 

Let C = {x ∈ H ∶ c(x) ∶= ‖x‖2 − 1 ≤ 0}, and we define the operator A ∶ H → H 

Table 1  Numerical Results for Example 5.1

Case 1 Case 2 Case 3 Case 4

Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Algorithm 7.1 28 0.0142 28 0.0133 28 0.0152 28 0.0146
Algorithm 7.2 38 0.0065 38 0.0059 34 0.0066 37 0.0063
Algorithm 7.3 45 0.0065 45 0.0062 45 0.0069 45 0.0071
Algorithm 7.4 45 0.0100 45 0.0109 45 0.0103 46 0.0104
Algorithm 3.2 22 0.0094 22 0.0097 22 0.0091 22 0.0094

Fig. 1  Example 5.1 Case 1
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by A(x) = 2x, ∀x ∈ H. Then A is monotone and 2-Lipschitz continuous. Moreover, 
K = 1 and we choose � = 0.4.

We choose different initial values as follows:

Case 1: x0 = (2, 1,
1

2
,⋯), x1 = (−3, 1,−

1

3
,⋯);

Fig. 2  Example 5.1 Case 2

Fig. 3  Example 5.1 Case 3
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Case 2: x0 = (−2, 1,−
1

2
,⋯), x1 = (−4, 1,−

1

4
,⋯);

Case 3: x0 = (2, 1,
1

2
,⋯), x1 = (−5, 1,−

1

5
,⋯);

Case 4: x0 = (−2, 1,−
1

2
,⋯), x1 = (−3, 1,−

1

3
,⋯).

The stopping criterion used for this example is ‖xn+1 − xn‖ < 10−2 . We plot the 
graphs of errors against the number of iterations in each case. The numerical results 
are reported in Figs. 5, 6, 7, and 8 and Table 2.

Example 5.3 (Application to Image Restoration Problem)
In this last example, we apply our result to image restoration problem. We compare 
the efficiency of our Algorithm 3.2 with Algorithms 7.1, 7.3, and 7.4.
We recall that the image restoration problem can be formulated as the following lin-
ear inverse problem:

Fig. 4  Example 5.1 Case 4

Table 2  Numerical Results for Example 5.2

Case 1 Case 2 Case 3 Case 4

Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Algorithm 7.1 43 0.0240 48 0.0130 44 0.0125 50 0.0122
Algorithm 7.2 69 0.0085 77 0.0038 83 0.0033 69 0.0034
Algorithm 7.3 34 0.0097 39 0.0042 43 0.0043 34 0.0039
Algorithm 7.4 34 0.0064 39 0.0075 43 0.0077 34 0.0058
Algorithm 3.2 18 0.0067 18 0.0078 18 0.0082 18 0.0088
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where x ∈ ℝ
N is the original image, D ∈ ℝ

M×N is the blurring matrix, v ∈ ℝ
M is the 

observed blurred image while e is the Gaussian noise. It is known that solving Prob-
lem (5.1) is equivalent to solving the convex minimization problem

(5.1)v = Dx + e

Fig. 5  Example 5.2 Case 1

Fig. 6  Example 5.2 Case 2
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where 𝜆 > 0 is the regularization parameter, ‖ ⋅ ‖2 denotes the Euclidean norm and 
‖ ⋅ ‖1 is the �1-norm. Our task here is to restore the original image x given the data 

(5.2)min
x∈ℝN

{
1

2
||Dx − v||2

2
+ �||x||1

}
,

Fig. 7  Example 5.2 Case 3

Fig. 8  Example 5.2 Case 4
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of the blurred image v. The minimization problem (5.2) can be expressed as a vari-
ational inequality problem by setting A ∶= DT (Dx − v). It is known in this case 
that the operator A is monotone and ‖DTD‖-Lipschitz continuous. We consider the 
291 × 240 Pout, 159 × 191 Cell, 223 × 298 Shadow, and 256 × 256 Cameraman 
images from MATLAB Image Processing Toolbox. Moreover, we use the Gauss-
ian blur of size 7 × 7 and standard deviation � = 4 to create the blurred and noisy 
image (observed image) and use the algorithms to recover the original image from 
the blurred image. Also, we measure the quality of the restored image using the sig-
nal-to-noise ratio defined by

where x is the original image and x∗ is the restored image. Note that, the larger the 
SNR, the better the quality of the restored image. We choose the initial values as 
x0 = 0 ∈ ℝ

N and x1 = 1 ∈ ℝ
N . The results are reported in Table 3, which shows the 

SNR values for each algorithm, and Figs. 9, 10, 11, 12, 13, 14, 15, and 16 shows the 

SNR = 20 × log10

� ‖x‖2
‖x − x∗‖2

�
,

Table 3  Numerical Results for 
Example 5.3

Pout Cell Shadow Cameraman
Iter. Iter. Iter. Iter.

Algorithm 7.1 3.1789 3.1389 3.1402 3.1231
Algorithm 7.3 3.6632 3.5917 3.6374 3.6827
Algorithm 7.4 4.8854 3.1389 4.1088 3.6827
Algorithm 3.2 5.3130 5.2272 5.2886 5.2501

Fig. 9  Example 5.3 Pout Figure
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original, blurred and restored images. The major advantages of our proposed Algo-
rithm 3.2 over the other algorithms compared with are the higher SNR values for 
generating the recovered images.

Fig. 10  Example 5.3 Pout Image

Fig. 11  Example 5.3 Cell Figure
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Fig. 12  Example 5.3 Cell Image

Fig. 13  Example 5.3 Shadow 
Figure
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Fig. 14  Example 5.3 Shadow 
Image

Fig. 15  Example 5.3 Camera-
man Figure



 T. Opeyemi Alakoya, O. Temitope Mewomo 

1 3

6  Conclusion

In this paper we study the monotone VIP. We introduce a new inertial two-sub-
gradient extragradient method for approximating the solution of the problem in 
Hilbert spaces. Unlike several of the existing results in the literature, our method 
does not require any linesearch technique which could be time-consuming to 
implement. Rather, we employ a more efficient self-adaptive step size technique 
which generates a non-monotonic sequence of step sizes. Moreover, under mild 
conditions we prove that the sequence generated by our proposed algorithm con-
verges strongly to a minimum-norm solution of the VIP. Finally, we presented 
several numerical experiments and applied our result to image restoration prob-
lem. Our result complements the existing results in the literature in this direction.

Appendix

Algorithm 7.1 (Algorithm 8 in Cao and Guo 2020) 

Step 0.  Let x0, x1 ∈ H be two arbitrary initial points and set n = 1.

Step 1.  Compute 

Step 2.  Construct the half-space 

wn = xn + �n(xn − xn−1),

Fig. 16  Example 5.3 Camera-
man Image
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 and compute 

 where 

 Set n ∶= n + 1 and return to Step 1,
where A ∶ H → H is monotone and L2-Lipschitz continuous, c�(⋅) is L1-Lipschitz 
continuous and �p is the parameter in Lemma 2.7 (2).

Algorithm 7.2 (Algorithm 2 in Ma and Wang 2022) 

Step 0.  Let x−1, x0, y−1 ∈ H;𝜑,𝜇 ∈ [a, b] ⊂ (0, 1);𝜆−1 ∈ (0,
1−𝜑2

2𝜂pL1
], set n = 0.

Step 1.  Given �n−1, yn−1 and xn−1. Let pn−1 = xn−1 − yn−1.

Step 2.  Compute 

Step 3.  Compute 

 where 

Step 4.  Set n ∶= n + 1 and return to Step 1,

where A ∶ H → H is monotone and L2-Lipschitz continuous, c�(⋅) is L1-Lipschitz 
continuous and �p is the parameter in Lemma 2.7 (2).

Cn = {x ∈ H ∶ c(wn) + ⟨c�(wn), x − wn⟩ ≤ 0},

yn = PCn
(wn − �Awn)

xn+1 = PCn
(wn − �Ayn)

0 < 𝜏 ≤

−𝜂pL1 +
√

𝜂2
p
L2
1
+ L2

2
𝜈2

L2
2

,

0 < 𝜈 ≤
1 − 3𝜌 − 𝛾

1 − 𝜌 + 2𝜌2 + 𝛾
, 0 < 𝛾 < 1 − 3𝜌,

0 ≤ 𝜌n ≤ 𝜌 <
1

3
.

�n =

�
�n−1, �n−1‖A(xn−1) − A(yn−1)‖ ≤ �‖pn−1‖,
�n−1�, Otherwise.

yn = PCn
(xn − �nAxn).

xn+1 = PCn
(yn − �n(Ayn − Axn)),

Cn = {x ∈ H ∶ c(wn) + ⟨c�(wn), x − xn⟩ ≤ 0}.
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Algorithm 7.3 (Algorithm 3.1 in Shehu and Iyiola 2017) 

Step 0.  Given l ∈ (0, 1),� ∈ (0, 1). Let x1 ∈ H be arbitrary.
Step 1.  Compute 

 where �n = lmn , where mn is the smallest nonnegative integer m such that 

Step 2.  Compute 

 where 

Step 3.  Compute 

 Set n ∶= n + 1 and return to Step 1,
where A ∶ H → H is monotone and Lipschitz continuous, and f ∶ H → H is a 
contraction.

Algorithm 7.4 (Algorithm 1 in Yang and Liu 2019)
Initialization: Given 𝜆1 > 0,𝜇 ∈ (0, 1). Let x1 ∈ H be arbitrary. 

Step1.  Given the current iterate xn, compute 

 If xn = yn , then stop: xn is a solution of the VIP. Otherwise,
Step 2:  Compute 

 and 

 where 

 Set n ∶= n + 1 and return to Step 1,
where A ∶ H → H is monotone and Lipschitz continuous, and f ∶ H → H is a 
contraction.

yn = PC(xn − �nAxn),

�n‖Axn − Ayn‖ ≤ �‖xn − yn‖.

zn = PTn
(xn − �nAyn),

Tn = {x ∈ H ∶ ⟨xn − �nAxn − yn, x − yn⟩ ≤ 0}.

xn+1 = �nf (xn) + (1 − �n)zn,

yn = PC(xn − �nAxn),

xn+1 = �nf (xn) + (1 − �n)zn,

�n+1 =

�
min {

�‖xn−yn‖
‖Axn−Ayn‖ , �n}, if Axn − Ayn ≠ 0,

�n, otherwise

zn = yn + �n(Axn − Ayn),
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